CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)

Size: px
Start display at page:

Download "CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)"

Transcription

1 FROM: PAGANO, R. R. (007) I. INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS Statistical inference tests are often classified as to whether they are parametric or nonparametric Parameter is a characteristic of a population A parametric inference test (parametric statistic) is one that depends considerably on population characteristics, or parameters, for its use. o For example, the z test, t test, and ANOVA F test The z Test (single sample) Requires that we specify the mean (µ) and standard deviation (σ) of the null hypothesis population, and requires that the population scores must be normally distributed for small Ns The t Test (single sample, dependent, and independent) (For Single Sample) requires that we know the population mean (µ) and that the population scores must be normally distributed (we estimate the population standard deviation, σ - with the sample standard deviation, s) (For Two-Sample or Two-Condition, correlated t or independent t) both require that the population scores be normally distributed with small Ns the independent t further requires that the population variances be equal The F Test (One-way ANOVA) Requirements are similar to the independent t o Depends on an established distribution The requirements of nonparametric tests are minimal. Nonparametric tests depend little on knowing population distributions o Often referred to as distribution-free tests o For example, the sign test, chi-square goodness-of-fit, chi-square test of independence?? Since nonparametric inference tests have fewer requirements or assumptions about population characteristics, why don t we use them all of the time and forget about parametric tests? o Many of the parametric inference tests are robust with regard to violations of underlying assumptions The main reasons for preferring parametric to nonparametric tests are that, in general, 1. They are more powerful than nonparametric tests, and. They are more versatile than nonparametric tests.

2 o For example, no comparable nonparametric test exists for a factorial (multiple variables and interactions) ANOVA. As a general rule Investigators will use parametric tests whenever possible o However, when there is an extreme violation of an assumption of the parametric test or if the investigator believes the scaling of the data makes the parametric test inappropriate, a nonparametric inference test will be employed. II. CHI-SQUARE ( ) A. SINGLE-VARIABLE EXPERIMENTS Also known as the Chi-Square Goodness-of-Fit Test The inference test most often used with nominal data is a nonparametric test called chi-square ( ). o Recall that with this type of data (nominal data), observations are grouped into several discrete, mutually exclusive categories, and one counts the frequency of occurrences in each category. 1. Computation of χ obt To calculate χ obt, we must first determine the frequency we would expect to get in each cell if sampling is random from the null-hypothesis population. o These frequencies are called expected frequencies and symbolized by f e Expected frequencies can be equally distributed, that is, based on the number of observations divided equally by the number of categories in the variable. Expected frequencies can be proportionally distributed, that is based on a theory or prior literature. o The frequencies actually obtained in the experiment are called observed frequencies and are symbolized by f o f e = expected frequency under the assumption sampling is random from the null-hypothesis population f o = observed frequency in the sample It should be clear that the closer the observed frequency of each cell is to the expected frequency for that cell, the more reasonable is H 0 (if we retain the null hypothesis, we say that there is a good fit ) On the other hand, the greater the difference between f o and f e is, the more reasonable H a becomes (the fit is not good) After determining f e for each cell, we obtain the difference between f o and f e, square the difference, and divide by f e. In symbolic form, (f o f e ) / f e is computed for each cell. Finally, we sum the resultant values from each of the cells. CHAPTER 17 PAGE

3 f o f e o In equation form, χ obt = Σ ( ) f Where f o = observed frequency in the cell e f e = expected frequency in the cell, and Σ is over all the cells From this equation, you can see that χ is basically a measure of how different the observed frequencies are from the expected frequencies.. Evaluation of χ obt The theoretical sampling distribution of χ is shown below (Figure 17.1, p. 431) The χ distribution consists of a family of curves that, like the t distribution, varies with degrees of freedom (sample size). For the lower degrees of freedom, the curves are positively skewed. o As the number of degrees of freedom associated with Χ increases, the respective sampling distribution approaches symmetry (i.e., a normal distribution). The degrees of freedom are determined by the number of f o scores (cells) that are free to vary. o In general, with experiments involving just one variable, there are k 1 degrees of freedom, where k equals the number of groups or categories. Table H in Appendix D (p. 548) gives the critical values of χ for different alpha levels. CHAPTER 17 PAGE 3

4 Since χ is basically a measure of the overall discrepancy between f o and f e, it follows that the larger the discrepancy between the observed and expected frequencies is, the larger the value of χ obt will be. The larger the value of χ obt is, the more unreasonable the null hypothesis is. As with the t and F tests, if χ obt we reject the null hypothesis. o The decision rule states the following: If χ obt > χ crit, reject H 0 falls within the critical region for rejection, then It should be noted that in calculating χ obt, it doesn t matter whether f o is greater or less than f e. The difference is squared, divided by f e, and added to the other cells to obtain χ obt. Since the direction of the difference is immaterial, the χ test is a nondirectional test. Since each difference adds to the value of χ, the critical region for rejection always lies under the right-hand tail of the χ distribution. B. TEST OF INDEPENDENCE BETWEEN TWO VARIABLES One of the main uses of χ is in determining whether two categorical variables are independent or are related (dependent). A contingency table is a two-way table showing the contingency (i.e., dependence on chance) between two variables where the variables have been classified into mutually exclusive categories and the cell entries are frequencies. o In constructing a contingency table, it is essential that the categories be mutually exclusive. If an entry is appropriate for one of the cells, the categories must be such that it cannot appropriately be entered in any other cell. The null hypothesis states that there is no contingency between the variables in the population. That is, the two categories are independent of each other. o The null hypothesis states that the frequencies are due to random sampling from a population in which the proportions are equal. o There is no difference between the two categories. o If we reject H 0, we are concluding, with a known probability (equal to the alpha level), that the variables are dependent on each other in the population. The alternative hypothesis is that the two categories are dependent upon each other. o There is a difference (not the same) between the two categories. o The categories differ across the levels of the other category. CHAPTER 17 PAGE 4

5 1. Computation of χ obt To test the null hypothesis, we must calculate χ and compare it with χ crit With experiments involving two variables, the most difficult part of the process is in determining f e for each cell. If we do not know the population proportions, we estimate them from the sample. o Expected frequencies can be equally distributed, that is, based on the number of observations divided equally by the number of categories in the variable. o Expected frequencies can be proportionally distributed, that is based on a theory or prior literature. For the test of independence, the expected frequencies are computed, based on the percentages in the marginal totals. o The most convenient way to calculate the expected frequency for each cell is to multiply the total row frequency (f r ) by the total column frequency (f c ) corresponding to the respective cell and then to divide this product by the total frequency (n). Refer to Formula Expected frequency = o Notice that the sum of the expected frequencies for any row or column equals the respective row or column total. This can be a useful check of the calculations.. Evaluation of χ obt f r n f c. To evaluate χ obt, we must compare it with χ crit for the appropriate df. The degrees of freedom (df) are equal to the number of f o scores that are free to vary while keeping the totals constant. o In the two-variable experiment, we must keep both the column and row marginal at the same values. The degrees of freedom for experiments involving a contingency between two variables are equal to the number of f o scores that are free to vary while at the same time keeping the column and row marginals the same. o In the case of a contingency table, df = 1. o In the case of a 3 contingency table, df =. The equation to calculate the df for contingency tables is as follows: o df = (Number of Rows 1)(Number of Columns 1) Refer to Formula df = (R 1)(C 1) CHAPTER 17 PAGE 5

6 The χ test is not limited to or 3 tables. It can be used with contingency tables containing any number of rows and columns. o The df formula is perfectly general and applies to all contingency tables. For example, if we did an experiment involving two variables and had four rows and six columns in the table df = (R 1)(C 1) = (4 1)(6 1) = (3)(5) = 15 The decision rule states the following: o If χ obt > χ crit, reject H o o If χ obt < χ crit, retain H o C. ASSUMPTIONS UNDERLYING χ The basic assumption in using χ is that there is independence between each observation recorded in the contingency table. o This means that each subject can have only one entry in the table. It is not permissible to take several measurements on the same subject and enter them as separate frequencies in the same or different cells. o This error would produce a larger N than there are independent observations. A second assumption is that the sample size must be large enough that the expected frequency in each cell is at least 5 for tables where R or C is greater than. If the table is a 1 or table, then each expected frequency should be at least 10. o When the expected frequencies in any of the cells of a contingency table are small (less than 5), the sampling distribution of χ for these data may depart substantially from continuity (the state of being continuous). Thus, for the theoretical sampling distribution of may poorly fit the data. Χ for 1 degree of freedom o For this situation, an adjustment, called the Yates correction for continuity, has been suggested for application to these data. The correction merely involves reducing the absolute value of each numerator by 0.5 units before squaring. The argument for using or not using Yates correction is largely split it becomes a judgment call on the part of the researcher. Simply know that it is an option If the sample size is small enough to result in expected frequencies that violate these requirements, then the actual sampling distribution of χ deviates considerably from the theoretical one and the probability values given in Table H do not apply. CHAPTER 17 PAGE 6

7 If the experiment involves a contingency table and the data violate this assumption, Fisher s exact probability test should be used. Although χ is used frequently when the data are only of nominal scaling, it is not limited to nominal data. o Chi-square can be used with ordinal, interval, and ratio data. o Regardless of the actual scaling, the data must be reduced to mutually exclusive categories and appropriate frequencies before χ can be employed. III. THE WILCOXON MATCHED-PAIRS SIGNED RANKS TEST The Wilcoxon signed ranks test is used in conjunction with the correlated groups design with data that are at least ordinal in scaling. It is a relatively powerful test sometimes used in place of t test for correlated groups (dependent-samples t test) when there is an extreme violation of the normality assumption or when the data are not of appropriate scaling. The Wilcoxon signed ranks test considers both the magnitude of difference scores and their direction, which makes it more powerful than the sign test. It is, however, less powerful than the t test for correlated groups. o While it takes into account the magnitude of the difference scores, it considers only the rank order of the difference scores, not their actual magnitude, as does the t test. A. ASSUMPTIONS OF THE WILCOXON SIGNED RANKS TEST There are two assumptions underlying the Wilcoxon signed ranks test. o The scores within each pair must be at least of ordinal measurement. o The difference scores must also have at least ordinal scaling. IV. THE MANN-WHITNEY U TEST The Mann-Whitney U test is used in conjunction with the independent groups design with data that are at least ordinal in scaling. It is a powerful nonparametric test used in place of the t test for independent groups when there is an extreme violation of the normality assumption or when the data are not of appropriate scaling for the t test. A. TIED RANKS Rank-ordered tied scores are handled similar to that for Spearman rho correlation coefficient. CHAPTER 17 PAGE 7

8 B. ASSUMPTION UNDERLYING THE MANN-WHITNEY U TEST The Mann-Whitney U test requires that the data be at least ordinal in scaling. It does not depend on the population scores being of any particular shape (e.g., normal distributions), as does the t test for independent groups. The Mann-Whitney U test can be used instead of the t test for independent groups when there is a severe violation of the normality assumption or when the data are not of interval or ratio scaling. The Mann-Whitney U test is a powerful test. o However, since it uses only the ordinal property of the scores, it is not as powerful as the t test for independent groups, which uses the interval property of the scores. V. THE KRUSKAL-WALLIS TEST The Kruskal-Wallis test is a nonparametric test that is used with an independent groups design employing k samples. It is used as a substitute for the parametric one-way ANOVA, when the assumptions of that test are seriously violated. The Kruskal-Wallis test does not assume population normality nor homogeneity of variance, as does the parametric ANOVA, and requires only ordinal scaling of the dependent variable. It is used when violations of population normality and/or homogeneity of variance are extreme or when interval or ratio scaling are required and not met by the data. A. ASSUMPTIONS UNDERLYING THE KRUSKAL-WALLIS TEST To use the Kruskal-Wallis test, the data must be of at least ordinal scaling. There must be at least five scores in each sample to use the probabilities given in the table of chi-square. VI. STEPS IN TESTING CHI-SQUARE TEST OF INDEPENDENCE 1. Making Assumptions and Meeting Test Requirements. o Model: Independent random samples, Level of Measurement is nominal. Stating the Hypotheses. o H 0 : The two variables are independent o H a : The two variables are dependent 3. Selecting the Sampling Distribution and Establishing the Critical Region. o Chi-square distribution, alpha level, degrees of freedom, and critical value 4. Computing the Test Statistic. 5. Making a Decision and Interpreting the Results of the Test. CHAPTER 17 PAGE 8

Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami

Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami Parametric versus Nonparametric Statistics-when to use them and which is more powerful? Dr Mahmoud Alhussami Parametric Assumptions The observations must be independent. Dependent variable should be continuous

More information

Chapter 15: Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics

Chapter 15: Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics Section 15.1: An Overview of Nonparametric Statistics Understand Difference between Parametric and Nonparametric Statistical Procedures Parametric statistical procedures inferential procedures that rely

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

DETAILED CONTENTS PART I INTRODUCTION AND DESCRIPTIVE STATISTICS. 1. Introduction to Statistics

DETAILED CONTENTS PART I INTRODUCTION AND DESCRIPTIVE STATISTICS. 1. Introduction to Statistics DETAILED CONTENTS About the Author Preface to the Instructor To the Student How to Use SPSS With This Book PART I INTRODUCTION AND DESCRIPTIVE STATISTICS 1. Introduction to Statistics 1.1 Descriptive and

More information

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions.

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. A common problem of this type is concerned with determining

More information

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests

PSY 307 Statistics for the Behavioral Sciences. Chapter 20 Tests for Ranked Data, Choosing Statistical Tests PSY 307 Statistics for the Behavioral Sciences Chapter 20 Tests for Ranked Data, Choosing Statistical Tests What To Do with Non-normal Distributions Tranformations (pg 382): The shape of the distribution

More information

CHI SQUARE ANALYSIS 8/18/2011 HYPOTHESIS TESTS SO FAR PARAMETRIC VS. NON-PARAMETRIC

CHI SQUARE ANALYSIS 8/18/2011 HYPOTHESIS TESTS SO FAR PARAMETRIC VS. NON-PARAMETRIC CHI SQUARE ANALYSIS I N T R O D U C T I O N T O N O N - P A R A M E T R I C A N A L Y S E S HYPOTHESIS TESTS SO FAR We ve discussed One-sample t-test Dependent Sample t-tests Independent Samples t-tests

More information

Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p.

Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p. Preface p. xi Introduction and Descriptive Statistics p. 1 Introduction to Statistics p. 3 Statistics, Science, and Observations p. 5 Populations and Samples p. 6 The Scientific Method and the Design of

More information

Non-parametric tests, part A:

Non-parametric tests, part A: Two types of statistical test: Non-parametric tests, part A: Parametric tests: Based on assumption that the data have certain characteristics or "parameters": Results are only valid if (a) the data are

More information

Lecture 7: Hypothesis Testing and ANOVA

Lecture 7: Hypothesis Testing and ANOVA Lecture 7: Hypothesis Testing and ANOVA Goals Overview of key elements of hypothesis testing Review of common one and two sample tests Introduction to ANOVA Hypothesis Testing The intent of hypothesis

More information

Degrees of freedom df=1. Limitations OR in SPSS LIM: Knowing σ and µ is unlikely in large

Degrees of freedom df=1. Limitations OR in SPSS LIM: Knowing σ and µ is unlikely in large Z Test Comparing a group mean to a hypothesis T test (about 1 mean) T test (about 2 means) Comparing mean to sample mean. Similar means = will have same response to treatment Two unknown means are different

More information

Nonparametric Statistics

Nonparametric Statistics Nonparametric Statistics Nonparametric or Distribution-free statistics: used when data are ordinal (i.e., rankings) used when ratio/interval data are not normally distributed (data are converted to ranks)

More information

Contents. Acknowledgments. xix

Contents. Acknowledgments. xix Table of Preface Acknowledgments page xv xix 1 Introduction 1 The Role of the Computer in Data Analysis 1 Statistics: Descriptive and Inferential 2 Variables and Constants 3 The Measurement of Variables

More information

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between 7.2 One-Sample Correlation ( = a) Introduction Correlation analysis measures the strength and direction of association between variables. In this chapter we will test whether the population correlation

More information

HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC

HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC 1 HYPOTHESIS TESTING: THE CHI-SQUARE STATISTIC 7 steps of Hypothesis Testing 1. State the hypotheses 2. Identify level of significant 3. Identify the critical values 4. Calculate test statistics 5. Compare

More information

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă HYPOTHESIS TESTING II TESTS ON MEANS Sorana D. Bolboacă OBJECTIVES Significance value vs p value Parametric vs non parametric tests Tests on means: 1 Dec 14 2 SIGNIFICANCE LEVEL VS. p VALUE Materials and

More information

4/6/16. Non-parametric Test. Overview. Stephen Opiyo. Distinguish Parametric and Nonparametric Test Procedures

4/6/16. Non-parametric Test. Overview. Stephen Opiyo. Distinguish Parametric and Nonparametric Test Procedures Non-parametric Test Stephen Opiyo Overview Distinguish Parametric and Nonparametric Test Procedures Explain commonly used Nonparametric Test Procedures Perform Hypothesis Tests Using Nonparametric Procedures

More information

Biostatistics 270 Kruskal-Wallis Test 1. Kruskal-Wallis Test

Biostatistics 270 Kruskal-Wallis Test 1. Kruskal-Wallis Test Biostatistics 270 Kruskal-Wallis Test 1 ORIGIN 1 Kruskal-Wallis Test The Kruskal-Wallis is a non-parametric analog to the One-Way ANOVA F-Test of means. It is useful when the k samples appear not to come

More information

Nonparametric Statistics. Leah Wright, Tyler Ross, Taylor Brown

Nonparametric Statistics. Leah Wright, Tyler Ross, Taylor Brown Nonparametric Statistics Leah Wright, Tyler Ross, Taylor Brown Before we get to nonparametric statistics, what are parametric statistics? These statistics estimate and test population means, while holding

More information

Data are sometimes not compatible with the assumptions of parametric statistical tests (i.e. t-test, regression, ANOVA)

Data are sometimes not compatible with the assumptions of parametric statistical tests (i.e. t-test, regression, ANOVA) BSTT523 Pagano & Gauvreau Chapter 13 1 Nonparametric Statistics Data are sometimes not compatible with the assumptions of parametric statistical tests (i.e. t-test, regression, ANOVA) In particular, data

More information

Statistics: revision

Statistics: revision NST 1B Experimental Psychology Statistics practical 5 Statistics: revision Rudolf Cardinal & Mike Aitken 29 / 30 April 2004 Department of Experimental Psychology University of Cambridge Handouts: Answers

More information

3. Nonparametric methods

3. Nonparametric methods 3. Nonparametric methods If the probability distributions of the statistical variables are unknown or are not as required (e.g. normality assumption violated), then we may still apply nonparametric tests

More information

Inferences About the Difference Between Two Means

Inferences About the Difference Between Two Means 7 Inferences About the Difference Between Two Means Chapter Outline 7.1 New Concepts 7.1.1 Independent Versus Dependent Samples 7.1. Hypotheses 7. Inferences About Two Independent Means 7..1 Independent

More information

Hypothesis Testing. Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true

Hypothesis Testing. Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true Hypothesis esting Hypothesis: conjecture, proposition or statement based on published literature, data, or a theory that may or may not be true Statistical Hypothesis: conjecture about a population parameter

More information

Nonparametric statistic methods. Waraphon Phimpraphai DVM, PhD Department of Veterinary Public Health

Nonparametric statistic methods. Waraphon Phimpraphai DVM, PhD Department of Veterinary Public Health Nonparametric statistic methods Waraphon Phimpraphai DVM, PhD Department of Veterinary Public Health Measurement What are the 4 levels of measurement discussed? 1. Nominal or Classificatory Scale Gender,

More information

SEVERAL μs AND MEDIANS: MORE ISSUES. Business Statistics

SEVERAL μs AND MEDIANS: MORE ISSUES. Business Statistics SEVERAL μs AND MEDIANS: MORE ISSUES Business Statistics CONTENTS Post-hoc analysis ANOVA for 2 groups The equal variances assumption The Kruskal-Wallis test Old exam question Further study POST-HOC ANALYSIS

More information

psychological statistics

psychological statistics psychological statistics B Sc. Counselling Psychology 011 Admission onwards III SEMESTER COMPLEMENTARY COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITY.P.O., MALAPPURAM, KERALA,

More information

Basic Business Statistics, 10/e

Basic Business Statistics, 10/e Chapter 1 1-1 Basic Business Statistics 11 th Edition Chapter 1 Chi-Square Tests and Nonparametric Tests Basic Business Statistics, 11e 009 Prentice-Hall, Inc. Chap 1-1 Learning Objectives In this chapter,

More information

Non-parametric (Distribution-free) approaches p188 CN

Non-parametric (Distribution-free) approaches p188 CN Week 1: Introduction to some nonparametric and computer intensive (re-sampling) approaches: the sign test, Wilcoxon tests and multi-sample extensions, Spearman s rank correlation; the Bootstrap. (ch14

More information

Non-parametric methods

Non-parametric methods Eastern Mediterranean University Faculty of Medicine Biostatistics course Non-parametric methods March 4&7, 2016 Instructor: Dr. Nimet İlke Akçay (ilke.cetin@emu.edu.tr) Learning Objectives 1. Distinguish

More information

LOOKING FOR RELATIONSHIPS

LOOKING FOR RELATIONSHIPS LOOKING FOR RELATIONSHIPS One of most common types of investigation we do is to look for relationships between variables. Variables may be nominal (categorical), for example looking at the effect of an

More information

Types of Statistical Tests DR. MIKE MARRAPODI

Types of Statistical Tests DR. MIKE MARRAPODI Types of Statistical Tests DR. MIKE MARRAPODI Tests t tests ANOVA Correlation Regression Multivariate Techniques Non-parametric t tests One sample t test Independent t test Paired sample t test One sample

More information

CDA Chapter 3 part II

CDA Chapter 3 part II CDA Chapter 3 part II Two-way tables with ordered classfications Let u 1 u 2... u I denote scores for the row variable X, and let ν 1 ν 2... ν J denote column Y scores. Consider the hypothesis H 0 : X

More information

Nominal Data. Parametric Statistics. Nonparametric Statistics. Parametric vs Nonparametric Tests. Greg C Elvers

Nominal Data. Parametric Statistics. Nonparametric Statistics. Parametric vs Nonparametric Tests. Greg C Elvers Nominal Data Greg C Elvers 1 Parametric Statistics The inferential statistics that we have discussed, such as t and ANOVA, are parametric statistics A parametric statistic is a statistic that makes certain

More information

Glossary for the Triola Statistics Series

Glossary for the Triola Statistics Series Glossary for the Triola Statistics Series Absolute deviation The measure of variation equal to the sum of the deviations of each value from the mean, divided by the number of values Acceptance sampling

More information

Textbook Examples of. SPSS Procedure

Textbook Examples of. SPSS Procedure Textbook s of IBM SPSS Procedures Each SPSS procedure listed below has its own section in the textbook. These sections include a purpose statement that describes the statistical test, identification of

More information

What Are Nonparametric Statistics and When Do You Use Them? Jennifer Catrambone

What Are Nonparametric Statistics and When Do You Use Them? Jennifer Catrambone What Are Nonparametric Statistics and When Do You Use Them? Jennifer Catrambone First, a bit about Parametric Statistics Data are expected to be randomly drawn from a normal population Minimum sample size

More information

Agonistic Display in Betta splendens: Data Analysis I. Betta splendens Research: Parametric or Non-parametric Data?

Agonistic Display in Betta splendens: Data Analysis I. Betta splendens Research: Parametric or Non-parametric Data? Agonistic Display in Betta splendens: Data Analysis By Joanna Weremjiwicz, Simeon Yurek, and Dana Krempels Once you have collected data with your ethogram, you are ready to analyze that data to see whether

More information

Contents Kruskal-Wallis Test Friedman s Two-way Analysis of Variance by Ranks... 47

Contents Kruskal-Wallis Test Friedman s Two-way Analysis of Variance by Ranks... 47 Contents 1 Non-parametric Tests 3 1.1 Introduction....................................... 3 1.2 Advantages of Non-parametric Tests......................... 4 1.3 Disadvantages of Non-parametric Tests........................

More information

Inferential statistics

Inferential statistics Inferential statistics Inference involves making a Generalization about a larger group of individuals on the basis of a subset or sample. Ahmed-Refat-ZU Null and alternative hypotheses In hypotheses testing,

More information

Chi-Square. Heibatollah Baghi, and Mastee Badii

Chi-Square. Heibatollah Baghi, and Mastee Badii 1 Chi-Square Heibatollah Baghi, and Mastee Badii Different Scales, Different Measures of Association Scale of Both Variables Nominal Scale Measures of Association Pearson Chi-Square: χ 2 Ordinal Scale

More information

Lecture Slides. Elementary Statistics. by Mario F. Triola. and the Triola Statistics Series

Lecture Slides. Elementary Statistics. by Mario F. Triola. and the Triola Statistics Series Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 13 Nonparametric Statistics 13-1 Overview 13-2 Sign Test 13-3 Wilcoxon Signed-Ranks

More information

Intro to Parametric & Nonparametric Statistics

Intro to Parametric & Nonparametric Statistics Kinds of variable The classics & some others Intro to Parametric & Nonparametric Statistics Kinds of variables & why we care Kinds & definitions of nonparametric statistics Where parametric stats come

More information

Statistical Inference Theory Lesson 46 Non-parametric Statistics

Statistical Inference Theory Lesson 46 Non-parametric Statistics 46.1-The Sign Test Statistical Inference Theory Lesson 46 Non-parametric Statistics 46.1 - Problem 1: (a). Let p equal the proportion of supermarkets that charge less than $2.15 a pound. H o : p 0.50 H

More information

Lecture Slides. Section 13-1 Overview. Elementary Statistics Tenth Edition. Chapter 13 Nonparametric Statistics. by Mario F.

Lecture Slides. Section 13-1 Overview. Elementary Statistics Tenth Edition. Chapter 13 Nonparametric Statistics. by Mario F. Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 13 Nonparametric Statistics 13-1 Overview 13-2 Sign Test 13-3 Wilcoxon Signed-Ranks

More information

Exam details. Final Review Session. Things to Review

Exam details. Final Review Session. Things to Review Exam details Final Review Session Short answer, similar to book problems Formulae and tables will be given You CAN use a calculator Date and Time: Dec. 7, 006, 1-1:30 pm Location: Osborne Centre, Unit

More information

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables.

Chapter 10. Chapter 10. Multinomial Experiments and. Multinomial Experiments and Contingency Tables. Contingency Tables. Chapter 10 Multinomial Experiments and Contingency Tables 1 Chapter 10 Multinomial Experiments and Contingency Tables 10-1 1 Overview 10-2 2 Multinomial Experiments: of-fitfit 10-3 3 Contingency Tables:

More information

Data Analysis: Agonistic Display in Betta splendens I. Betta splendens Research: Parametric or Non-parametric Data?

Data Analysis: Agonistic Display in Betta splendens I. Betta splendens Research: Parametric or Non-parametric Data? Data Analysis: Agonistic Display in Betta splendens By Joanna Weremjiwicz, Simeon Yurek, and Dana Krempels Once you have collected data with your ethogram, you are ready to analyze that data to see whether

More information

Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution

Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution Introduction to Statistical Data Analysis Lecture 7: The Chi-Square Distribution James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of Probability Sampling Procedures Collection of Data Measures

More information

Transition Passage to Descriptive Statistics 28

Transition Passage to Descriptive Statistics 28 viii Preface xiv chapter 1 Introduction 1 Disciplines That Use Quantitative Data 5 What Do You Mean, Statistics? 6 Statistics: A Dynamic Discipline 8 Some Terminology 9 Problems and Answers 12 Scales of

More information

Psych 230. Psychological Measurement and Statistics

Psych 230. Psychological Measurement and Statistics Psych 230 Psychological Measurement and Statistics Pedro Wolf December 9, 2009 This Time. Non-Parametric statistics Chi-Square test One-way Two-way Statistical Testing 1. Decide which test to use 2. State

More information

Basic Statistical Analysis

Basic Statistical Analysis indexerrt.qxd 8/21/2002 9:47 AM Page 1 Corrected index pages for Sprinthall Basic Statistical Analysis Seventh Edition indexerrt.qxd 8/21/2002 9:47 AM Page 656 Index Abscissa, 24 AB-STAT, vii ADD-OR rule,

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Formulas and Tables by Mario F. Triola

Formulas and Tables by Mario F. Triola Copyright 010 Pearson Education, Inc. Ch. 3: Descriptive Statistics x f # x x f Mean 1x - x s - 1 n 1 x - 1 x s 1n - 1 s B variance s Ch. 4: Probability Mean (frequency table) Standard deviation P1A or

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 004 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER II STATISTICAL METHODS The Society provides these solutions to assist candidates preparing for the examinations in future

More information

Data analysis and Geostatistics - lecture VII

Data analysis and Geostatistics - lecture VII Data analysis and Geostatistics - lecture VII t-tests, ANOVA and goodness-of-fit Statistical testing - significance of r Testing the significance of the correlation coefficient: t = r n - 2 1 - r 2 with

More information

Dr. Maddah ENMG 617 EM Statistics 10/12/12. Nonparametric Statistics (Chapter 16, Hines)

Dr. Maddah ENMG 617 EM Statistics 10/12/12. Nonparametric Statistics (Chapter 16, Hines) Dr. Maddah ENMG 617 EM Statistics 10/12/12 Nonparametric Statistics (Chapter 16, Hines) Introduction Most of the hypothesis testing presented so far assumes normally distributed data. These approaches

More information

Chapte The McGraw-Hill Companies, Inc. All rights reserved.

Chapte The McGraw-Hill Companies, Inc. All rights reserved. er15 Chapte Chi-Square Tests d Chi-Square Tests for -Fit Uniform Goodness- Poisson Goodness- Goodness- ECDF Tests (Optional) Contingency Tables A contingency table is a cross-tabulation of n paired observations

More information

Chapter 18 Resampling and Nonparametric Approaches To Data

Chapter 18 Resampling and Nonparametric Approaches To Data Chapter 18 Resampling and Nonparametric Approaches To Data 18.1 Inferences in children s story summaries (McConaughy, 1980): a. Analysis using Wilcoxon s rank-sum test: Younger Children Older Children

More information

Association Between Variables Measured at the Ordinal Level

Association Between Variables Measured at the Ordinal Level Last week: Examining associations. Is the association significant? (chi square test) Strength of the association (with at least one variable nominal) maximum difference approach chi/cramer s v/lambda Nature

More information

Rama Nada. -Ensherah Mokheemer. 1 P a g e

Rama Nada. -Ensherah Mokheemer. 1 P a g e - 9 - Rama Nada -Ensherah Mokheemer - 1 P a g e Quick revision: Remember from the last lecture that chi square is an example of nonparametric test, other examples include Kruskal Wallis, Mann Whitney and

More information

Do not copy, post, or distribute. Independent-Samples t Test and Mann- C h a p t e r 13

Do not copy, post, or distribute. Independent-Samples t Test and Mann- C h a p t e r 13 C h a p t e r 13 Independent-Samples t Test and Mann- Whitney U Test 13.1 Introduction and Objectives This chapter continues the theme of hypothesis testing as an inferential statistical procedure. In

More information

Analysis of variance (ANOVA) Comparing the means of more than two groups

Analysis of variance (ANOVA) Comparing the means of more than two groups Analysis of variance (ANOVA) Comparing the means of more than two groups Example: Cost of mating in male fruit flies Drosophila Treatments: place males with and without unmated (virgin) females Five treatments

More information

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs

Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs Introduction to the Analysis of Variance (ANOVA) Computing One-Way Independent Measures (Between Subjects) ANOVAs The Analysis of Variance (ANOVA) The analysis of variance (ANOVA) is a statistical technique

More information

What is a Hypothesis?

What is a Hypothesis? What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population mean Example: The mean monthly cell phone bill in this city is μ = $42 population proportion Example:

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Unit 14: Nonparametric Statistical Methods

Unit 14: Nonparametric Statistical Methods Unit 14: Nonparametric Statistical Methods Statistics 571: Statistical Methods Ramón V. León 8/8/2003 Unit 14 - Stat 571 - Ramón V. León 1 Introductory Remarks Most methods studied so far have been based

More information

4.1. Introduction: Comparing Means

4.1. Introduction: Comparing Means 4. Analysis of Variance (ANOVA) 4.1. Introduction: Comparing Means Consider the problem of testing H 0 : µ 1 = µ 2 against H 1 : µ 1 µ 2 in two independent samples of two different populations of possibly

More information

One-Way ANOVA. Some examples of when ANOVA would be appropriate include:

One-Way ANOVA. Some examples of when ANOVA would be appropriate include: One-Way ANOVA 1. Purpose Analysis of variance (ANOVA) is used when one wishes to determine whether two or more groups (e.g., classes A, B, and C) differ on some outcome of interest (e.g., an achievement

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling Review for Final For a detailed review of Chapters 1 7, please see the review sheets for exam 1 and. The following only briefly covers these sections. The final exam could contain problems that are included

More information

11-2 Multinomial Experiment

11-2 Multinomial Experiment Chapter 11 Multinomial Experiments and Contingency Tables 1 Chapter 11 Multinomial Experiments and Contingency Tables 11-11 Overview 11-2 Multinomial Experiments: Goodness-of-fitfit 11-3 Contingency Tables:

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Module 9: Nonparametric Statistics Statistics (OA3102)

Module 9: Nonparametric Statistics Statistics (OA3102) Module 9: Nonparametric Statistics Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 15.1-15.6 Revision: 3-12 1 Goals for this Lecture

More information

N Utilization of Nursing Research in Advanced Practice, Summer 2008

N Utilization of Nursing Research in Advanced Practice, Summer 2008 University of Michigan Deep Blue deepblue.lib.umich.edu 2008-07 536 - Utilization of ursing Research in Advanced Practice, Summer 2008 Tzeng, Huey-Ming Tzeng, H. (2008, ctober 1). Utilization of ursing

More information

STATISTIKA INDUSTRI 2 TIN 4004

STATISTIKA INDUSTRI 2 TIN 4004 STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 11 & 12 Outline: Nonparametric Statistics Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability & Statistics for Engineers & Scientists, 9 th

More information

Non-Parametric Statistics: When Normal Isn t Good Enough"

Non-Parametric Statistics: When Normal Isn t Good Enough Non-Parametric Statistics: When Normal Isn t Good Enough" Professor Ron Fricker" Naval Postgraduate School" Monterey, California" 1/28/13 1 A Bit About Me" Academic credentials" Ph.D. and M.A. in Statistics,

More information

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing

Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing Statistical Inference: Estimation and Confidence Intervals Hypothesis Testing 1 In most statistics problems, we assume that the data have been generated from some unknown probability distribution. We desire

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and should be emailed to the instructor

More information

Kruskal-Wallis and Friedman type tests for. nested effects in hierarchical designs 1

Kruskal-Wallis and Friedman type tests for. nested effects in hierarchical designs 1 Kruskal-Wallis and Friedman type tests for nested effects in hierarchical designs 1 Assaf P. Oron and Peter D. Hoff Department of Statistics, University of Washington, Seattle assaf@u.washington.edu, hoff@stat.washington.edu

More information

Inference for Categorical Data. Chi-Square Tests for Goodness of Fit and Independence

Inference for Categorical Data. Chi-Square Tests for Goodness of Fit and Independence Chi-Square Tests for Goodness of Fit and Independence Chi-Square Tests In this course, we use chi-square tests in two different ways The chi-square test for goodness-of-fit is used to determine whether

More information

QUANTITATIVE TECHNIQUES

QUANTITATIVE TECHNIQUES UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION (For B Com. IV Semester & BBA III Semester) COMPLEMENTARY COURSE QUANTITATIVE TECHNIQUES QUESTION BANK 1. The techniques which provide the decision maker

More information

Analysis of 2x2 Cross-Over Designs using T-Tests

Analysis of 2x2 Cross-Over Designs using T-Tests Chapter 234 Analysis of 2x2 Cross-Over Designs using T-Tests Introduction This procedure analyzes data from a two-treatment, two-period (2x2) cross-over design. The response is assumed to be a continuous

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Introduction to Nonparametric Statistics

Introduction to Nonparametric Statistics Introduction to Nonparametric Statistics by James Bernhard Spring 2012 Parameters Parametric method Nonparametric method µ[x 2 X 1 ] paired t-test Wilcoxon signed rank test µ[x 1 ], µ[x 2 ] 2-sample t-test

More information

Sampling distribution of t. 2. Sampling distribution of t. 3. Example: Gas mileage investigation. II. Inferential Statistics (8) t =

Sampling distribution of t. 2. Sampling distribution of t. 3. Example: Gas mileage investigation. II. Inferential Statistics (8) t = 2. The distribution of t values that would be obtained if a value of t were calculated for each sample mean for all possible random of a given size from a population _ t ratio: (X - µ hyp ) t s x The result

More information

Unit 27 One-Way Analysis of Variance

Unit 27 One-Way Analysis of Variance Unit 27 One-Way Analysis of Variance Objectives: To perform the hypothesis test in a one-way analysis of variance for comparing more than two population means Recall that a two sample t test is applied

More information

Statistics Handbook. All statistical tables were computed by the author.

Statistics Handbook. All statistical tables were computed by the author. Statistics Handbook Contents Page Wilcoxon rank-sum test (Mann-Whitney equivalent) Wilcoxon matched-pairs test 3 Normal Distribution 4 Z-test Related samples t-test 5 Unrelated samples t-test 6 Variance

More information

Review. One-way ANOVA, I. What s coming up. Multiple comparisons

Review. One-way ANOVA, I. What s coming up. Multiple comparisons Review One-way ANOVA, I 9.07 /15/00 Earlier in this class, we talked about twosample z- and t-tests for the difference between two conditions of an independent variable Does a trial drug work better than

More information

Statistiek I. Nonparametric Tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen.

Statistiek I. Nonparametric Tests. John Nerbonne. CLCG, Rijksuniversiteit Groningen. Statistiek I Nonparametric Tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://www.let.rug.nl/nerbonne/teach/statistiek-i/ John Nerbonne 1/23 Nonparametric Tests NONPARAMETRIC, DISTRIBUTION-FREE

More information

Rank-Based Methods. Lukas Meier

Rank-Based Methods. Lukas Meier Rank-Based Methods Lukas Meier 20.01.2014 Introduction Up to now we basically always used a parametric family, like the normal distribution N (µ, σ 2 ) for modeling random data. Based on observed data

More information

Spearman Rho Correlation

Spearman Rho Correlation Spearman Rho Correlation Learning Objectives After studying this Chapter, you should be able to: know when to use Spearman rho, Calculate Spearman rho coefficient, Interpret the correlation coefficient,

More information

10/4/2013. Hypothesis Testing & z-test. Hypothesis Testing. Hypothesis Testing

10/4/2013. Hypothesis Testing & z-test. Hypothesis Testing. Hypothesis Testing & z-test Lecture Set 11 We have a coin and are trying to determine if it is biased or unbiased What should we assume? Why? Flip coin n = 100 times E(Heads) = 50 Why? Assume we count 53 Heads... What could

More information

Inferential Statistics

Inferential Statistics Inferential Statistics Eva Riccomagno, Maria Piera Rogantin DIMA Università di Genova riccomagno@dima.unige.it rogantin@dima.unige.it Part G Distribution free hypothesis tests 1. Classical and distribution-free

More information

Chapter 9: Association Between Variables Measured at the Ordinal Level

Chapter 9: Association Between Variables Measured at the Ordinal Level Chapter 9: Association Between Variables Measured at the Ordinal Level After this week s class: SHOULD BE ABLE TO COMPLETE ALL APLIA ASSIGNMENTS DUE END OF THIS WEEK: APLIA ASSIGNMENTS 5-7 DUE: Friday

More information

Introduction to Biostatistics: Part 5, Statistical Inference Techniques for Hypothesis Testing With Nonparametric Data

Introduction to Biostatistics: Part 5, Statistical Inference Techniques for Hypothesis Testing With Nonparametric Data SPECIAL CONTRIBUTION biostatistics Introduction to Biostatistics: Part 5, Statistical Inference Techniques for Hypothesis Testing With Nonparametric Data Specific statistical tests are used when the null

More information

16. Nonparametric Methods. Analysis of ordinal data

16. Nonparametric Methods. Analysis of ordinal data 16. Nonparametric Methods 數 Analysis of ordinal data 料 1 Data : Non-interval data : nominal data, ordinal data Interval data but not normally distributed Nonparametric tests : Two dependent samples pair

More information

Hypothesis Testing hypothesis testing approach

Hypothesis Testing hypothesis testing approach Hypothesis Testing In this case, we d be trying to form an inference about that neighborhood: Do people there shop more often those people who are members of the larger population To ascertain this, we

More information

Non-parametric Tests

Non-parametric Tests Statistics Column Shengping Yang PhD,Gilbert Berdine MD I was working on a small study recently to compare drug metabolite concentrations in the blood between two administration regimes. However, the metabolite

More information