determine whether or not this relationship is.

Size: px
Start display at page:

Download "determine whether or not this relationship is."

Transcription

1 Section 9-1 Correlation A correlation is a between two. The data can be represented by ordered pairs (x,y) where x is the (or ) variable and y is the (or ) variable. There are several types of correlations that can be ascertained by graphing a scatter-plot of the ordered pairs and looking at the pattern. If the dots tend to run from left to right in a more or less fashion, the correlation is. If the dots tend to run from left to right in a more or less fashion, the correlation is. If the dots tend to be all over the graph with pattern, the correlation is. If the dots form a pattern other than a (, for example), the correlation is The correlation coefficient is a measure of the and of a relationship between two. The correlation coefficient is denoted by the letter. The correlation coefficient is denoted by, the Greek letter (pronounced row ). The correlation coefficient runs from to ; the closer the value is to either end, the the is. A correlation coefficient of would signify a linear relationship. A correlation coefficient of would signify a linear relationship. A correlation coefficient of would signify linear relationship. While there is a formula for finding the value of r, we are going to use the calculator to find this for us. Steps to graphing a scatter-plot and finding the correlation coefficient on the calculator. 1) Turn StatPlot On 2 nd Y=, select plot 1, turn it on, and make sure that it is looking at L1 and L2. 2) STAT-EDIT, enter data points. Use L1 for the x-values and L2 for the y-values. 3) Set your window WINDOW Set x-min to a number less than the smallest x-value in your list. Set x-max to a number greater than the largest x-value in your list Set y-min to a number less than the smallest y-value in your list.. Set y-max to a number greater than the largest y-value in your list 4) Hit the GRAPH key to look at your scatter-plot. 5) To find the correlation coefficient, run STAT-Test-F. The calculator will give you the values for r 2, and r. We ll talk more about r 2 later, but for now we are looking at r to quantify the strength of the relationship. This test also gives you the equation of the line of regression, as well as an abundance of other information that we will use later, including p. To graph the regression line, simply enter the equation into the Y= screen and press GRAPH. The line will appear, and go through the scatter-plot that you already have. Once we have a number that represents the of the relationship, we need to determine whether or not this relationship is. This is necessary to determine whether the line can be used for y-values. There are ways to determine if the relationship is significant. Since we have been doing hypothesis testing for two chapters now, we will use the hypothesis

2 test method of determining whether a relationship is significant as our first choice. The hypotheses are written in the following way: To test whether there is any correlation at all, the hypotheses are H0: ρ = 0 and Ha: ρ 0 Notice that this means that the null hypothesis states that there is relationship. In this class, we will ONLY conduct the two-tailed test for any significance. Once we have the hypotheses written, we will conduct a t-test to test them. STAT-Test-F (LinRegTTest) will give us the t-score, as well as the r value, the p value, and the equation of best fit. Enter data into L1 and L2, then run STAT-Test-F, making sure to indicate that you are running a two-tailed test. Set Freq: to 1 and leave RegEQ: blank. If p α, reject H 0. If p > α, fail to reject H 0. Using the Pearson Correlation Coefficient chart (Table 11), found on page A28 in the back of your book can only be used if the desired α level is or. To use the chart, simply use the number of (n) for the and the for the to find the critical value. If the absolute value of is than the value, the relationship is. If the absolute value of is than or the value, the relationship is. Correlation and Causation It is important to remember that just because two variables are related does not necessarily mean that one causes the other. There are 4 possibilities: 1) A cause-and-effect relationship between the variables. x causes y. For example, spending more money on advertising results in more sales. 2) A cause-and-effect relationship between the variables. y causes x. For example, maybe more time between Old Faithful eruptions causes the next one to last longer, instead of the other way around. 3) A, as yet unknown, variable may be both x and y. The Chapter Opener on page 495 shows a positive correlation between a movie s budget and its ticket sales. Which one causes the other? Maybe they are both caused by the actors who star in the movies. Big stars demand more money to appear in films (budget goes up). Big stars draw more people to the theaters to see their movies (ticket sales go up). Maybe they are both caused by the hype generated by the movie studio prior to the release of the movie. Advertising causes the budget to go up. Advertising may lure more into the theater to see the movie (ticket sales up). 4) The variables only to be related; it s a. For example, there may be a strong positive correlation between the number of coyotes living in an area and the number of families owning more than two cars in that same area, but it is highly unlikely that one causes the other. The relation would probably be due to coincidence. Example 3 (Page 498) Old Faithful, located in Yellowstone National Park, is the world s most famous geyser. The duration (in minutes) of several of Old Faithful s eruptions and the times (in minutes) until the next eruption

3 are shown in the table below. Display the data in a scatterplot and determine whether there appears to be a positive or negative linear correlation or no linear correlation at all. Duration, x Time, y STAT- ( ) Enter Duration (x) values into Enter Time (y) values into 2 nd Y=, turn On Select ( option) Make sure that the correct lists are being looked at. Window Set x-min to something than the x-value in your data set. Set x-max to something than the x-value in your data set. Repeat for y. Graph This plot appears to show a correlation. Example 5 (Page 501) Duration, x Time, y Use a technology tool (TI-84 Plus) to calculate the correlation coefficient for the Old Faithful data given in Example 3. What can you conclude? STAT TEST F. r ; since is pretty close to 1, it suggests a linear correlation. Example 6 (Page 503) Using the data from Example 5, and the Pearson Correlation Coefficient chart on page A28, determine whether the correlation coefficient is significant. To use the table, simply look at the row for n and the column for α. This is your critical value. If the r value of the correlation is than the critical value, the correlation is significant. Looking at the Pearson Correlation Coefficient chart, the critical value for n = 25 and α =.05 is. Since the r value that we got when we ran the test was r, and, we conclude that the correlation is. At the 5% level of significance, there is evidence to conclude that there is a linear correlation between the duration of Old Faithful s eruptions and the time between eruptions. Example 6 (Page 503) Using the data from Example 5, and the hypothesis testing method, determine whether the correlation coefficient is significant. Write the hypotheses: H 0 : ρ = 0, H a : ρ 0 (claim) STAT - TEST - F Set for L1 and L2 and two-tailed test. We get a t-value (standardized test statistic) of. Our p-value is.

4 Since p α, we H 0. Remember that the null says that there is significant correlation. Since we that, we are saying that there a significant correlation. At the 5% level of significance, there is evidence to conclude that there is a linear correlation between the duration of Old Faithful s eruptions and the time between eruptions. Example 7 (Page 505) Using the data from example 4 (provided below), test the significance of this correlation coefficient. Use α = Advertising $ (in thousands) Company Sales (in thousands) H 0 : ; ( correlation) H a : ( correlation) Enter Advertising values into and Sales values into. Run STAT-Test- Designate L1 and L2 and specify a two-tailed test. Don t change Freq or RegEQ. The results are: t ; p, r Since p α, we H 0. This means that there a correlation between advertising expenses and company sales. Also, since r is, it is a correlation. At the 5% significance level, there is evidence to conclude that there is a linear correlation between advertising expenses and company sales. Section 9-2 Equation of Best Fit for Linear Regression The only thing in Section 9-2 that is new is to use the equation of the line of best fit to make predictions about y-values. You can only use the equation to make predictions if the correlation is!! That's why we ran the tests in 9-1 to determine whether the correlation is significant or not. When you run STAT - TEST - F, you get the equation of the line of best fit, too. Using the data from Example 7 in 9-1, we got the following: y = a + bx; a = , and b = , so the equation is y = + Example 3 - (Page 516) Use the equation of best fit from Example 7 in 9-1 to predict the expected company sales for the following advertising expenses. a) 1.5 thousand b) 1.8 thousand c) 2.5 thousand Remember, we have already determined that the correlation is significant, so this equation can be used for making predictions. 1) Plug each value of x into the equation to find the y-value prediction. y = (1.5) , or $180,155 y = (1.8) , or $195,373 y = (2.5) , or $230,884 2) Enter the equation into y = ( y = x ) Use 2nd Window to set beginning of table, then use 2nd Graph to see the y-value for each x.

5 Section 9-3 We already know how to calculate the correlation coefficient, r. The square of this coefficient is called the coefficient of. The coefficient of determination is equal to the of the variation to the total variation. In other words, if r 2 =.81, then of the variation between x and y can be by the between x and y. The other 19% of the variation is and is due to other factors or to sampling error. How to find the Standard Error of Estimate: 1) Go to STAT Edit Put values into and values into. 2) STAT The Standard Error of Estimate is the of the residuals ( ). Scroll down the list of values given as the results of the test, and find. Construct a Prediction Interval for a Specific x-value (x0). 1) Determine degrees of freedom ( ) 2) Use and given x ( ) to find. 3) Find the critical t value (tc) that corresponds to the level of confidence (c) by using the calculator (InvT( 1 c )), with degrees of freedom being found at.) 2 4) Use the tc value and the Se value to calculate the margin of error (E). E = t c S e n + n(x 0 x ) 2 n x 2 ( x) 2 n = sample size x 0 is the x value that you used to find y x is the sample mean. x 2 is total of all the squared x s. Square first, then add them up. ( x) 2 is the total of x s squared. Add first, then square the answer. The values for x, x 2, and x can all be found by going to STAT ( ) 5) Find the left and right endpoints by E from y and then E to y. These answers are your interval. Example 1 (Page 526) The correlation coefficient for the advertising expenses and company sales data as calculated in Example 4 of Section 9-1 is r Find the coefficient of determination. What does this tell you about the explained variation of the data about the regression line? About the unexplained variation? r 2 =. About of the variation in the company sales can be by the variation in the advertising expenditures. About (the rest) of the variation is and is due to chance or other variables. Example 2 (Page 528) The regression equation for the advertising expenses and company sales data as calculated in Example 1 of Section 9-2 is. Find the standard error of estimate. x y

6 1) Go to STAT Put values into L1 and values into L2 2) STAT Test F Find on the list of values given from this test. 3) The standard error of the estimate is. Example 3 (Page 530) Using the results of Example 2, construct a 95% prediction interval for the company sales when the advertising expenses are $2100. What can you conclude? We were told that, so we plug in for x to find y. y =. From here, we need to be able to use the formula for the margin of error. It s not pretty, but it works. E = t c s e n(x 0 x ) 2 n n( x 2 ) ( x) 2 t c = (2 nd VARS 4, (1 -.95)/2, with 6 degrees of freedom. s e =, from last example. n = x 0 = (this is the x value we used to find y ). x =, ( x 2 ) =, x = (These values are from STAT-Calc 1 (1-Var Stats)). E = (2.447)(10.29) ( )2 8(32.44) (15.8) We from to get the end of the estimate. We from to get the end of the estimate. < y < We can be 95% confident that when advertising expenses are $2100, the company sales will be between and.

Math 52 Linear Regression Instructions TI-83

Math 52 Linear Regression Instructions TI-83 Math 5 Linear Regression Instructions TI-83 Use the following data to study the relationship between average hours spent per week studying and overall QPA. The idea behind linear regression is to determine

More information

ASSIGNMENT 3 SIMPLE LINEAR REGRESSION. Old Faithful

ASSIGNMENT 3 SIMPLE LINEAR REGRESSION. Old Faithful ASSIGNMENT 3 SIMPLE LINEAR REGRESSION In the simple linear regression model, the mean of a response variable is a linear function of an explanatory variable. The model and associated inferential tools

More information

Chapter 11. Correlation and Regression

Chapter 11. Correlation and Regression Chapter 11 Correlation and Regression Correlation A relationship between two variables. The data can be represented b ordered pairs (, ) is the independent (or eplanator) variable is the dependent (or

More information

Chapter 12 : Linear Correlation and Linear Regression

Chapter 12 : Linear Correlation and Linear Regression Chapter 1 : Linear Correlation and Linear Regression Determining whether a linear relationship exists between two quantitative variables, and modeling the relationship with a line, if the linear relationship

More information

t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression

t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression Recall, back some time ago, we used a descriptive statistic which allowed us to draw the best fit line through a scatter plot. We

More information

Linear Correlation and Regression Analysis

Linear Correlation and Regression Analysis Linear Correlation and Regression Analysis Set Up the Calculator 2 nd CATALOG D arrow down DiagnosticOn ENTER ENTER SCATTER DIAGRAM Positive Linear Correlation Positive Correlation Variables will tend

More information

Steps to take to do the descriptive part of regression analysis:

Steps to take to do the descriptive part of regression analysis: STA 2023 Simple Linear Regression: Least Squares Model Steps to take to do the descriptive part of regression analysis: A. Plot the data on a scatter plot. Describe patterns: 1. Is there a strong, moderate,

More information

Analyzing Lines of Fit

Analyzing Lines of Fit 4.5 Analyzing Lines of Fit Essential Question How can you analytically find a line of best fit for a scatter plot? Finding a Line of Best Fit Work with a partner. The scatter plot shows the median ages

More information

Ch Inference for Linear Regression

Ch Inference for Linear Regression Ch. 12-1 Inference for Linear Regression ACT = 6.71 + 5.17(GPA) For every increase of 1 in GPA, we predict the ACT score to increase by 5.17. population regression line β (true slope) μ y = α + βx mean

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 10 Correlation and Regression 10-1 Overview 10-2 Correlation 10-3 Regression 10-4

More information

regression analysis is a type of inferential statistics which tells us whether relationships between two or more variables exist

regression analysis is a type of inferential statistics which tells us whether relationships between two or more variables exist regression analysis is a type of inferential statistics which tells us whether relationships between two or more variables exist sales $ (y - dependent variable) advertising $ (x - independent variable)

More information

Business Statistics. Lecture 9: Simple Regression

Business Statistics. Lecture 9: Simple Regression Business Statistics Lecture 9: Simple Regression 1 On to Model Building! Up to now, class was about descriptive and inferential statistics Numerical and graphical summaries of data Confidence intervals

More information

y = a + bx 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation Review: Interpreting Computer Regression Output

y = a + bx 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation Review: Interpreting Computer Regression Output 12.1: Inference for Linear Regression Review: General Form of Linear Regression Equation y = a + bx y = dependent variable a = intercept b = slope x = independent variable Section 12.1 Inference for Linear

More information

Chapter 16. Simple Linear Regression and Correlation

Chapter 16. Simple Linear Regression and Correlation Chapter 16 Simple Linear Regression and Correlation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Ordinary Least Squares Regression Explained: Vartanian

Ordinary Least Squares Regression Explained: Vartanian Ordinary Least Squares Regression Explained: Vartanian When to Use Ordinary Least Squares Regression Analysis A. Variable types. When you have an interval/ratio scale dependent variable.. When your independent

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and should be emailed to the instructor

More information

REVIEW 8/2/2017 陈芳华东师大英语系

REVIEW 8/2/2017 陈芳华东师大英语系 REVIEW Hypothesis testing starts with a null hypothesis and a null distribution. We compare what we have to the null distribution, if the result is too extreme to belong to the null distribution (p

More information

Chapter 16. Simple Linear Regression and dcorrelation

Chapter 16. Simple Linear Regression and dcorrelation Chapter 16 Simple Linear Regression and dcorrelation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

Correlation and Regression

Correlation and Regression A. The Basics of Correlation Analysis 1. SCATTER DIAGRAM A key tool in correlation analysis is the scatter diagram, which is a tool for analyzing potential relationships between two variables. One variable

More information

AMS 7 Correlation and Regression Lecture 8

AMS 7 Correlation and Regression Lecture 8 AMS 7 Correlation and Regression Lecture 8 Department of Applied Mathematics and Statistics, University of California, Santa Cruz Suumer 2014 1 / 18 Correlation pairs of continuous observations. Correlation

More information

Review 6. n 1 = 85 n 2 = 75 x 1 = x 2 = s 1 = 38.7 s 2 = 39.2

Review 6. n 1 = 85 n 2 = 75 x 1 = x 2 = s 1 = 38.7 s 2 = 39.2 Review 6 Use the traditional method to test the given hypothesis. Assume that the samples are independent and that they have been randomly selected ) A researcher finds that of,000 people who said that

More information

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006

Keller: Stats for Mgmt & Econ, 7th Ed July 17, 2006 Chapter 17 Simple Linear Regression and Correlation 17.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

y n 1 ( x i x )( y y i n 1 i y 2

y n 1 ( x i x )( y y i n 1 i y 2 STP3 Brief Class Notes Instructor: Ela Jackiewicz Chapter Regression and Correlation In this chapter we will explore the relationship between two quantitative variables, X an Y. We will consider n ordered

More information

Can you tell the relationship between students SAT scores and their college grades?

Can you tell the relationship between students SAT scores and their college grades? Correlation One Challenge Can you tell the relationship between students SAT scores and their college grades? A: The higher SAT scores are, the better GPA may be. B: The higher SAT scores are, the lower

More information

Lecture 15: Chapter 10

Lecture 15: Chapter 10 Lecture 15: Chapter 10 C C Moxley UAB Mathematics 20 July 15 10.1 Pairing Data In Chapter 9, we talked about pairing data in a natural way. In this Chapter, we will essentially be discussing whether these

More information

Correlation. A statistics method to measure the relationship between two variables. Three characteristics

Correlation. A statistics method to measure the relationship between two variables. Three characteristics Correlation Correlation A statistics method to measure the relationship between two variables Three characteristics Direction of the relationship Form of the relationship Strength/Consistency Direction

More information

Mathematical Modeling

Mathematical Modeling Mathematical Modeling Sample Problem: The chart below gives the profit for a company for the years 1990 to 1999, where 0 corresponds to 1990 and the profit is in millions of dollars. Year 0 1 2 3 4 5 6

More information

Midterm 2 - Solutions

Midterm 2 - Solutions Ecn 102 - Analysis of Economic Data University of California - Davis February 23, 2010 Instructor: John Parman Midterm 2 - Solutions You have until 10:20am to complete this exam. Please remember to put

More information

Intermediate Algebra Summary - Part I

Intermediate Algebra Summary - Part I Intermediate Algebra Summary - Part I This is an overview of the key ideas we have discussed during the first part of this course. You may find this summary useful as a study aid, but remember that the

More information

10.1 Simple Linear Regression

10.1 Simple Linear Regression 10.1 Simple Linear Regression Ulrich Hoensch Tuesday, December 1, 2009 The Simple Linear Regression Model We have two quantitative random variables X (the explanatory variable) and Y (the response variable).

More information

Correlation A relationship between two variables As one goes up, the other changes in a predictable way (either mostly goes up or mostly goes down)

Correlation A relationship between two variables As one goes up, the other changes in a predictable way (either mostly goes up or mostly goes down) Two-Variable Statistics Correlation A relationship between two variables As one goes up, the other changes in a predictable way (either mostly goes up or mostly goes down) Positive Correlation As one variable

More information

STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression

STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression STAT 135 Lab 11 Tests for Categorical Data (Fisher s Exact test, χ 2 tests for Homogeneity and Independence) and Linear Regression Rebecca Barter April 20, 2015 Fisher s Exact Test Fisher s Exact Test

More information

Prof. Bodrero s Guide to Derivatives of Trig Functions (Sec. 3.5) Name:

Prof. Bodrero s Guide to Derivatives of Trig Functions (Sec. 3.5) Name: Prof. Bodrero s Guide to Derivatives of Trig Functions (Sec. 3.5) Name: Objectives: Understand how the derivatives of the six basic trig functions are found. Be able to find the derivative for each of

More information

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up?

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up? Comment: notes are adapted from BIOL 214/312. I. Correlation. Correlation A) Correlation is used when we want to examine the relationship of two continuous variables. We are not interested in prediction.

More information

Chapter 10. Correlation and Regression. McGraw-Hill, Bluman, 7th ed., Chapter 10 1

Chapter 10. Correlation and Regression. McGraw-Hill, Bluman, 7th ed., Chapter 10 1 Chapter 10 Correlation and Regression McGraw-Hill, Bluman, 7th ed., Chapter 10 1 Chapter 10 Overview Introduction 10-1 Scatter Plots and Correlation 10- Regression 10-3 Coefficient of Determination and

More information

Using Tables and Graphing Calculators in Math 11

Using Tables and Graphing Calculators in Math 11 Using Tables and Graphing Calculators in Math 11 Graphing calculators are not required for Math 11, but they are likely to be helpful, primarily because they allow you to avoid the use of tables in some

More information

Session 4 2:40 3:30. If neither the first nor second differences repeat, we need to try another

Session 4 2:40 3:30. If neither the first nor second differences repeat, we need to try another Linear Quadratics & Exponentials using Tables We can classify a table of values as belonging to a particular family of functions based on the math operations found on any calculator. First differences

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

Statistics Introductory Correlation

Statistics Introductory Correlation Statistics Introductory Correlation Session 10 oscardavid.barrerarodriguez@sciencespo.fr April 9, 2018 Outline 1 Statistics are not used only to describe central tendency and variability for a single variable.

More information

Applied Regression Analysis

Applied Regression Analysis Applied Regression Analysis Lecture 2 January 27, 2005 Lecture #2-1/27/2005 Slide 1 of 46 Today s Lecture Simple linear regression. Partitioning the sum of squares. Tests of significance.. Regression diagnostics

More information

Chapter 24. Comparing Means

Chapter 24. Comparing Means Chapter 4 Comparing Means!1 /34 Homework p579, 5, 7, 8, 10, 11, 17, 31, 3! /34 !3 /34 Objective Students test null and alternate hypothesis about two!4 /34 Plot the Data The intuitive display for comparing

More information

Using a graphic display calculator

Using a graphic display calculator 12 Using a graphic display calculator CHAPTER OBJECTIVES: This chapter shows you how to use your graphic display calculator (GDC) to solve the different types of problems that you will meet in your course.

More information

Chapter 9. Correlation and Regression

Chapter 9. Correlation and Regression Chapter 9 Correlation and Regression Lesson 9-1/9-2, Part 1 Correlation Registered Florida Pleasure Crafts and Watercraft Related Manatee Deaths 100 80 60 40 20 0 1991 1993 1995 1997 1999 Year Boats in

More information

Correlation Analysis

Correlation Analysis Simple Regression Correlation Analysis Correlation analysis is used to measure strength of the association (linear relationship) between two variables Correlation is only concerned with strength of the

More information

Pure Math 30: Explained!

Pure Math 30: Explained! Pure Math 30: Eplained! www.puremath30.com 9 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first type of eponential graph

More information

The simple linear regression model discussed in Chapter 13 was written as

The simple linear regression model discussed in Chapter 13 was written as 1519T_c14 03/27/2006 07:28 AM Page 614 Chapter Jose Luis Pelaez Inc/Blend Images/Getty Images, Inc./Getty Images, Inc. 14 Multiple Regression 14.1 Multiple Regression Analysis 14.2 Assumptions of the Multiple

More information

Let the x-axis have the following intervals:

Let the x-axis have the following intervals: 1 & 2. For the following sets of data calculate the mean and standard deviation. Then graph the data as a frequency histogram on the corresponding set of axes. Set 1: Length of bass caught in Conesus Lake

More information

Statistics for IT Managers

Statistics for IT Managers Statistics for IT Managers 95-796, Fall 2012 Module 2: Hypothesis Testing and Statistical Inference (5 lectures) Reading: Statistics for Business and Economics, Ch. 5-7 Confidence intervals Given the sample

More information

Lecture 14. Analysis of Variance * Correlation and Regression. The McGraw-Hill Companies, Inc., 2000

Lecture 14. Analysis of Variance * Correlation and Regression. The McGraw-Hill Companies, Inc., 2000 Lecture 14 Analysis of Variance * Correlation and Regression Outline Analysis of Variance (ANOVA) 11-1 Introduction 11-2 Scatter Plots 11-3 Correlation 11-4 Regression Outline 11-5 Coefficient of Determination

More information

Lecture 14. Outline. Outline. Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA)

Lecture 14. Outline. Outline. Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA) Outline Lecture 14 Analysis of Variance * Correlation and Regression Analysis of Variance (ANOVA) 11-1 Introduction 11- Scatter Plots 11-3 Correlation 11-4 Regression Outline 11-5 Coefficient of Determination

More information

Biostatistics: Correlations

Biostatistics: Correlations Biostatistics: s One of the most common errors we find in the press is the confusion between correlation and causation in scientific and health-related studies. In theory, these are easy to distinguish

More information

Reminder: Univariate Data. Bivariate Data. Example: Puppy Weights. You weigh the pups and get these results: 2.5, 3.5, 3.3, 3.1, 2.6, 3.6, 2.

Reminder: Univariate Data. Bivariate Data. Example: Puppy Weights. You weigh the pups and get these results: 2.5, 3.5, 3.3, 3.1, 2.6, 3.6, 2. TP: To review Standard Deviation, Residual Plots, and Correlation Coefficients HW: Do a journal entry on each of the calculator tricks in this lesson. Lesson slides will be posted with notes. Do Now: Write

More information

Chapter 23: Inferences About Means

Chapter 23: Inferences About Means Chapter 3: Inferences About Means Sample of Means: number of observations in one sample the population mean (theoretical mean) sample mean (observed mean) is the theoretical standard deviation of the population

More information

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions.

The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. The goodness-of-fit test Having discussed how to make comparisons between two proportions, we now consider comparisons of multiple proportions. A common problem of this type is concerned with determining

More information

Wed, June 26, (Lecture 8-2). Nonlinearity. Significance test for correlation R-squared, SSE, and SST. Correlation in SPSS.

Wed, June 26, (Lecture 8-2). Nonlinearity. Significance test for correlation R-squared, SSE, and SST. Correlation in SPSS. Wed, June 26, (Lecture 8-2). Nonlinearity. Significance test for correlation R-squared, SSE, and SST. Correlation in SPSS. Last time, we looked at scatterplots, which show the interaction between two variables,

More information

Introduce Exploration! Before we go on, notice one more thing. We'll come back to the derivation if we have time.

Introduce Exploration! Before we go on, notice one more thing. We'll come back to the derivation if we have time. Introduce Exploration! Before we go on, notice one more thing. We'll come back to the derivation if we have time. Simplifying the calculation of variance Notice that we can rewrite the calculation of a

More information

LI EAR REGRESSIO A D CORRELATIO

LI EAR REGRESSIO A D CORRELATIO CHAPTER 6 LI EAR REGRESSIO A D CORRELATIO Page Contents 6.1 Introduction 10 6. Curve Fitting 10 6.3 Fitting a Simple Linear Regression Line 103 6.4 Linear Correlation Analysis 107 6.5 Spearman s Rank Correlation

More information

Ch 13 & 14 - Regression Analysis

Ch 13 & 14 - Regression Analysis Ch 3 & 4 - Regression Analysis Simple Regression Model I. Multiple Choice:. A simple regression is a regression model that contains a. only one independent variable b. only one dependent variable c. more

More information

Business Statistics. Lecture 10: Correlation and Linear Regression

Business Statistics. Lecture 10: Correlation and Linear Regression Business Statistics Lecture 10: Correlation and Linear Regression Scatterplot A scatterplot shows the relationship between two quantitative variables measured on the same individuals. It displays the Form

More information

appstats27.notebook April 06, 2017

appstats27.notebook April 06, 2017 Chapter 27 Objective Students will conduct inference on regression and analyze data to write a conclusion. Inferences for Regression An Example: Body Fat and Waist Size pg 634 Our chapter example revolves

More information

Chapter 23. Inference About Means

Chapter 23. Inference About Means Chapter 23 Inference About Means 1 /57 Homework p554 2, 4, 9, 10, 13, 15, 17, 33, 34 2 /57 Objective Students test null and alternate hypotheses about a population mean. 3 /57 Here We Go Again Now that

More information

Harvard University. Rigorous Research in Engineering Education

Harvard University. Rigorous Research in Engineering Education Statistical Inference Kari Lock Harvard University Department of Statistics Rigorous Research in Engineering Education 12/3/09 Statistical Inference You have a sample and want to use the data collected

More information

Conditions for Regression Inference:

Conditions for Regression Inference: AP Statistics Chapter Notes. Inference for Linear Regression We can fit a least-squares line to any data relating two quantitative variables, but the results are useful only if the scatterplot shows a

More information

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between 7.2 One-Sample Correlation ( = a) Introduction Correlation analysis measures the strength and direction of association between variables. In this chapter we will test whether the population correlation

More information

Simple Linear Regression

Simple Linear Regression CHAPTER 13 Simple Linear Regression CHAPTER OUTLINE 13.1 Simple Linear Regression Analysis 13.2 Using Excel s built-in Regression tool 13.3 Linear Correlation 13.4 Hypothesis Tests about the Linear Correlation

More information

MINI LESSON. Lesson 2a Linear Functions and Applications

MINI LESSON. Lesson 2a Linear Functions and Applications MINI LESSON Lesson 2a Linear Functions and Applications Lesson Objectives: 1. Compute AVERAGE RATE OF CHANGE 2. Explain the meaning of AVERAGE RATE OF CHANGE as it relates to a given situation 3. Interpret

More information

Conceptual Explanations: Modeling Data with Functions

Conceptual Explanations: Modeling Data with Functions Conceptual Explanations: Modeling Data with Functions In school, you generally start with a function and work from there to numbers. Newton s Law tells us that F=ma. So if you push on a 3kg object with

More information

Chapter 10. Correlation and Regression. McGraw-Hill, Bluman, 7th ed., Chapter 10 1

Chapter 10. Correlation and Regression. McGraw-Hill, Bluman, 7th ed., Chapter 10 1 Chapter 10 Correlation and Regression McGraw-Hill, Bluman, 7th ed., Chapter 10 1 Example 10-2: Absences/Final Grades Please enter the data below in L1 and L2. The data appears on page 537 of your textbook.

More information

Chapter 4: Regression Models

Chapter 4: Regression Models Sales volume of company 1 Textbook: pp. 129-164 Chapter 4: Regression Models Money spent on advertising 2 Learning Objectives After completing this chapter, students will be able to: Identify variables,

More information

CRP 272 Introduction To Regression Analysis

CRP 272 Introduction To Regression Analysis CRP 272 Introduction To Regression Analysis 30 Relationships Among Two Variables: Interpretations One variable is used to explain another variable X Variable Independent Variable Explaining Variable Exogenous

More information

Important note: Transcripts are not substitutes for textbook assignments. 1

Important note: Transcripts are not substitutes for textbook assignments. 1 In this lesson we will cover correlation and regression, two really common statistical analyses for quantitative (or continuous) data. Specially we will review how to organize the data, the importance

More information

Section 3: Simple Linear Regression

Section 3: Simple Linear Regression Section 3: Simple Linear Regression Carlos M. Carvalho The University of Texas at Austin McCombs School of Business http://faculty.mccombs.utexas.edu/carlos.carvalho/teaching/ 1 Regression: General Introduction

More information

PS5: Two Variable Statistics LT3: Linear regression LT4: The test of independence.

PS5: Two Variable Statistics LT3: Linear regression LT4: The test of independence. PS5: Two Variable Statistics LT3: Linear regression LT4: The test of independence. Example by eye. On a hot day, nine cars were left in the sun in a car parking lot. The length of time each car was left

More information

Correlation and Regression

Correlation and Regression Correlation and Regression Dr. Bob Gee Dean Scott Bonney Professor William G. Journigan American Meridian University 1 Learning Objectives Upon successful completion of this module, the student should

More information

Statistics and Quantitative Analysis U4320. Segment 10 Prof. Sharyn O Halloran

Statistics and Quantitative Analysis U4320. Segment 10 Prof. Sharyn O Halloran Statistics and Quantitative Analysis U4320 Segment 10 Prof. Sharyn O Halloran Key Points 1. Review Univariate Regression Model 2. Introduce Multivariate Regression Model Assumptions Estimation Hypothesis

More information

Correlation and regression

Correlation and regression NST 1B Experimental Psychology Statistics practical 1 Correlation and regression Rudolf Cardinal & Mike Aitken 11 / 12 November 2003 Department of Experimental Psychology University of Cambridge Handouts:

More information

Chapte The McGraw-Hill Companies, Inc. All rights reserved.

Chapte The McGraw-Hill Companies, Inc. All rights reserved. 12er12 Chapte Bivariate i Regression (Part 1) Bivariate Regression Visual Displays Begin the analysis of bivariate data (i.e., two variables) with a scatter plot. A scatter plot - displays each observed

More information

Module 8: Linear Regression. The Applied Research Center

Module 8: Linear Regression. The Applied Research Center Module 8: Linear Regression The Applied Research Center Module 8 Overview } Purpose of Linear Regression } Scatter Diagrams } Regression Equation } Regression Results } Example Purpose } To predict scores

More information

Prob/Stats Questions? /32

Prob/Stats Questions? /32 Prob/Stats 10.4 Questions? 1 /32 Prob/Stats 10.4 Homework Apply p551 Ex 10-4 p 551 7, 8, 9, 10, 12, 13, 28 2 /32 Prob/Stats 10.4 Objective Compute the equation of the least squares 3 /32 Regression A scatter

More information

3 9 Curve Fitting with Polynomials

3 9 Curve Fitting with Polynomials 3 9 Curve Fitting with Polynomials Relax! You will do fine today! We will review for quiz!!! (which is worth 10 points, has 20 questions, group, graphing calculator allowed, and will not be on your first

More information

LECTURE 15: SIMPLE LINEAR REGRESSION I

LECTURE 15: SIMPLE LINEAR REGRESSION I David Youngberg BSAD 20 Montgomery College LECTURE 5: SIMPLE LINEAR REGRESSION I I. From Correlation to Regression a. Recall last class when we discussed two basic types of correlation (positive and negative).

More information

Example: Forced Expiratory Volume (FEV) Program L13. Example: Forced Expiratory Volume (FEV) Example: Forced Expiratory Volume (FEV)

Example: Forced Expiratory Volume (FEV) Program L13. Example: Forced Expiratory Volume (FEV) Example: Forced Expiratory Volume (FEV) Program L13 Relationships between two variables Correlation, cont d Regression Relationships between more than two variables Multiple linear regression Two numerical variables Linear or curved relationship?

More information

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc.

where Female = 0 for males, = 1 for females Age is measured in years (22, 23, ) GPA is measured in units on a four-point scale (0, 1.22, 3.45, etc. Notes on regression analysis 1. Basics in regression analysis key concepts (actual implementation is more complicated) A. Collect data B. Plot data on graph, draw a line through the middle of the scatter

More information

Chapter 20 Comparing Groups

Chapter 20 Comparing Groups Chapter 20 Comparing Groups Comparing Proportions Example Researchers want to test the effect of a new anti-anxiety medication. In clinical testing, 64 of 200 people taking the medicine reported symptoms

More information

Hypothesis testing. Data to decisions

Hypothesis testing. Data to decisions Hypothesis testing Data to decisions The idea Null hypothesis: H 0 : the DGP/population has property P Under the null, a sample statistic has a known distribution If, under that that distribution, the

More information

Mathematical Notation Math Introduction to Applied Statistics

Mathematical Notation Math Introduction to Applied Statistics Mathematical Notation Math 113 - Introduction to Applied Statistics Name : Use Word or WordPerfect to recreate the following documents. Each article is worth 10 points and can be printed and given to the

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

Linear Regression. Linear Regression. Linear Regression. Did You Mean Association Or Correlation?

Linear Regression. Linear Regression. Linear Regression. Did You Mean Association Or Correlation? Did You Mean Association Or Correlation? AP Statistics Chapter 8 Be careful not to use the word correlation when you really mean association. Often times people will incorrectly use the word correlation

More information

20 Hypothesis Testing, Part I

20 Hypothesis Testing, Part I 20 Hypothesis Testing, Part I Bob has told Alice that the average hourly rate for a lawyer in Virginia is $200 with a standard deviation of $50, but Alice wants to test this claim. If Bob is right, she

More information

L06. Chapter 6: Continuous Probability Distributions

L06. Chapter 6: Continuous Probability Distributions L06 Chapter 6: Continuous Probability Distributions Probability Chapter 6 Continuous Probability Distributions Recall Discrete Probability Distributions Could only take on particular values Continuous

More information

Difference between means - t-test /25

Difference between means - t-test /25 Difference between means - t-test 1 Discussion Question p492 Ex 9-4 p492 1-3, 6-8, 12 Assume all variances are not equal. Ignore the test for variance. 2 Students will perform hypothesis tests for two

More information

Correlation and Regression (Excel 2007)

Correlation and Regression (Excel 2007) Correlation and Regression (Excel 2007) (See Also Scatterplots, Regression Lines, and Time Series Charts With Excel 2007 for instructions on making a scatterplot of the data and an alternate method of

More information

Introductory Statistics

Introductory Statistics Introductory Statistics This document is attributed to Barbara Illowsky and Susan Dean Chapter 12 Open Assembly Edition Open Assembly editions of open textbooks are disaggregated versions designed to facilitate

More information

Regression, part II. I. What does it all mean? A) Notice that so far all we ve done is math.

Regression, part II. I. What does it all mean? A) Notice that so far all we ve done is math. Regression, part II I. What does it all mean? A) Notice that so far all we ve done is math. 1) One can calculate the Least Squares Regression Line for anything, regardless of any assumptions. 2) But, if

More information

Do Now 18 Balance Point. Directions: Use the data table to answer the questions. 2. Explain whether it is reasonable to fit a line to the data.

Do Now 18 Balance Point. Directions: Use the data table to answer the questions. 2. Explain whether it is reasonable to fit a line to the data. Do Now 18 Do Now 18 Balance Point Directions: Use the data table to answer the questions. 1. Calculate the balance point.. Explain whether it is reasonable to fit a line to the data.. The data is plotted

More information

4.1 Introduction. 4.2 The Scatter Diagram. Chapter 4 Linear Correlation and Regression Analysis

4.1 Introduction. 4.2 The Scatter Diagram. Chapter 4 Linear Correlation and Regression Analysis 4.1 Introduction Correlation is a technique that measures the strength (or the degree) of the relationship between two variables. For example, we could measure how strong the relationship is between people

More information

Correlation 1. December 4, HMS, 2017, v1.1

Correlation 1. December 4, HMS, 2017, v1.1 Correlation 1 December 4, 2017 1 HMS, 2017, v1.1 Chapter References Diez: Chapter 7 Navidi, Chapter 7 I don t expect you to learn the proofs what will follow. Chapter References 2 Correlation The sample

More information

Part III: Unstructured Data

Part III: Unstructured Data Inf1-DA 2010 2011 III: 51 / 89 Part III Unstructured Data Data Retrieval: III.1 Unstructured data and data retrieval Statistical Analysis of Data: III.2 Data scales and summary statistics III.3 Hypothesis

More information

Multiple Regression Analysis

Multiple Regression Analysis Multiple Regression Analysis y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inference 0 Assumptions of the Classical Linear Model (CLM)! So far, we know: 1. The mean and variance of the OLS estimators

More information

Correlation & Simple Regression

Correlation & Simple Regression Chapter 11 Correlation & Simple Regression The previous chapter dealt with inference for two categorical variables. In this chapter, we would like to examine the relationship between two quantitative variables.

More information