Statistics Introductory Correlation

Size: px
Start display at page:

Download "Statistics Introductory Correlation"

Transcription

1 Statistics Introductory Correlation Session 10 April 9, 2018

2 Outline 1

3 Statistics are not used only to describe central tendency and variability for a single variable. Rather, statistics can be used to describe relationships between variables.

4

5 A correlation exists when changes in one dependent variable are statistically associated with systematic changes in another variable hence, a correlation is a type of bivariate relationship. Objective of this lecture This lecture introduces methods for measuring and describing the strength of the relationship between quantitative variables.

6 Examples of relationships between variables appear in the table below. Can you identify which examples show a relationship between X and Y and which do not?

7 1. Ex 1. Relationship. As values of X increase, values of Y increase. 2. Ex 2 also shows a relationship. as values of X decrease, values of Y increase. Even though scores for the two variables are heading in opposite directions, there is still a systematic change in Y that corresponds to the changes in X. 3. Ex Curvilinear relationship. Notice as X increases from 3 to 5 to 7, Y increases from 2 to 4 to 6, but the values of Y begin to decrease from 6 to 4 to 2 as X continues to increase. This is also a relationship, because as values of X increase, there is a systematic change in Y, but then the values of Y decrease. 4. Ex 4 and 5 do not show relationships between X and Y.

8 Scatterplots Determining whether a relationship is present between two dependent variables can be difficult looking at x-y data pairs. So, to see relationships most people begin by creating a scatterplot. Examples: say we measure n = 20 people on the following variables: Family Guy Watching: the number of Family Guy episodes a person watches per week Intelligence, as measured by an IQ test.

9 Scatterplots Examples: say we measure n = 20 people on the following variables:

10 Scatterplots You can see from the data as the number of Family Guy (X) episodes watched increases, Intelligence scores (Y) also increase. Scatterplot are used to display whether a relationship between two variables is positive linear, negative Statistics linear, Intermediate curvilinear, or absent.

11 Scatterplots A positive linear relationship is observed when the values of both variables have a trend that occurs in the same direction.

12 Scatterplots A negative linear relationship is observed when the values of variables have trends that occur in opposite directions (inverse relationship). That is, as the values of one variable increase the values of the other variable tend to decrease.

13 Scatterplots There are many forms of a curvilinear relationship, but generally, such a relationship exists whenever there is a change in the relationship between variables.

14 Scatterplots A relationship is absent whenever there is no systematic change between variables.

15 Pearson Correlation Coefficient The statistic most commonly used to measures the correlation between two quantitative variables is the Pearson Produce-Moment Correlation Coefficient or, more succinctly, the Pearson correlation (r or rxy). What for The Pearson correlation is used to measure the strength and direction of a linear relationship between two quantitative variables. However it has to meet some conditions

16 Pearson Correlation Coefficient However it has to meet some conditions 1 The variables must be quantitative; variables cannot be categorical (nominal) or ordinal (interval or ratio scale) the Spearman correlation is used to measure the correlation when at least one variable is ordinal. Chi square analyses are used if the data comes from nominal scales 2 Each variable must produce a wide range of its potential value: If a limited or restricted range of potential values are measured you may not observe the true relationship. 3 The relationship is not curvilinear. The Pearson correlation measures the direction and degree of two variables with a linear relationship.

17 Pearson Correlation Coefficient Some characteristics 1 measures the degree of linearity between variables. 2 has a range between to The closer to or +1.00, the more linear the relationship is between the variables 4 If Pearson correlation is found to be equal to or +1.00, this indicates that there is a perfect linear relationship between variables 5 The sign (+/-) of the Pearson correlation tells you whether the relationship is positive-linear or negative-linear 6 the sign says nothing about the strength of the linear relationship 7 A zero correlation is a case in which the Pearson correlation is equal to zero (r = 0). In this case there is no relationship between variables.

18 Calculating the Pearson Correlation (r) The Pearson correlation is defined as standardized covariance between two quantitative variables. Recall from standard scores that when calculate a z-score, you divide the difference between a raw score and the mean of a distribution by the standard deviation of the distribution. A measure referred to as covariance is divided by the product of two standard deviations; hence, this measure of covariance is standardized. So what is covariance?

19 Before introducing covariance, let me introduce a set of data that will be used to calculate the Pearson correlation.

20 Before introducing covariance, let me introduce a set of data that will be used to calculate the Pearson correlation. Below is a set of data for n = 10 people. In this hypothetical set of data, assume I measured the age (X) of these ten people and measured the number of books that each of these 10 people read per month (Y).

21 Variance is the average variability among scores for a single variable. You can examine the scores for the variable age (X) and for the variable Books Read per Month (Y) in the table to the left and see that those scores vary; this variance. Covariance is the average co-variation of scores between variables, that is, the average amount by which two variables are changing together. The difference between variance and covariance covariance is the average variation between scores from two variables; variance is the average variation among scores of a single variable

22 Variance covariance is the average variation between scores from two variables; variance is the average variation among scores of a single variable Covariance cov = ŝ 2 = Σ(X X )2 n 1 Σ[(X X )(Y Y ) n 1 To calculate covariance you divide the numerator by n - 1, rather than by n, because we are estimating the covariance in a population from sample data.

23 Covariance is formally defined as the average sum of the cross produces between two variables. The sum of the cross products (SCP) is the sum of the products of the mean centered scores from each variable; SCP = Σ[(X X )(Y Y ) Calculating sum of cross products is similar to calculating sum of squares.

24 Importantly: unlike sum of squares, which is always positive, the sum of cross products can be positive or negative: If SCP is positive, covariance will be positive and the correlation is positive-linear. If SCP is negative, covariance will be negative and the correlation is negative-linear If SCP = 0, it indicates a zero relationship. SCP = Σ[(X X )(Y Y )

25 The next step is to calculate the covariance. Conceptually, all that you need to calculate covariance is to divide SCP from above by n - 1: cov = Σ[(X X )(Y Y ) n 1 = SCP n 1 = = 4.77 The next step to calculate a Pearson correlation is to standardize the covariance. The formula for the Pearson correlation is: r = cov ŝ X ŝ Y The denominator is the product of the estimated standard deviation of each variable

26 The denominator is the product of the estimated standard deviation of each variable The numerator is covariance (cov xy = 4.778).

27 The denominator is the product of the estimated standard deviation of each variable The estimated of the standard deviation for each variable are: SSX 647 ŝ X = n 1 = 10 1 = SSY 26 ŝ Y = n 1 = 10 1 = 1.7

28 The numerator is covariance (cov xy = 4.778). The estimated of the standard deviation for each variable are: SSX 647 ŝ X = n 1 = 10 1 = ŝ Y = SSY n 1 = = 1.7 Now, we have all three pieces needed to calculate the Pearson correlation: r = cov ŝ X ŝ Y

29 The estimated of the standard deviation for each variable are: SSX 647 ŝ X = n 1 = 10 1 = ŝ Y = SSY n 1 = = 1.7 Now, we have all three pieces needed to calculate the Pearson correlation: r = cov ŝ X ŝ Y = (8.479)(1.7) = = The question is what a correlation coefficient of this size indicates.

30 r = cov ŝ X ŝ Y = (8.479)(1.7) = = The question is what a correlation coefficient of this size indicates. the larger the absolute value of the Pearson correlation the better. That is, the closer to or to a correlation of r =.33 is generally large in the behavioral sciences, because there is so much variation in behavior.

31 Proportion of Explained Variance and Residual (Unexplained) Variance The coefficient of determination r 2 is calculated by squaring the Pearson correlation. This value is the proportion of variance that is accounted for (explained) in the relationship between the two variables. In the case of a positive linear relationship, the coefficient of determination is the proportion of X scores that increase with the Y scores. In the case of a negative linear relationship, the coefficient of determination is the proportion of X scores that decrease as Y increases. You can think of r2 as the proportion of scores that are correctly predicted by the relationship. IMPORTANT!!!! the coefficient of determination can never be negative and has a range of 0 to 1, In the the coefficient Oscar of determination BARRERA Statistics is rintermediate 2 = = 0.11

32 Proportion of Explained Variance and Residual (Unexplained) Variance Residual variance is calculated by subtracting the coefficient of determination (r2) from 1(1 r 2 ). Residual variance is the proportion of variance between two variables that is not accounted for in the relationship; it s the proportion of X-Y scores that do not co-vary together in the direction indicated by the relationship IMPORTANT!!!! the coefficient can never be negative and has a range of 0 to 1, In the the coefficient of determination is (1 r 2 ) = = 0.89.

33 Characteristics of the Pearson Correlation having a correlation between two variables does not mean one variable caused the variation in the other variable: Correlation does not mean causation!

34 Characteristics of the Pearson Correlation having a correlation between two variables does not mean one variable caused the variation in the other variable: Correlation does not mean causation!

35 Characteristics of the Pearson Correlation having a correlation between two variables does not mean one variable caused the variation in the other variable: Correlation does not mean causation! The only way to determine whether changes in one variable cause changes in another variable is by manipulating an independent variable and conducting Oscaran BARRERA experiment.

36 Statistical significance of a Pearson correlation Correlation depends on whether the correlation under the null hypothesis is assumed to be zero or some non-zero value. When the correlation under the null hypothesis is assumed to be zero you use a type of t-test to assess the significance of r. When under the null hypothesis r is assumed to be a value other than zero, use Fishers z-test to assess significance. Recall, the value of a correlation has a range of to and a zero-correlation (r = 0) indicates no association between variables. The symbol for the Pearson correlation in a population is the Greek lowercase rho (ρ). Thus, the null and alternate hypotheses predict that: H 0 : ρ = 0H 1 : ρ 0

37 Statistical significance of a Pearson correlation H 0 : ρ = 0H 1 : ρ 0 Notice: the alternate hypothesis is not saying whether the correlation will be positive-linear or negative-linear. If the alternate hypothesis predicts the correlation will be positive-linear the hypotheses are: H 0 : ρ = 0H 1 : ρ > 0 If the alternate H1 predicts the correlation will be negative-linear: H 0 : ρ = 0H 1 : ρ < 0

38 Determining Statistical Significance Say you are interested in whether the Pearson correlation between age and book reading behavior from the earlier sections is statistically significant. H 0 : ρ a,b = 0H 1 : ρ a,b 0 Recall, from that example, n = 10 and r = To determine whether this correlation is statistically significant, we use the following t-test: t = r (1 r 2 )(n 2)

39 Determining Statistical Significance t = r (1 r 2 )/(n 2) BEFORE THE CALCULATIONS IMPORTANT!!: note this t-test is used only when ρ is predicted to be zero under the null hypothesis. we ll select an alpha of α =.05 for a non-directional alternate hypothesis. for the Pearson correlation degrees of freedom are equal to n - 2 (we need to account for the degrees of freedom in each dependent variable). (df= 10 2 = 8) t = ( )/(10 2) = (1 0.11)/(8) =

40 Determining Statistical Significance t = t = r (1 r 2 )/(n 2) = (0.89)/(8) = This is the test statistic that we use to assess the statistical significance of the Pearson correlation. Look up in the table At 95 of confidence with df= 8, the t=2,3060 given that my t is lower than the t 0.5 I can t reject the null hypothesis.

41 Power and Effect size for Pearson Correlation The effect size of the Pearson correlation is the absolute value of the Pearson correlation.

42 Power and Effect size for Pearson Correlation

43 Power and Effect size for Pearson Correlation

44 Statistics Introductory Correlation Session 10 April 9, 2018

Can you tell the relationship between students SAT scores and their college grades?

Can you tell the relationship between students SAT scores and their college grades? Correlation One Challenge Can you tell the relationship between students SAT scores and their college grades? A: The higher SAT scores are, the better GPA may be. B: The higher SAT scores are, the lower

More information

Correlation. A statistics method to measure the relationship between two variables. Three characteristics

Correlation. A statistics method to measure the relationship between two variables. Three characteristics Correlation Correlation A statistics method to measure the relationship between two variables Three characteristics Direction of the relationship Form of the relationship Strength/Consistency Direction

More information

Correlation 1. December 4, HMS, 2017, v1.1

Correlation 1. December 4, HMS, 2017, v1.1 Correlation 1 December 4, 2017 1 HMS, 2017, v1.1 Chapter References Diez: Chapter 7 Navidi, Chapter 7 I don t expect you to learn the proofs what will follow. Chapter References 2 Correlation The sample

More information

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between 7.2 One-Sample Correlation ( = a) Introduction Correlation analysis measures the strength and direction of association between variables. In this chapter we will test whether the population correlation

More information

CORELATION - Pearson-r - Spearman-rho

CORELATION - Pearson-r - Spearman-rho CORELATION - Pearson-r - Spearman-rho Scatter Diagram A scatter diagram is a graph that shows that the relationship between two variables measured on the same individual. Each individual in the set is

More information

Correlation: Relationships between Variables

Correlation: Relationships between Variables Correlation Correlation: Relationships between Variables So far, nearly all of our discussion of inferential statistics has focused on testing for differences between group means However, researchers are

More information

Measuring Associations : Pearson s correlation

Measuring Associations : Pearson s correlation Measuring Associations : Pearson s correlation Scatter Diagram A scatter diagram is a graph that shows that the relationship between two variables measured on the same individual. Each individual in the

More information

Inferences for Correlation

Inferences for Correlation Inferences for Correlation Quantitative Methods II Plan for Today Recall: correlation coefficient Bivariate normal distributions Hypotheses testing for population correlation Confidence intervals for population

More information

Chapter 16: Correlation

Chapter 16: Correlation Chapter : Correlation So far We ve focused on hypothesis testing Is the relationship we observe between x and y in our sample true generally (i.e. for the population from which the sample came) Which answers

More information

Bivariate Relationships Between Variables

Bivariate Relationships Between Variables Bivariate Relationships Between Variables BUS 735: Business Decision Making and Research 1 Goals Specific goals: Detect relationships between variables. Be able to prescribe appropriate statistical methods

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

Reminder: Student Instructional Rating Surveys

Reminder: Student Instructional Rating Surveys Reminder: Student Instructional Rating Surveys You have until May 7 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs The survey should be available

More information

Nemours Biomedical Research Biostatistics Core Statistics Course Session 4. Li Xie March 4, 2015

Nemours Biomedical Research Biostatistics Core Statistics Course Session 4. Li Xie March 4, 2015 Nemours Biomedical Research Biostatistics Core Statistics Course Session 4 Li Xie March 4, 2015 Outline Recap: Pairwise analysis with example of twosample unpaired t-test Today: More on t-tests; Introduction

More information

Correlation and Linear Regression

Correlation and Linear Regression Correlation and Linear Regression Correlation: Relationships between Variables So far, nearly all of our discussion of inferential statistics has focused on testing for differences between group means

More information

Chapter Eight: Assessment of Relationships 1/42

Chapter Eight: Assessment of Relationships 1/42 Chapter Eight: Assessment of Relationships 1/42 8.1 Introduction 2/42 Background This chapter deals, primarily, with two topics. The Pearson product-moment correlation coefficient. The chi-square test

More information

Linear Correlation and Regression Analysis

Linear Correlation and Regression Analysis Linear Correlation and Regression Analysis Set Up the Calculator 2 nd CATALOG D arrow down DiagnosticOn ENTER ENTER SCATTER DIAGRAM Positive Linear Correlation Positive Correlation Variables will tend

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

Upon completion of this chapter, you should be able to:

Upon completion of this chapter, you should be able to: 1 Chaptter 7:: CORRELATIION Upon completion of this chapter, you should be able to: Explain the concept of relationship between variables Discuss the use of the statistical tests to determine correlation

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

Biostatistics: Correlations

Biostatistics: Correlations Biostatistics: s One of the most common errors we find in the press is the confusion between correlation and causation in scientific and health-related studies. In theory, these are easy to distinguish

More information

REVIEW 8/2/2017 陈芳华东师大英语系

REVIEW 8/2/2017 陈芳华东师大英语系 REVIEW Hypothesis testing starts with a null hypothesis and a null distribution. We compare what we have to the null distribution, if the result is too extreme to belong to the null distribution (p

More information

Draft Proof - Do not copy, post, or distribute. Chapter Learning Objectives REGRESSION AND CORRELATION THE SCATTER DIAGRAM

Draft Proof - Do not copy, post, or distribute. Chapter Learning Objectives REGRESSION AND CORRELATION THE SCATTER DIAGRAM 1 REGRESSION AND CORRELATION As we learned in Chapter 9 ( Bivariate Tables ), the differential access to the Internet is real and persistent. Celeste Campos-Castillo s (015) research confirmed the impact

More information

AMS 7 Correlation and Regression Lecture 8

AMS 7 Correlation and Regression Lecture 8 AMS 7 Correlation and Regression Lecture 8 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Suumer 2014 1 / 18 Correlation pairs of continuous observations. Correlation

More information

Bivariate statistics: correlation

Bivariate statistics: correlation Research Methods for Political Science Bivariate statistics: correlation Dr. Thomas Chadefaux Assistant Professor in Political Science Thomas.chadefaux@tcd.ie 1 Bivariate relationships: interval-ratio

More information

UNIT 4 RANK CORRELATION (Rho AND KENDALL RANK CORRELATION

UNIT 4 RANK CORRELATION (Rho AND KENDALL RANK CORRELATION UNIT 4 RANK CORRELATION (Rho AND KENDALL RANK CORRELATION Structure 4.0 Introduction 4.1 Objectives 4. Rank-Order s 4..1 Rank-order data 4.. Assumptions Underlying Pearson s r are Not Satisfied 4.3 Spearman

More information

Correlation and the Analysis of Variance Approach to Simple Linear Regression

Correlation and the Analysis of Variance Approach to Simple Linear Regression Correlation and the Analysis of Variance Approach to Simple Linear Regression Biometry 755 Spring 2009 Correlation and the Analysis of Variance Approach to Simple Linear Regression p. 1/35 Correlation

More information

In a one-way ANOVA, the total sums of squares among observations is partitioned into two components: Sums of squares represent:

In a one-way ANOVA, the total sums of squares among observations is partitioned into two components: Sums of squares represent: Activity #10: AxS ANOVA (Repeated subjects design) Resources: optimism.sav So far in MATH 300 and 301, we have studied the following hypothesis testing procedures: 1) Binomial test, sign-test, Fisher s

More information

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007) FROM: PAGANO, R. R. (007) I. INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS Statistical inference tests are often classified as to whether they are parametric or nonparametric Parameter

More information

Chs. 16 & 17: Correlation & Regression

Chs. 16 & 17: Correlation & Regression Chs. 16 & 17: Correlation & Regression With the shift to correlational analyses, we change the very nature of the question we are asking of our data. Heretofore, we were asking if a difference was likely

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information

Ch. 16: Correlation and Regression

Ch. 16: Correlation and Regression Ch. 1: Correlation and Regression With the shift to correlational analyses, we change the very nature of the question we are asking of our data. Heretofore, we were asking if a difference was likely to

More information

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up?

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up? Comment: notes are adapted from BIOL 214/312. I. Correlation. Correlation A) Correlation is used when we want to examine the relationship of two continuous variables. We are not interested in prediction.

More information

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique

More information

ANOVA CIVL 7012/8012

ANOVA CIVL 7012/8012 ANOVA CIVL 7012/8012 ANOVA ANOVA = Analysis of Variance A statistical method used to compare means among various datasets (2 or more samples) Can provide summary of any regression analysis in a table called

More information

2 Regression Analysis

2 Regression Analysis FORK 1002 Preparatory Course in Statistics: 2 Regression Analysis Genaro Sucarrat (BI) http://www.sucarrat.net/ Contents: 1 Bivariate Correlation Analysis 2 Simple Regression 3 Estimation and Fit 4 T -Test:

More information

Correlation and regression

Correlation and regression NST 1B Experimental Psychology Statistics practical 1 Correlation and regression Rudolf Cardinal & Mike Aitken 11 / 12 November 2003 Department of Experimental Psychology University of Cambridge Handouts:

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Chs. 15 & 16: Correlation & Regression

Chs. 15 & 16: Correlation & Regression Chs. 15 & 16: Correlation & Regression With the shift to correlational analyses, we change the very nature of the question we are asking of our data. Heretofore, we were asking if a difference was likely

More information

Lecture 14. Analysis of Variance * Correlation and Regression. The McGraw-Hill Companies, Inc., 2000

Lecture 14. Analysis of Variance * Correlation and Regression. The McGraw-Hill Companies, Inc., 2000 Lecture 14 Analysis of Variance * Correlation and Regression Outline Analysis of Variance (ANOVA) 11-1 Introduction 11-2 Scatter Plots 11-3 Correlation 11-4 Regression Outline 11-5 Coefficient of Determination

More information

Lecture 14. Outline. Outline. Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA)

Lecture 14. Outline. Outline. Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA) Outline Lecture 14 Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA) 11-1 Introduction 11- Scatter Plots 11-3 Correlation 11-4 Regression Outline 11-5 Coefficient of Determination

More information

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information.

STA441: Spring Multiple Regression. This slide show is a free open source document. See the last slide for copyright information. STA441: Spring 2018 Multiple Regression This slide show is a free open source document. See the last slide for copyright information. 1 Least Squares Plane 2 Statistical MODEL There are p-1 explanatory

More information

Chapter 12 - Lecture 2 Inferences about regression coefficient

Chapter 12 - Lecture 2 Inferences about regression coefficient Chapter 12 - Lecture 2 Inferences about regression coefficient April 19th, 2010 Facts about slope Test Statistic Confidence interval Hypothesis testing Test using ANOVA Table Facts about slope In previous

More information

Psychology 282 Lecture #4 Outline Inferences in SLR

Psychology 282 Lecture #4 Outline Inferences in SLR Psychology 282 Lecture #4 Outline Inferences in SLR Assumptions To this point we have not had to make any distributional assumptions. Principle of least squares requires no assumptions. Can use correlations

More information

Data files for today. CourseEvalua2on2.sav pontokprediktorok.sav Happiness.sav Ca;erplot.sav

Data files for today. CourseEvalua2on2.sav pontokprediktorok.sav Happiness.sav Ca;erplot.sav Correlation Data files for today CourseEvalua2on2.sav pontokprediktorok.sav Happiness.sav Ca;erplot.sav Defining Correlation Co-variation or co-relation between two variables These variables change together

More information

LOOKING FOR RELATIONSHIPS

LOOKING FOR RELATIONSHIPS LOOKING FOR RELATIONSHIPS One of most common types of investigation we do is to look for relationships between variables. Variables may be nominal (categorical), for example looking at the effect of an

More information

Introduction and Single Predictor Regression. Correlation

Introduction and Single Predictor Regression. Correlation Introduction and Single Predictor Regression Dr. J. Kyle Roberts Southern Methodist University Simmons School of Education and Human Development Department of Teaching and Learning Correlation A correlation

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Exam 2 Review 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region 3. Compute

More information

Finding Relationships Among Variables

Finding Relationships Among Variables Finding Relationships Among Variables BUS 230: Business and Economic Research and Communication 1 Goals Specific goals: Re-familiarize ourselves with basic statistics ideas: sampling distributions, hypothesis

More information

determine whether or not this relationship is.

determine whether or not this relationship is. Section 9-1 Correlation A correlation is a between two. The data can be represented by ordered pairs (x,y) where x is the (or ) variable and y is the (or ) variable. There are several types of correlations

More information

y n 1 ( x i x )( y y i n 1 i y 2

y n 1 ( x i x )( y y i n 1 i y 2 STP3 Brief Class Notes Instructor: Ela Jackiewicz Chapter Regression and Correlation In this chapter we will explore the relationship between two quantitative variables, X an Y. We will consider n ordered

More information

Slide 7.1. Theme 7. Correlation

Slide 7.1. Theme 7. Correlation Slide 7.1 Theme 7 Correlation Slide 7.2 Overview Researchers are often interested in exploring whether or not two variables are associated This lecture will consider Scatter plots Pearson correlation coefficient

More information

Review. Number of variables. Standard Scores. Anecdotal / Clinical. Bivariate relationships. Ch. 3: Correlation & Linear Regression

Review. Number of variables. Standard Scores. Anecdotal / Clinical. Bivariate relationships. Ch. 3: Correlation & Linear Regression Ch. 3: Correlation & Relationships between variables Scatterplots Exercise Correlation Race / DNA Review Why numbers? Distribution & Graphs : Histogram Central Tendency Mean (SD) The Central Limit Theorem

More information

Exam details. Final Review Session. Things to Review

Exam details. Final Review Session. Things to Review Exam details Final Review Session Short answer, similar to book problems Formulae and tables will be given You CAN use a calculator Date and Time: Dec. 7, 006, 1-1:30 pm Location: Osborne Centre, Unit

More information

Statistics in medicine

Statistics in medicine Statistics in medicine Lecture 4: and multivariable regression Fatma Shebl, MD, MS, MPH, PhD Assistant Professor Chronic Disease Epidemiology Department Yale School of Public Health Fatma.shebl@yale.edu

More information

Hypothesis testing: Steps

Hypothesis testing: Steps Review for Exam 2 Hypothesis testing: Steps Repeated-Measures ANOVA 1. Determine appropriate test and hypotheses 2. Use distribution table to find critical statistic value(s) representing rejection region

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

THE PEARSON CORRELATION COEFFICIENT

THE PEARSON CORRELATION COEFFICIENT CORRELATION Two variables are said to have a relation if knowing the value of one variable gives you information about the likely value of the second variable this is known as a bivariate relation There

More information

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs)

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs) The One-Way Independent-Samples ANOVA (For Between-Subjects Designs) Computations for the ANOVA In computing the terms required for the F-statistic, we won t explicitly compute any sample variances or

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Calculating Fobt for all possible combinations of variances for each sample Calculating the probability of (F) for each different value of Fobt

Calculating Fobt for all possible combinations of variances for each sample Calculating the probability of (F) for each different value of Fobt PSY 305 Module 5-A AVP Transcript During the past two modules, you have been introduced to inferential statistics. We have spent time on z-tests and the three types of t-tests. We are now ready to move

More information

Review 6. n 1 = 85 n 2 = 75 x 1 = x 2 = s 1 = 38.7 s 2 = 39.2

Review 6. n 1 = 85 n 2 = 75 x 1 = x 2 = s 1 = 38.7 s 2 = 39.2 Review 6 Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected ) A researcher finds that of,000 people who said that

More information

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs)

The One-Way Repeated-Measures ANOVA. (For Within-Subjects Designs) The One-Way Repeated-Measures ANOVA (For Within-Subjects Designs) Logic of the Repeated-Measures ANOVA The repeated-measures ANOVA extends the analysis of variance to research situations using repeated-measures

More information

CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE. It would be very unusual for all the research one might conduct to be restricted to

CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE. It would be very unusual for all the research one might conduct to be restricted to CHAPTER 10 ONE-WAY ANALYSIS OF VARIANCE It would be very unusual for all the research one might conduct to be restricted to comparisons of only two samples. Respondents and various groups are seldom divided

More information

Chapter 13 Correlation

Chapter 13 Correlation Chapter Correlation Page. Pearson correlation coefficient -. Inferential tests on correlation coefficients -9. Correlational assumptions -. on-parametric measures of correlation -5 5. correlational example

More information

Statistics: revision

Statistics: revision NST 1B Experimental Psychology Statistics practical 5 Statistics: revision Rudolf Cardinal & Mike Aitken 29 / 30 April 2004 Department of Experimental Psychology University of Cambridge Handouts: Answers

More information

Hypothesis Testing hypothesis testing approach

Hypothesis Testing hypothesis testing approach Hypothesis Testing In this case, we d be trying to form an inference about that neighborhood: Do people there shop more often those people who are members of the larger population To ascertain this, we

More information

Chi-Square. Heibatollah Baghi, and Mastee Badii

Chi-Square. Heibatollah Baghi, and Mastee Badii 1 Chi-Square Heibatollah Baghi, and Mastee Badii Different Scales, Different Measures of Association Scale of Both Variables Nominal Scale Measures of Association Pearson Chi-Square: χ 2 Ordinal Scale

More information

This gives us an upper and lower bound that capture our population mean.

This gives us an upper and lower bound that capture our population mean. Confidence Intervals Critical Values Practice Problems 1 Estimation 1.1 Confidence Intervals Definition 1.1 Margin of error. The margin of error of a distribution is the amount of error we predict when

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

Lecture 5: ANOVA and Correlation

Lecture 5: ANOVA and Correlation Lecture 5: ANOVA and Correlation Ani Manichaikul amanicha@jhsph.edu 23 April 2007 1 / 62 Comparing Multiple Groups Continous data: comparing means Analysis of variance Binary data: comparing proportions

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 430/514 Recall: A regression model describes how a dependent variable (or response) Y is affected, on average, by one or more independent variables (or factors, or covariates)

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Explained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

Last week: Sample, population and sampling distributions finished with estimation & confidence intervals

Last week: Sample, population and sampling distributions finished with estimation & confidence intervals Past weeks: Measures of central tendency (mean, mode, median) Measures of dispersion (standard deviation, variance, range, etc). Working with the normal curve Last week: Sample, population and sampling

More information

DETAILED CONTENTS PART I INTRODUCTION AND DESCRIPTIVE STATISTICS. 1. Introduction to Statistics

DETAILED CONTENTS PART I INTRODUCTION AND DESCRIPTIVE STATISTICS. 1. Introduction to Statistics DETAILED CONTENTS About the Author Preface to the Instructor To the Student How to Use SPSS With This Book PART I INTRODUCTION AND DESCRIPTIVE STATISTICS 1. Introduction to Statistics 1.1 Descriptive and

More information

psychological statistics

psychological statistics psychological statistics B Sc. Counselling Psychology 011 Admission onwards III SEMESTER COMPLEMENTARY COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITY.P.O., MALAPPURAM, KERALA,

More information

Wed, June 26, (Lecture 8-2). Nonlinearity. Significance test for correlation R-squared, SSE, and SST. Correlation in SPSS.

Wed, June 26, (Lecture 8-2). Nonlinearity. Significance test for correlation R-squared, SSE, and SST. Correlation in SPSS. Wed, June 26, (Lecture 8-2). Nonlinearity. Significance test for correlation R-squared, SSE, and SST. Correlation in SPSS. Last time, we looked at scatterplots, which show the interaction between two variables,

More information

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /1/2016 1/46

Dr. Junchao Xia Center of Biophysics and Computational Biology. Fall /1/2016 1/46 BIO5312 Biostatistics Lecture 10:Regression and Correlation Methods Dr. Junchao Xia Center of Biophysics and Computational Biology Fall 2016 11/1/2016 1/46 Outline In this lecture, we will discuss topics

More information

regression analysis is a type of inferential statistics which tells us whether relationships between two or more variables exist

regression analysis is a type of inferential statistics which tells us whether relationships between two or more variables exist regression analysis is a type of inferential statistics which tells us whether relationships between two or more variables exist sales $ (y - dependent variable) advertising $ (x - independent variable)

More information

Understand the difference between symmetric and asymmetric measures

Understand the difference between symmetric and asymmetric measures Chapter 9 Measures of Strength of a Relationship Learning Objectives Understand the strength of association between two variables Explain an association from a table of joint frequencies Understand a proportional

More information

Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami

Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami Parametric Assumptions The observations must be independent. Dependent variable should be continuous

More information

Outline for Today. Review of In-class Exercise Bivariate Hypothesis Test 2: Difference of Means Bivariate Hypothesis Testing 3: Correla

Outline for Today. Review of In-class Exercise Bivariate Hypothesis Test 2: Difference of Means Bivariate Hypothesis Testing 3: Correla Outline for Today 1 Review of In-class Exercise 2 Bivariate hypothesis testing 2: difference of means 3 Bivariate hypothesis testing 3: correlation 2 / 51 Task for ext Week Any questions? 3 / 51 In-class

More information

Association Between Variables Measured at the Interval-Ratio Level: Bivariate Correlation and Regression

Association Between Variables Measured at the Interval-Ratio Level: Bivariate Correlation and Regression Association Between Variables Measured at the Interval-Ratio Level: Bivariate Correlation and Regression Last couple of classes: Measures of Association: Phi, Cramer s V and Lambda (nominal level of measurement)

More information

Statistics Handbook. All statistical tables were computed by the author.

Statistics Handbook. All statistical tables were computed by the author. Statistics Handbook Contents Page Wilcoxon rank-sum test (Mann-Whitney equivalent) Wilcoxon matched-pairs test 3 Normal Distribution 4 Z-test Related samples t-test 5 Unrelated samples t-test 6 Variance

More information

Psych 230. Psychological Measurement and Statistics

Psych 230. Psychological Measurement and Statistics Psych 230 Psychological Measurement and Statistics Pedro Wolf December 9, 2009 This Time. Non-Parametric statistics Chi-Square test One-way Two-way Statistical Testing 1. Decide which test to use 2. State

More information

9 Correlation and Regression

9 Correlation and Regression 9 Correlation and Regression SW, Chapter 12. Suppose we select n = 10 persons from the population of college seniors who plan to take the MCAT exam. Each takes the test, is coached, and then retakes the

More information

Important note: Transcripts are not substitutes for textbook assignments. 1

Important note: Transcripts are not substitutes for textbook assignments. 1 In this lesson we will cover correlation and regression, two really common statistical analyses for quantitative (or continuous) data. Specially we will review how to organize the data, the importance

More information

Statistical Inference. Why Use Statistical Inference. Point Estimates. Point Estimates. Greg C Elvers

Statistical Inference. Why Use Statistical Inference. Point Estimates. Point Estimates. Greg C Elvers Statistical Inference Greg C Elvers 1 Why Use Statistical Inference Whenever we collect data, we want our results to be true for the entire population and not just the sample that we used But our sample

More information

Introduction to the Analysis of Variance (ANOVA)

Introduction to the Analysis of Variance (ANOVA) Introduction to the Analysis of Variance (ANOVA) The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique for testing for differences between the means of multiple (more

More information

Course Review. Kin 304W Week 14: April 9, 2013

Course Review. Kin 304W Week 14: April 9, 2013 Course Review Kin 304W Week 14: April 9, 2013 1 Today s Outline Format of Kin 304W Final Exam Course Review Hand back marked Project Part II 2 Kin 304W Final Exam Saturday, Thursday, April 18, 3:30-6:30

More information

Scatter plot of data from the study. Linear Regression

Scatter plot of data from the study. Linear Regression 1 2 Linear Regression Scatter plot of data from the study. Consider a study to relate birthweight to the estriol level of pregnant women. The data is below. i Weight (g / 100) i Weight (g / 100) 1 7 25

More information

N Utilization of Nursing Research in Advanced Practice, Summer 2008

N Utilization of Nursing Research in Advanced Practice, Summer 2008 University of Michigan Deep Blue deepblue.lib.umich.edu 2008-07 536 - Utilization of ursing Research in Advanced Practice, Summer 2008 Tzeng, Huey-Ming Tzeng, H. (2008, ctober 1). Utilization of ursing

More information

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests

1 Descriptive statistics. 2 Scores and probability distributions. 3 Hypothesis testing and one-sample t-test. 4 More on t-tests Overall Overview INFOWO Statistics lecture S3: Hypothesis testing Peter de Waal Department of Information and Computing Sciences Faculty of Science, Universiteit Utrecht 1 Descriptive statistics 2 Scores

More information

Overview. Overview. Overview. Specific Examples. General Examples. Bivariate Regression & Correlation

Overview. Overview. Overview. Specific Examples. General Examples. Bivariate Regression & Correlation Bivariate Regression & Correlation Overview The Scatter Diagram Two Examples: Education & Prestige Correlation Coefficient Bivariate Linear Regression Line SPSS Output Interpretation Covariance ou already

More information

Appendix A. Review of Basic Mathematical Operations. 22Introduction

Appendix A. Review of Basic Mathematical Operations. 22Introduction Appendix A Review of Basic Mathematical Operations I never did very well in math I could never seem to persuade the teacher that I hadn t meant my answers literally. Introduction Calvin Trillin Many of

More information

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS

THE ROYAL STATISTICAL SOCIETY 2008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS THE ROYAL STATISTICAL SOCIETY 008 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE (MODULAR FORMAT) MODULE 4 LINEAR MODELS The Society provides these solutions to assist candidates preparing for the examinations

More information

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur

Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Probability Methods in Civil Engineering Prof. Dr. Rajib Maity Department of Civil Engineering Indian Institution of Technology, Kharagpur Lecture No. # 36 Sampling Distribution and Parameter Estimation

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Chapter 16. Simple Linear Regression and Correlation

Chapter 16. Simple Linear Regression and Correlation Chapter 16 Simple Linear Regression and Correlation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit LECTURE 6 Introduction to Econometrics Hypothesis testing & Goodness of fit October 25, 2016 1 / 23 ON TODAY S LECTURE We will explain how multiple hypotheses are tested in a regression model We will define

More information

Chapter 16. Simple Linear Regression and dcorrelation

Chapter 16. Simple Linear Regression and dcorrelation Chapter 16 Simple Linear Regression and dcorrelation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information