Chapter 22. Comparing Two Proportions 1 /29

Size: px
Start display at page:

Download "Chapter 22. Comparing Two Proportions 1 /29"

Transcription

1 Chapter 22 Comparing Two Proportions 1 /29

2 Homework p519 2, 4, 12, 13, 15, 17, 18, 19, 24 2 /29

3 Objective Students test null and alternate hypothesis about two population proportions. 3 /29

4 Comparing Two Proportions In the real world we are much more likely to make comparisons between two values (proportions or means) than we are to investigate the validity of an isolated value. And let s be honest, we are much more interested in comparisons. Do you really care how good your test score is, or would you be more interested in your score compared to the rest of the class? Who won the super bowl? More often than not we want to know how two groups differ. Is treatment 1 more effective than treatment 2? Is a treatment more effective than a placebo control? Is my group better than your group. Who is the best baseball player of all time? (Hint: it was Willy Mays). 4/29

5 Another Ruler To examine the difference between two proportions, we will use another standard deviation, the standard deviation of the sampling distribution model for the difference between two proportions. Remember, standard deviations do not add, variances add. The variance of the sum (or difference) of two independent, random distributions is the sum of their individual variances. 5/29

6 The Standard Deviation of the Difference Between Two Proportions Proportions observed in independent random samples are independent. Thus, we can add their variances. So! SD p 1 ( ) = p 1 q 1 (! ) SD p n = p q (! n 2 SD p 1 )2 ( = p q! 1 1 SD p n 2 1 )2 = p 2 q 2 n 2 The standard deviation of the difference between two sample proportions is the square root of the sum of the variances.!! p q SD(p p2 ) = p q n 2 And it follows that the standard error is!! q1!! q2!! p SE (p p2 ) = p 2 n 2 6/29

7 Assumptions and Conditions Independence Assumption: Old news Randomization Condition: The data in each group should be drawn independently and at random from a homogeneous population or generated by a randomized comparative experiment. The 10% Condition: If the data are sampled without replacement, the sample should not exceed 10% of the population. New news Independent Groups Assumption: The two groups we are comparing must be independent of each other. 7/29

8 Assumptions and Conditions Sample Size Condition: Success/Failure Condition: Both groups are big enough that at least 10 successes and at least 10 failures have been observed in each. We already know that for large enough samples, each of our proportions has an approximately Normal sampling distribution. The same is true of their difference. 8/29

9 The Sampling Distribution Provided that the sampled values are independent, the samples are independent, and the samples sizes are large enough, the sampling distribution of!! p2 p 1 is modeled by a Normal model with: Mean µ = p 1 p 2!! p q Standard deviation: SD(p p2 ) = p q n 2 N p p, 1 2 p 1 q 1 + p 2 q 2 n 2 Think about that standard error for a moment. It is the sum of the variances which, in effect, weights the standard error of the difference distribution. 9/29

10 Two-Proportion z-interval When the conditions are met, we are ready to find the confidence interval for the difference of two proportions: The confidence interval is!!!! p q1 (p p2 ) ± z * p 2!! q2 n 2!!!! p q1 SE (p p2 ) = p 2!! q2 n 2 As always, the critical value z* is determined by the desired confidence level, C, that you specify. 10/29

11 Pooled The typical hypothesis test for the difference in two proportions is that there is no difference. Ain t nuthin happenin. In symbols, H 0 : p 1 p 2 = 0 or, if you prefer H 0 : p 1 = p 2. Since we are hypothesizing that there is no difference between the two proportions, that means the sampling distribution for those samples is the same sampling distribution. That implies that the standard errors for each proportion s sampling distribution are actually the same. Since this is the case, we combine (pool) the counts to get a more accurate overall proportion. 11/29

12 Pooled n The pooled proportion is p! pooled = p! 1 + n 2 p! 2 + n 2 n If you have been given the number of successes for each sample, then p! pooled = x 1 + x 2 + n 2 If the numbers of successes are not whole numbers, round them first. (This is the only time you should round values in the middle of a calculation.) 12/29

13 Pooled We then put this pooled value into the formula, substituting it for both sample proportions in the standard error formula: "!! p SE (p p2 ) = pooled q" pooled pooled 1 " p + pooled q" pooled n 2 13/29

14 Compared to What? We then reject our null hypothesis if we see a large enough difference in the two proportions. How can we decide whether the difference we see is large? Same way we always do, measure against the standard error. Unlike previous hypothesis testing situations, the null hypothesis doesn t provide a standard deviation, so we ll use a standard error (here, pooled). 14/29

15 Two-Proportion z-test The conditions for the two-proportion z-test are the same as for the two-proportion z-interval. We are testing the hypothesis H 0 : p 1 p 2 = 0, or, H 0 : p 1 = p 2. Because we hypothesize that the proportions are equal and form the same sampling distribution, we pool them to find p! pooled = p! 1 + n 2 p! 2 + n 2 15/29

16 Two-Proportion z-test We use the pooled value to estimate the standard error:!!! p SE (p p2 ) = pooled q! pooled pooled 1! p + pooled q! pooled n 2 Now we find the test statistic: z = p " pooled q" pooled!! (p p2 ) 0 1 " p + pooled q" pooled n 2 When the conditions are met and the null hypothesis is true, this statistic follows the standard Normal model,!!! p q! pooled pooled N p 1 p2, n 1! + p pooled q! pooled n 2 so we can use that model to obtain a P-value. 16/29

17 TI-84 For a two proportion confidence interval (for the difference in proportions) STAT TESTS B:2-PropZInterval x1: n1: x2: n2: C-Level: Calculate For a two proportion z-test (for the difference in proportions). STAT TESTS 6:2-PropZTest x1: n1: x2: n2: p1: p2 <p2 >p2 Calculate 17/29

18 Example We sample students attending various Colleges and Universities to see how many plan to go to Florida for Spring Break of the randomly selected male students indicated they had plans to go, while 1051 of 3285 randomly selected females indicated intentions to go. Is there a significant difference in the proportions of the males and females intending to behave like idiots during spring break? We are to find whether or not there is a difference in the proportions of males and females intending to go to Florida for Spring Break. H 0 : p m - p f 0, H a : p m - p f 0 H 0 : p m = p f, H a : p m p f p m = proportion of males p f = proportion of females One or the other, do not mix and match, do not use both. 18/29

19 Spring Break Male and female students were randomly selected from the university. We will assume that the intentions of students to go misbehave are independent. The two groups are independent. p 1 = 5690, q 1 = 7241, n 2 p 2 = 1051, n 2 q 2 = 2234, we have enough success/failure males and 3285 females are less tha0% of the population of college students. I will use a Normal model N(0,.0096) to conduct a 2-proportion z-test for the difference in proportions. 19/29

20 Spring Break n ^ m = x m = 5690, p m =.4400 n ^ f = 3285 x f = 1051, p f =.3199 p! pooled = p! 1 + n 2 p! 2 + n 2 = =.4157 z = p! pooled q! pooled!! (p p2 ) 0 1! p + pooled q! pooled n 2 = (.4157)(.5843) (.4157)(.5843) 3285 = = propZTest(46,143,30,151,>p2) ^pm - ^pf = z = , p= With a probability of essentially zero, we reject the null hypothesis and conclude there is a significant difference in the proportions of males and females intending to be idiotic in Florida for Spring Break. 20/29

21 Spring Break We will create a 95% confidence interval for the true difference in proportions.!!!! p q1 (p p2 ) ± z * p 2!! q2 n 2 ( ) ± 1.96 (.44)(.56) (.3199)(.6801) 3285 Since we rejected H 0, we no longer pool the variance because we no longer assume both samples are from the same population ± 1.96(.0096) =.1201 ±.0181 = (.102,.1382) 2-PropZInt(5690,12931,1051,3285,.95) = (.10199,.13819) I am 95% confident that the difference in proportion of males and females intending to go to Florida for Spring Break will fall between 10.2% and 13.9%. 21/29

22 Computer Here is a Minitab output for testing the two proportions: ^ p ^p1 ^ - p2 z 22/29

23 Example Do support groups aid in quitting smoking? A county health department tries an experiment using several hundred volunteers who were planning to use the patch to help them quit smoking. The subjects were randomly divided into two groups. People in Group 1 were given the patch and attended a weekly discussion meeting with counselors and others trying to quit. People in Group 2 also used the patch but did not participate in the counseling groups. After six months 46 of the 143 smokers in Group 1 and 30 of 151 smokers in Group 2 had successfully stopped smoking. Do these results suggest that such support groups could be an effective way to help people stop smoking? n ^ 1 = 143 x 1 = 46, p 1 =.3217 n ^ 2 = 151 x 2 = 30, p 2 = /29

24 Example = 143 x 1 = 46, p^ 1 =.3217 n ^ 2 = 151 x 2 = 30, p 2 =.1987 We are interested in determining if smokers trying to quit using a nicotine patch and counseling (Group 1) had a greater success rate (proportion of subjects quitting) than those subjects using a nicotine patch without counseling (Group 2). H 0 : p 1 - p 2 0, H a : p 1 - p 2 > 0 Smokers are independent and were randomly assigned to 2 groups. The two groups are independent. q 1 = 97, p 1 = 46, n 2 q 2 = 121 n 2 p 2 = 30, all > 10, thus we have sufficient success/failure to use a Normal model. 24/29

25 Example I will use a 2-proportion z test for the normal model N(0,.0511) = 143 x 1 = 46, p^ 1 =.3217 n ^ 2 = 151 x 2 = 30, p 2 =.1987 p! pooled = p! 1 + n 2 p! 2 + n 2 = =.2585 z = p " pooled q" pooled!! (p p2 ) 0 1 " p + pooled q" pooled n 2 = (.2585)(.7415) (.2585)(.7415) propZTest(46,143,30,151,>p2) z = , p= /29

26 Example P(p 1 - p 2.123) = P(z ) =.0080 ^p1 - ^ p2 = z = SE (p! 1 p! 2 ) = p! pooled q! pooled! p + pooled q! pooled n 2 =.0511 You can check the p-value with normalcdf(.123, 1, 0,.0511) = /29

27 Example If H 0 is true, The probability of getting a difference in proportions as great as.123 simply by chance is.008. I reject the null hypothesis. There is sufficient evidence to believe it plausible that counseling in concert with the nicotine patch improves the proportion of subjects that quit smoking over those that use the patch without counseling. Since the difference is not 0. (We rejected H 0 : p 1 - p 2 = 0) We are now interested in determining the true population difference. 27/29

28 Example We Confidence will create interval a 95% confidence z-interval for the difference in population proportions of smoking cessation between those who get counseling and those who do not. The conditions have been met to create a 95% confidence interval for the normal model N(.123,.0510)!!!! p q1 (p p2 ) ± z * 1 1!! q2 + p 2 =.123 ± 1.96 n n i i ± 1.96(.0510) =.123 ±.1000 = (.023,.223) 2-PropZInt(46,143,30,151,.95) =(.02344,.22256) I am 95% confident that the increase in proportion of people quitting with counseling will fall between 2.3% and 22.3%. Note that 0 is not in our interval, confirming our results from the hypothesis test. Is that accurate enough to determine if it is worth the cost? 28/29

29 All Together Now With TI Hypothesis test 2-propZTest(46,143,30,151,>p2) z = , p=.0080 ^p1 - ^p2 = with the confidence interval PropZInt(46,143,30,151,.95) (.02344,.22256) 29/29

Chapter 22. Comparing Two Proportions 1 /30

Chapter 22. Comparing Two Proportions 1 /30 Chapter 22 Comparing Two Proportions 1 /30 Homework p519 2, 4, 12, 13, 15, 17, 18, 19, 24 2 /30 3 /30 Objective Students test null and alternate hypothesis about two population proportions. 4 /30 Comparing

More information

STA Module 10 Comparing Two Proportions

STA Module 10 Comparing Two Proportions STA 2023 Module 10 Comparing Two Proportions Learning Objectives Upon completing this module, you should be able to: 1. Perform large-sample inferences (hypothesis test and confidence intervals) to compare

More information

9-6. Testing the difference between proportions /20

9-6. Testing the difference between proportions /20 9-6 Testing the difference between proportions 1 Homework Discussion Question p514 Ex 9-6 p514 2, 3, 4, 7, 9, 11 (use both the critical value and p-value for all problems. 2 Objective Perform hypothesis

More information

Chapter 24. Comparing Means

Chapter 24. Comparing Means Chapter 4 Comparing Means!1 /34 Homework p579, 5, 7, 8, 10, 11, 17, 31, 3! /34 !3 /34 Objective Students test null and alternate hypothesis about two!4 /34 Plot the Data The intuitive display for comparing

More information

Is Yawning Contagious video

Is Yawning Contagious video Is Yawning Contagious video 10 34 =.29 P yawn seed 4 16 =.25 P yawn no seed.29.25 =.04 No, maybe this occurred purely by chance. 50 subjects Random Assignment Group 1 (34) Group 2 (16) Treatment 1 (yawn

More information

CHAPTER 10 Comparing Two Populations or Groups

CHAPTER 10 Comparing Two Populations or Groups CHAPTER 10 Comparing Two Populations or Groups 10.1 Comparing Two Proportions The Practice of Statistics, 5th Edition Starnes, Tabor, Yates, Moore Bedford Freeman Worth Publishers Comparing Two Proportions

More information

Chapter 22. Comparing Two Proportions. Bin Zou STAT 141 University of Alberta Winter / 15

Chapter 22. Comparing Two Proportions. Bin Zou STAT 141 University of Alberta Winter / 15 Chapter 22 Comparing Two Proportions Bin Zou (bzou@ualberta.ca) STAT 141 University of Alberta Winter 2015 1 / 15 Introduction In Ch.19 and Ch.20, we studied confidence interval and test for proportions,

More information

10.1. Comparing Two Proportions. Section 10.1

10.1. Comparing Two Proportions. Section 10.1 /6/04 0. Comparing Two Proportions Sectio0. Comparing Two Proportions After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET

More information

Difference Between Pair Differences v. 2 Samples

Difference Between Pair Differences v. 2 Samples 1 Sectio1.1 Comparing Two Proportions Learning Objectives After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence

More information

Chapter 10: Comparing Two Populations or Groups

Chapter 10: Comparing Two Populations or Groups Chapter 10: Comparing Two Populations or Groups Sectio0.1 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 10 Comparing Two Populations or Groups 10.1 10.2 Comparing Two Means

More information

hypotheses. P-value Test for a 2 Sample z-test (Large Independent Samples) n > 30 P-value Test for a 2 Sample t-test (Small Samples) n < 30 Identify α

hypotheses. P-value Test for a 2 Sample z-test (Large Independent Samples) n > 30 P-value Test for a 2 Sample t-test (Small Samples) n < 30 Identify α Chapter 8 Notes Section 8-1 Independent and Dependent Samples Independent samples have no relation to each other. An example would be comparing the costs of vacationing in Florida to the cost of vacationing

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence interval to compare two proportions.

DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence interval to compare two proportions. Section 0. Comparing Two Proportions Learning Objectives After this section, you should be able to DETERMINE whether the conditions for performing inference are met. CONSTRUCT and INTERPRET a confidence

More information

Chapter 18. Sampling Distribution Models /51

Chapter 18. Sampling Distribution Models /51 Chapter 18 Sampling Distribution Models 1 /51 Homework p432 2, 4, 6, 8, 10, 16, 17, 20, 30, 36, 41 2 /51 3 /51 Objective Students calculate values of central 4 /51 The Central Limit Theorem for Sample

More information

Difference between means - t-test /25

Difference between means - t-test /25 Difference between means - t-test 1 Discussion Question p492 Ex 9-4 p492 1-3, 6-8, 12 Assume all variances are not equal. Ignore the test for variance. 2 Students will perform hypothesis tests for two

More information

Statistics for Business and Economics: Confidence Intervals for Proportions

Statistics for Business and Economics: Confidence Intervals for Proportions Statistics for Business and Economics: Confidence Intervals for Proportions STT 315: Section 107 Acknowledgement: I d like to thank Dr. Ashoke Sinha for allowing me to use and edit the slides. Statistical

More information

Chapter 10: Comparing Two Populations or Groups

Chapter 10: Comparing Two Populations or Groups Chapter 10: Comparing Two Populations or Groups Sectio0.1 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 10 Comparing Two Populations or Groups 10.1 10.2 Comparing Two Means

More information

Chapter 10: Comparing Two Populations or Groups

Chapter 10: Comparing Two Populations or Groups Chapter 10: Comparing Two Populations or Groups Sectio0.1 The Practice of Statistics, 4 th edition For AP* STARNES, YATES, MOORE Chapter 10 Comparing Two Populations or Groups 10.1 10. Comparing Two Means

More information

Hypothesis Testing with Z and T

Hypothesis Testing with Z and T Chapter Eight Hypothesis Testing with Z and T Introduction to Hypothesis Testing P Values Critical Values Within-Participants Designs Between-Participants Designs Hypothesis Testing An alternate hypothesis

More information

Chapter 24. Comparing Means. Copyright 2010 Pearson Education, Inc.

Chapter 24. Comparing Means. Copyright 2010 Pearson Education, Inc. Chapter 24 Comparing Means Copyright 2010 Pearson Education, Inc. Plot the Data The natural display for comparing two groups is boxplots of the data for the two groups, placed side-by-side. For example:

More information

Chapter 9. Hypothesis testing. 9.1 Introduction

Chapter 9. Hypothesis testing. 9.1 Introduction Chapter 9 Hypothesis testing 9.1 Introduction Confidence intervals are one of the two most common types of statistical inference. Use them when our goal is to estimate a population parameter. The second

More information

Comparing Means from Two-Sample

Comparing Means from Two-Sample Comparing Means from Two-Sample Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu April 3, 2015 Kwonsang Lee STAT111 April 3, 2015 1 / 22 Inference from One-Sample We have two options to

More information

Correlation and regression

Correlation and regression NST 1B Experimental Psychology Statistics practical 1 Correlation and regression Rudolf Cardinal & Mike Aitken 11 / 12 November 2003 Department of Experimental Psychology University of Cambridge Handouts:

More information

Inferences About Two Proportions

Inferences About Two Proportions Inferences About Two Proportions Quantitative Methods II Plan for Today Sampling two populations Confidence intervals for differences of two proportions Testing the difference of proportions Examples 1

More information

The Components of a Statistical Hypothesis Testing Problem

The Components of a Statistical Hypothesis Testing Problem Statistical Inference: Recall from chapter 5 that statistical inference is the use of a subset of a population (the sample) to draw conclusions about the entire population. In chapter 5 we studied one

More information

Chapter 26: Comparing Counts (Chi Square)

Chapter 26: Comparing Counts (Chi Square) Chapter 6: Comparing Counts (Chi Square) We ve seen that you can turn a qualitative variable into a quantitative one (by counting the number of successes and failures), but that s a compromise it forces

More information

Chapter 20 Comparing Groups

Chapter 20 Comparing Groups Chapter 20 Comparing Groups Comparing Proportions Example Researchers want to test the effect of a new anti-anxiety medication. In clinical testing, 64 of 200 people taking the medicine reported symptoms

More information

Chapter 9 Inferences from Two Samples

Chapter 9 Inferences from Two Samples Chapter 9 Inferences from Two Samples 9-1 Review and Preview 9-2 Two Proportions 9-3 Two Means: Independent Samples 9-4 Two Dependent Samples (Matched Pairs) 9-5 Two Variances or Standard Deviations Review

More information

Two-Sample Inference for Proportions and Inference for Linear Regression

Two-Sample Inference for Proportions and Inference for Linear Regression Two-Sample Inference for Proportions and Inference for Linear Regression Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu April 24, 2015 Kwonsang Lee STAT111 April 24, 2015 1 / 13 Announcement:

More information

Midterm 1 and 2 results

Midterm 1 and 2 results Midterm 1 and 2 results Midterm 1 Midterm 2 ------------------------------ Min. :40.00 Min. : 20.0 1st Qu.:60.00 1st Qu.:60.00 Median :75.00 Median :70.0 Mean :71.97 Mean :69.77 3rd Qu.:85.00 3rd Qu.:85.0

More information

Chapter 23: Inferences About Means

Chapter 23: Inferences About Means Chapter 3: Inferences About Means Sample of Means: number of observations in one sample the population mean (theoretical mean) sample mean (observed mean) is the theoretical standard deviation of the population

More information

Two-Sample Inferential Statistics

Two-Sample Inferential Statistics The t Test for Two Independent Samples 1 Two-Sample Inferential Statistics In an experiment there are two or more conditions One condition is often called the control condition in which the treatment is

More information

One-sample categorical data: approximate inference

One-sample categorical data: approximate inference One-sample categorical data: approximate inference Patrick Breheny October 6 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/25 Introduction It is relatively easy to think about the distribution

More information

STAT Chapter 9: Two-Sample Problems. Paired Differences (Section 9.3)

STAT Chapter 9: Two-Sample Problems. Paired Differences (Section 9.3) STAT 515 -- Chapter 9: Two-Sample Problems Paired Differences (Section 9.3) Examples of Paired Differences studies: Similar subjects are paired off and one of two treatments is given to each subject in

More information

STP 226 EXAMPLE EXAM #3 INSTRUCTOR:

STP 226 EXAMPLE EXAM #3 INSTRUCTOR: STP 226 EXAMPLE EXAM #3 INSTRUCTOR: Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned. Signed Date PRINTED

More information

Harvard University. Rigorous Research in Engineering Education

Harvard University. Rigorous Research in Engineering Education Statistical Inference Kari Lock Harvard University Department of Statistics Rigorous Research in Engineering Education 12/3/09 Statistical Inference You have a sample and want to use the data collected

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

An Analysis of College Algebra Exam Scores December 14, James D Jones Math Section 01

An Analysis of College Algebra Exam Scores December 14, James D Jones Math Section 01 An Analysis of College Algebra Exam s December, 000 James D Jones Math - Section 0 An Analysis of College Algebra Exam s Introduction Students often complain about a test being too difficult. Are there

More information

Analysis of variance (ANOVA) Comparing the means of more than two groups

Analysis of variance (ANOVA) Comparing the means of more than two groups Analysis of variance (ANOVA) Comparing the means of more than two groups Example: Cost of mating in male fruit flies Drosophila Treatments: place males with and without unmated (virgin) females Five treatments

More information

Statistical Inference

Statistical Inference Chapter 14 Confidence Intervals: The Basic Statistical Inference Situation: We are interested in estimating some parameter (population mean, μ) that is unknown. We take a random sample from this population.

More information

A proportion is the fraction of individuals having a particular attribute. Can range from 0 to 1!

A proportion is the fraction of individuals having a particular attribute. Can range from 0 to 1! Proportions A proportion is the fraction of individuals having a particular attribute. It is also the probability that an individual randomly sampled from the population will have that attribute Can range

More information

Chapter 15 Sampling Distribution Models

Chapter 15 Sampling Distribution Models Chapter 15 Sampling Distribution Models 1 15.1 Sampling Distribution of a Proportion 2 Sampling About Evolution According to a Gallup poll, 43% believe in evolution. Assume this is true of all Americans.

More information

Ron Heck, Fall Week 3: Notes Building a Two-Level Model

Ron Heck, Fall Week 3: Notes Building a Two-Level Model Ron Heck, Fall 2011 1 EDEP 768E: Seminar on Multilevel Modeling rev. 9/6/2011@11:27pm Week 3: Notes Building a Two-Level Model We will build a model to explain student math achievement using student-level

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. describes the.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. describes the. Practice Test 3 Math 1342 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The term z α/2 σn describes the. 1) A) maximum error of estimate

More information

χ test statistics of 2.5? χ we see that: χ indicate agreement between the two sets of frequencies.

χ test statistics of 2.5? χ we see that: χ indicate agreement between the two sets of frequencies. I. T or F. (1 points each) 1. The χ -distribution is symmetric. F. The χ may be negative, zero, or positive F 3. The chi-square distribution is skewed to the right. T 4. The observed frequency of a cell

More information

T test for two Independent Samples. Raja, BSc.N, DCHN, RN Nursing Instructor Acknowledgement: Ms. Saima Hirani June 07, 2016

T test for two Independent Samples. Raja, BSc.N, DCHN, RN Nursing Instructor Acknowledgement: Ms. Saima Hirani June 07, 2016 T test for two Independent Samples Raja, BSc.N, DCHN, RN Nursing Instructor Acknowledgement: Ms. Saima Hirani June 07, 2016 Q1. The mean serum creatinine level is measured in 36 patients after they received

More information

One-factor analysis of variance (ANOVA)

One-factor analysis of variance (ANOVA) One-factor analysis of variance (ANOVA) March 1, 2017 psych10.stanford.edu Announcements / Action Items Schedule update: final R lab moved to Week 10 Optional Survey 5 coming soon, due on Saturday Last

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

10/4/2013. Hypothesis Testing & z-test. Hypothesis Testing. Hypothesis Testing

10/4/2013. Hypothesis Testing & z-test. Hypothesis Testing. Hypothesis Testing & z-test Lecture Set 11 We have a coin and are trying to determine if it is biased or unbiased What should we assume? Why? Flip coin n = 100 times E(Heads) = 50 Why? Assume we count 53 Heads... What could

More information

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing 1 In most statistics problems, we assume that the data have been generated from some unknown probability distribution. We desire

More information

LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2

LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2 LAB 2. HYPOTHESIS TESTING IN THE BIOLOGICAL SCIENCES- Part 2 Data Analysis: The mean egg masses (g) of the two different types of eggs may be exactly the same, in which case you may be tempted to accept

More information

STAT Chapter 8: Hypothesis Tests

STAT Chapter 8: Hypothesis Tests STAT 515 -- Chapter 8: Hypothesis Tests CIs are possibly the most useful forms of inference because they give a range of reasonable values for a parameter. But sometimes we want to know whether one particular

More information

Lecture 5: Sampling Methods

Lecture 5: Sampling Methods Lecture 5: Sampling Methods What is sampling? Is the process of selecting part of a larger group of participants with the intent of generalizing the results from the smaller group, called the sample, to

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 65 http://www.stat.tamu.edu/~suhasini/teaching.html Suhasini Subba Rao Comparing populations Suppose I want to compare the heights of males and females

More information

Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing

Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing Notes 3: Statistical Inference: Sampling, Sampling Distributions Confidence Intervals, and Hypothesis Testing 1. Purpose of statistical inference Statistical inference provides a means of generalizing

More information

y = a + bx 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation Review: Interpreting Computer Regression Output

y = a + bx 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation Review: Interpreting Computer Regression Output 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation y = a + bx y = dependent variable a = intercept b = slope x = independent variable Section 12.1 Inference for Linear

More information

[ z = 1.48 ; accept H 0 ]

[ z = 1.48 ; accept H 0 ] CH 13 TESTING OF HYPOTHESIS EXAMPLES Example 13.1 Indicate the type of errors committed in the following cases: (i) H 0 : µ = 500; H 1 : µ 500. H 0 is rejected while H 0 is true (ii) H 0 : µ = 500; H 1

More information

Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments

Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments Design of Engineering Experiments Part 2 Basic Statistical Concepts Simple comparative experiments The hypothesis testing framework The two-sample t-test Checking assumptions, validity Comparing more that

More information

10.4 Hypothesis Testing: Two Independent Samples Proportion

10.4 Hypothesis Testing: Two Independent Samples Proportion 10.4 Hypothesis Testing: Two Independent Samples Proportion Example 3: Smoking cigarettes has been known to cause cancer and other ailments. One politician believes that a higher tax should be imposed

More information

hypothesis a claim about the value of some parameter (like p)

hypothesis a claim about the value of some parameter (like p) Testing hypotheses hypothesis a claim about the value of some parameter (like p) significance test procedure to assess the strength of evidence provided by a sample of data against the claim of a hypothesized

More information

Statistical Inference. Section 9.1 Significance Tests: The Basics. Significance Test. The Reasoning of Significance Tests.

Statistical Inference. Section 9.1 Significance Tests: The Basics. Significance Test. The Reasoning of Significance Tests. Section 9.1 Significance Tests: The Basics Significance Test A significance test is a formal procedure for comparing observed data with a claim (also called a hypothesis) whose truth we want to assess.

More information

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions Chapter 9 Inferences from Two Samples 9. Inferences About Two Proportions 9.3 Inferences About Two s (Independent) 9.4 Inferences About Two s (Matched Pairs) 9.5 Comparing Variation in Two Samples Objective

More information

MAT 2379, Introduction to Biostatistics, Sample Calculator Questions 1. MAT 2379, Introduction to Biostatistics

MAT 2379, Introduction to Biostatistics, Sample Calculator Questions 1. MAT 2379, Introduction to Biostatistics MAT 2379, Introduction to Biostatistics, Sample Calculator Questions 1 MAT 2379, Introduction to Biostatistics Sample Calculator Problems for the Final Exam Note: The exam will also contain some problems

More information

Chapter. Hypothesis Testing with Two Samples. Copyright 2015, 2012, and 2009 Pearson Education, Inc. 1

Chapter. Hypothesis Testing with Two Samples. Copyright 2015, 2012, and 2009 Pearson Education, Inc. 1 Chapter 8 Hypothesis Testing with Two Samples Copyright 2015, 2012, and 2009 Pearson Education, Inc 1 Two Sample Hypothesis Test Compares two parameters from two populations Sampling methods: Independent

More information

Review. One-way ANOVA, I. What s coming up. Multiple comparisons

Review. One-way ANOVA, I. What s coming up. Multiple comparisons Review One-way ANOVA, I 9.07 /15/00 Earlier in this class, we talked about twosample z- and t-tests for the difference between two conditions of an independent variable Does a trial drug work better than

More information

In ANOVA the response variable is numerical and the explanatory variables are categorical.

In ANOVA the response variable is numerical and the explanatory variables are categorical. 1 ANOVA ANOVA means ANalysis Of VAriance. The ANOVA is a tool for studying the influence of one or more qualitative variables on the mean of a numerical variable in a population. In ANOVA the response

More information

Problem Set 4 - Solutions

Problem Set 4 - Solutions Problem Set 4 - Solutions Econ-310, Spring 004 8. a. If we wish to test the research hypothesis that the mean GHQ score for all unemployed men exceeds 10, we test: H 0 : µ 10 H a : µ > 10 This is a one-tailed

More information

Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS

Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS Stat 135, Fall 2006 A. Adhikari HOMEWORK 10 SOLUTIONS 1a) The model is cw i = β 0 + β 1 el i + ɛ i, where cw i is the weight of the ith chick, el i the length of the egg from which it hatched, and ɛ i

More information

CHAPTER 10 HYPOTHESIS TESTING WITH TWO SAMPLES

CHAPTER 10 HYPOTHESIS TESTING WITH TWO SAMPLES CHAPTER 10 HYPOTHESIS TESTING WITH TWO SAMPLES In this chapter our hypothesis tests allow us to compare the means (or proportions) of two different populations using a sample from each population For example,

More information

Practice AP Statistics Exam Saturday April 29, 2017 University of Delaware. Section II: Free Response

Practice AP Statistics Exam Saturday April 29, 2017 University of Delaware. Section II: Free Response Practice AP Statistics Exam Saturday April 29, 2017 University of Delaware Section II: Free Response Name: School: Instructions: 1. No electronic devices except an approved calculator are permitted, including

More information

Proportion. Lecture 25 Sections Fri, Oct 10, Hampden-Sydney College. Sampling Distribution of a Sample. Proportion. Robb T.

Proportion. Lecture 25 Sections Fri, Oct 10, Hampden-Sydney College. Sampling Distribution of a Sample. Proportion. Robb T. PDFs n = s Lecture 25 Sections 8.1-8.2 Hampden-Sydney College Fri, Oct 10, 2008 Outline PDFs n = s 1 2 3 PDFs n = 4 5 s 6 7 PDFs n = s The of the In our experiment, we collected a total of 100 samples,

More information

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A

WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, Academic Year Exam Version: A WISE MA/PhD Programs Econometrics Instructor: Brett Graham Spring Semester, 2016-17 Academic Year Exam Version: A INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College

ANOVA Situation The F Statistic Multiple Comparisons. 1-Way ANOVA MATH 143. Department of Mathematics and Statistics Calvin College 1-Way ANOVA MATH 143 Department of Mathematics and Statistics Calvin College An example ANOVA situation Example (Treating Blisters) Subjects: 25 patients with blisters Treatments: Treatment A, Treatment

More information

t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression

t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression Recall, back some time ago, we used a descriptive statistic which allowed us to draw the best fit line through a scatter plot. We

More information

STA Module 11 Inferences for Two Population Means

STA Module 11 Inferences for Two Population Means STA 2023 Module 11 Inferences for Two Population Means Learning Objectives Upon completing this module, you should be able to: 1. Perform inferences based on independent simple random samples to compare

More information

STA Rev. F Learning Objectives. Two Population Means. Module 11 Inferences for Two Population Means

STA Rev. F Learning Objectives. Two Population Means. Module 11 Inferences for Two Population Means STA 2023 Module 11 Inferences for Two Population Means Learning Objectives Upon completing this module, you should be able to: 1. Perform inferences based on independent simple random samples to compare

More information

The t-test: A z-score for a sample mean tells us where in the distribution the particular mean lies

The t-test: A z-score for a sample mean tells us where in the distribution the particular mean lies The t-test: So Far: Sampling distribution benefit is that even if the original population is not normal, a sampling distribution based on this population will be normal (for sample size > 30). Benefit

More information

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions.

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. A common problem of this type is concerned with determining

More information

CBA4 is live in practice mode this week exam mode from Saturday!

CBA4 is live in practice mode this week exam mode from Saturday! Announcements CBA4 is live in practice mode this week exam mode from Saturday! Material covered: Confidence intervals (both cases) 1 sample hypothesis tests (both cases) Hypothesis tests for 2 means as

More information

79 Wyner Math Academy I Spring 2016

79 Wyner Math Academy I Spring 2016 79 Wyner Math Academy I Spring 2016 CHAPTER NINE: HYPOTHESIS TESTING Review May 11 Test May 17 Research requires an understanding of underlying mathematical distributions as well as of the research methods

More information

STAT 515 fa 2016 Lec Statistical inference - hypothesis testing

STAT 515 fa 2016 Lec Statistical inference - hypothesis testing STAT 515 fa 2016 Lec 20-21 Statistical inference - hypothesis testing Karl B. Gregory Wednesday, Oct 12th Contents 1 Statistical inference 1 1.1 Forms of the null and alternate hypothesis for µ and p....................

More information

Single Sample Means. SOCY601 Alan Neustadtl

Single Sample Means. SOCY601 Alan Neustadtl Single Sample Means SOCY601 Alan Neustadtl The Central Limit Theorem If we have a population measured by a variable with a mean µ and a standard deviation σ, and if all possible random samples of size

More information

CHAPTER 7. Hypothesis Testing

CHAPTER 7. Hypothesis Testing CHAPTER 7 Hypothesis Testing A hypothesis is a statement about one or more populations, and usually deal with population parameters, such as means or standard deviations. A research hypothesis is a conjecture

More information

Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals

Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals Hypothesis Testing and Confidence Intervals (Part 2): Cohen s d, Logic of Testing, and Confidence Intervals Lecture 9 Justin Kern April 9, 2018 Measuring Effect Size: Cohen s d Simply finding whether a

More information

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides Chapter 7 Inference for Distributions Introduction to the Practice of STATISTICS SEVENTH EDITION Moore / McCabe / Craig Lecture Presentation Slides Chapter 7 Inference for Distributions 7.1 Inference for

More information

This gives us an upper and lower bound that capture our population mean.

This gives us an upper and lower bound that capture our population mean. Confidence Intervals Critical Values Practice Problems 1 Estimation 1.1 Confidence Intervals Definition 1.1 Margin of error. The margin of error of a distribution is the amount of error we predict when

More information

Psych 230. Psychological Measurement and Statistics

Psych 230. Psychological Measurement and Statistics Psych 230 Psychological Measurement and Statistics Pedro Wolf December 9, 2009 This Time. Non-Parametric statistics Chi-Square test One-way Two-way Statistical Testing 1. Decide which test to use 2. State

More information

Study Ch. 9.3, #47 53 (45 51), 55 61, (55 59)

Study Ch. 9.3, #47 53 (45 51), 55 61, (55 59) GOALS: 1. Understand that 2 approaches of hypothesis testing exist: classical or critical value, and p value. We will use the p value approach. 2. Understand the critical value for the classical approach

More information

Stat 135 Fall 2013 FINAL EXAM December 18, 2013

Stat 135 Fall 2013 FINAL EXAM December 18, 2013 Stat 135 Fall 2013 FINAL EXAM December 18, 2013 Name: Person on right SID: Person on left There will be one, double sided, handwritten, 8.5in x 11in page of notes allowed during the exam. The exam is closed

More information

Many natural processes can be fit to a Poisson distribution

Many natural processes can be fit to a Poisson distribution BE.104 Spring Biostatistics: Poisson Analyses and Power J. L. Sherley Outline 1) Poisson analyses 2) Power What is a Poisson process? Rare events Values are observational (yes or no) Random distributed

More information

Lecture 5: ANOVA and Correlation

Lecture 5: ANOVA and Correlation Lecture 5: ANOVA and Correlation Ani Manichaikul amanicha@jhsph.edu 23 April 2007 1 / 62 Comparing Multiple Groups Continous data: comparing means Analysis of variance Binary data: comparing proportions

More information

COSC 341 Human Computer Interaction. Dr. Bowen Hui University of British Columbia Okanagan

COSC 341 Human Computer Interaction. Dr. Bowen Hui University of British Columbia Okanagan COSC 341 Human Computer Interaction Dr. Bowen Hui University of British Columbia Okanagan 1 Last Topic Distribution of means When it is needed How to build one (from scratch) Determining the characteristics

More information

Distribution-Free Procedures (Devore Chapter Fifteen)

Distribution-Free Procedures (Devore Chapter Fifteen) Distribution-Free Procedures (Devore Chapter Fifteen) MATH-5-01: Probability and Statistics II Spring 018 Contents 1 Nonparametric Hypothesis Tests 1 1.1 The Wilcoxon Rank Sum Test........... 1 1. Normal

More information

10/31/2012. One-Way ANOVA F-test

10/31/2012. One-Way ANOVA F-test PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic 3.Distribution 4. Assumptions One-Way ANOVA F-test One factor J>2 independent samples

More information

Data Analysis and Statistical Methods Statistics 651

Data Analysis and Statistical Methods Statistics 651 Data Analysis and Statistical Methods Statistics 651 http://www.stat.tamu.edu/~suhasini/teaching.html Lecture 26 (MWF) Tests and CI based on two proportions Suhasini Subba Rao Comparing proportions in

More information

Relax and good luck! STP 231 Example EXAM #2. Instructor: Ela Jackiewicz

Relax and good luck! STP 231 Example EXAM #2. Instructor: Ela Jackiewicz STP 31 Example EXAM # Instructor: Ela Jackiewicz Honor Statement: I have neither given nor received information regarding this exam, and I will not do so until all exams have been graded and returned.

More information

ONE FACTOR COMPLETELY RANDOMIZED ANOVA

ONE FACTOR COMPLETELY RANDOMIZED ANOVA MALLOY PSYCH 3000 1-ANOVA PAGE 1 ONE FACTOR COMPLETELY RANDOMIZED ANOVA Sampling Distribution of F F is a test statistic [ ][ ][ ][ ] Test Statistic: F = MALLOY PSYCH 3000 1-ANOVA PAGE 2 ONE WAY ANOVA

More information