Introduction to molecular dynamics

Size: px
Start display at page:

Download "Introduction to molecular dynamics"

Transcription

1 1 Introduction to molecular dynamics Yves Lansac Université François Rabelais, Tours, France Visiting MSE, GIST for the summer

2 Molecular Simulation 2 Molecular simulation is a computational experiment. - Conducted on a molecular model - Done under various external constraints Number of atoms N ( or more) Temperature T Pressure P Many microscopic configurations are generated; Averages are taken to perform measurements to give observables. - Thermodynamic properties: energy, temperature, pressure, diffusion, etc. - Structural quantities: pair correlation functions Molecular simulation has the character of both theory & experiments. Applicable to a wide range of molecules and systems (gases, polymers, metals, biological systems, etc.)

3 Examples of simulation (simple molecular models) 3 Bundle formation in mixture of short dsdna basic protamines MD NVT (3ns) counterions + - Correlations between adsorbed protamines induce attractive interaction between DNA

4 Colloidal particles 4 only homogeneous phase? micelles lamellar phase pressure increasing inverted micelles repulsive potential can induce aggregation

5 Molecular Model 5 Fundamental to everything is the Schrödinger equation - Too expensive to solve for large systems Born-Oppenheimer approximation - Electrons move much faster than nuclei. - Usually nuclei are heavy enough to treat classically. Classical molecular models - Atomistic model : atom positions (balls) + interactions between atoms (springs) CH 3 -CH 2 -CH 3 - Idealized models : include only the most important qualitative features (shape) (chain & charges)

6 Potentials of Interaction = Force Field 6 Potential energy is expressed with simple empirical formula. Bonded interactions Non-bonded interactions (pairwise) U str stretch U bend bend U vdw van der Waals Repulsion Attraction U tors torsion U el electrostatic U cross cross stretch-bend, etc.

7 An Example of Force Field 7 Lennard-Jones (LJ) U ij σ ij (very long-ranged) r ij ε ij

8 Force Field Parameters 8 Force fields may have thousands of independent parameters. Without good parameters, you can get totally useless results. Parameters are found by fitting to experiments or QM calculations. Parameters for interactions between atoms of different types - No ambiguity for Coulomb interaction - For van der Waals potentials (e.g., LJ) it is not clear what to do. Lorentz-Berthelot is a widely used choice.

9 Microscopic Configurations 9 Full specification of microstate of the system is given by the values of all positions r N and all momenta p N of all atoms. Γ = (p N,r N ) = point in phase space (6N-space dimensions) - We can sample only a small subset of all microstates satisfying the few constraints (e.g. fixed T or P) imposed. - Averages over microstates must give reliable equilibrium thermodynamic quantities. Γ Two methods to generate microstate contributing significantly - Monte Carlo (MC) : stochastic method (i.e. based on random number) following an importance-weighted random walk in phase space (only 3N-positions) - Molecular dynamics (MD) : deterministic method (i.e. based on integration of the equations of motion) following the true dynamics of the system to generate microstates) Ensemble average (MC) Time average (MD)

10 Equations of Motion 10 System of N atoms (same mass m) with cartesian coordinates r N = {r 1, r 2,, r N } interacting through the potential energy U(r N ) (System of N 2 nd -order differential equations) F Atomic momenta p N = {p 1, p 2,, p N } (System of 2N 1 st -order differential equations)

11 Integration Algorithms 11 Features of a good integrator minimal need to compute forces (a very expensive calculation) good stability for large time steps good accuracy conserves energy (noise less important than drift) The true (continuum) equations of motion display certain symmetries. time-reversible area-preserving (symplectic)

12 Velocity Verlet Algorithm 12 Forward Euler (irreversible integrator) well known to be bad (energy drift) unit mass Velocity Verlet Algorithm Implemented in stages - Evaluate current force - Compute r at new time - Add current-force term to velocity (gives v at half-time step) - Compute new force - Add new-force term to velocity

13 Velocity Verlet Algorithm. 2. Flow Diagram 13 t-δt t t+δt r v Given current position, velocity, and force F Schematic from Allen & Tildesley, Computer Simulation of Liquids

14 Velocity Verlet Algorithm. 2. Flow Diagram 14 t-δt t t+δt r v Compute new position F Schematic from Allen & Tildesley, Computer Simulation of Liquids

15 Velocity Verlet Algorithm. 2. Flow Diagram 15 t-δt t t+δt r v Compute velocity at half step F Schematic from Allen & Tildesley, Computer Simulation of Liquids

16 Velocity Verlet Algorithm. 2. Flow Diagram 16 t-δt t t+δt r v Compute force at new position F Schematic from Allen & Tildesley, Computer Simulation of Liquids

17 Velocity Verlet Algorithm. 2. Flow Diagram 17 t-δt t t+δt r v Compute velocity at full step F Schematic from Allen & Tildesley, Computer Simulation of Liquids

18 Velocity Verlet Algorithm. 2. Flow Diagram 18 t-2δt t-δt t t+δt r v Advance to next time step, repeat F Schematic from Allen & Tildesley, Computer Simulation of Liquids

19 Time Step & Ensemble 19 Time step (δt) - If δt is too small : Simulation should run long enough to have meaningful observables. - If δt is too large : System will be unstable. - Rule : δt should be 10~100 times smaller than the fastest motion in the system. (often bond stretching ps) Molecular dynamics in other thermodynamic ensembles - Natural ensemble sampled by MD is NVE. - We often want to study a system at a fixed T (NVT) or P (NPT). - Two main possibilities (thermostat, similar for barostat) Stochastic collisions (periodic rescaling of atomic velocity) (Andersen) Modification of the equations of motion (thermostat of the system) (Nose-Hoover)

20 Generating an Initial Configuration 20 Placement on a lattice is a common choice Other options involve simulation - place at random, then move to remove overlaps - randomize at low density, then compress - other techniques invented as needed hexagonal Orientations done similarly - lattice or random, if possible

21 Initial Velocities 21 Random direction randomize each component independently randomize direction by choosing point on spherical surface Magnitude consistent with desired temperature. e.g. Maxwell-Boltzmann

22 Simulation Flow 22 Progress of simulation t δt MD time step m i = instantaneous value of an observable. m 1m2 m 3 m 5m6 m 7 m 9 m b-1 m 4 m8 Simulation block Block average m b. Complete simulation n independent values Simulation average & error

23 Boundary Conditions 23 Impractical to contain system with a real boundary Enhances finite-size effects Artificial influence of boundary on system properties Instead surround with replicas of simulated system Periodic Boundary Conditions (PBC) Minimum image convention Consider only nearest image of a given particle when looking for interactions Nearest images of colored sphere

24 Finding Neighbors Efficiently 24 Evaluation of all pair interactions is an O(N 2 ) calculation. Very expensive for large systems Not all interactions are relevant Potential attenuated or even truncated beyond some distance (e.g. vdw) Two efficient methods to locate neighbors of any molecule - Verlet neighbor list - Cell list r c

25 Verlet Neighbor List 25 Maintain a list of neighbors - Set neighbor cutoff radius as potential cutoff plus a skin Update list whenever a molecule travels a distance greater than the skin thickness Energy calculation is O(N). Neighbor list update is O(N 2 ). - but done less frequently r n r c

26 Cell List 26 The volume (box) is partitioned into a set of cells. Each cell keeps a list of the atoms inside it. Each cell keeps a list of its neighboring cells. r c r c = potential cutoff

27 Electrostatics 27 Electrostatics are long-ranged interactions. Cutoff introduces artifacts. A charge interacts - with all the other charges in the box; and - with all the charges in the periodic images of the box For efficient calculations: - Ewald method [O(N 3/2 )] - Particle Mesh Ewald - Particle-Particle Particle-Mesh [O(NlogN)] rapidly decreasing in real space cutoff (like vdw) rapidly decreasing in reciprocal space Interpolation of the charges on a grid & FFT

28 Available Simulation Codes 28 LAMMPS (Sandia National Lab) NAMD (and VMD) (Theoretical and Computational Biophysics Group) DL_POLY (v4) Molecular Simulation Package Daresbury Laboratory by I.T. Todorov and W. Smith ESPResSo (Institute for Computational Physics of the University of Stuttgart) Extensible Simulation Package for the Research on Soft matter GROMACS (GROningen MAchine for Chemical Simulations) Biophysical Chemistry department of University of Groningen (scalable Software Services for Life Sciences)

29 References David Kofke, Department of Chemical Engineering SUNY Buffalo Java Applets (Etomica) Link to lecture notes on molecular simulations (several slides of this introduction were borrowed or adapted from D. Kofke) 29 Understanding Molecular Simulation: From Algorithms to Applications (2002) D. Frenkel and B. Smit Computer Simulation of Liquids (1989) M. Allen and D. Tildesley Molecular Modelling: Principles and Applications (2001) A. R. Leach Thank you very much!

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

What is Classical Molecular Dynamics?

What is Classical Molecular Dynamics? What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential functions Newton s equations of motion are integrated

More information

Molecular Dynamics Simulations. Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia

Molecular Dynamics Simulations. Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia Molecular Dynamics Simulations Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia 1 An Introduction to Molecular Dynamics Simulations Macroscopic properties

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 1 David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Time/s Multi-Scale Modeling Based on SDSC Blue Horizon (SP3) 1.728 Tflops

More information

A Nobel Prize for Molecular Dynamics and QM/MM What is Classical Molecular Dynamics? Simulation of explicit particles (atoms, ions,... ) Particles interact via relatively simple analytical potential

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Simulation Lecture Molecular Dynamics Simulation David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu MD of hard disks intuitive Review and Preview collision

More information

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 K. Kremer Max Planck Institute for Polymer Research, Mainz Overview Simulations, general considerations

More information

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules Bioengineering 215 An Introduction to Molecular Dynamics for Biomolecules David Parker May 18, 2007 ntroduction A principal tool to study biological molecules is molecular dynamics simulations (MD). MD

More information

Intermolecular Forces and Monte-Carlo Integration 열역학특수연구

Intermolecular Forces and Monte-Carlo Integration 열역학특수연구 Intermolecular Forces and Monte-Carlo Integration 열역학특수연구 2003.3.28 Source of the lecture note. J.M.Prausnitz and others, Molecular Thermodynamics of Fluid Phase Equiliria Atkins, Physical Chemistry Lecture

More information

Computer simulation methods (2) Dr. Vania Calandrini

Computer simulation methods (2) Dr. Vania Calandrini Computer simulation methods (2) Dr. Vania Calandrini in the previous lecture: time average versus ensemble average MC versus MD simulations equipartition theorem (=> computing T) virial theorem (=> computing

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Molecular Modeling of Matter

Molecular Modeling of Matter Molecular Modeling of Matter Keith E. Gubbins Lecture 2 Atomistic Simulation. General Features. Molecular Dynamics Outline General features of atomistic simulation Brief description of MC and MD Features

More information

Introduction to Simulation - Lectures 17, 18. Molecular Dynamics. Nicolas Hadjiconstantinou

Introduction to Simulation - Lectures 17, 18. Molecular Dynamics. Nicolas Hadjiconstantinou Introduction to Simulation - Lectures 17, 18 Molecular Dynamics Nicolas Hadjiconstantinou Molecular Dynamics Molecular dynamics is a technique for computing the equilibrium and non-equilibrium properties

More information

Molecular Dynamics Simulations

Molecular Dynamics Simulations Molecular Dynamics Simulations Dr. Kasra Momeni www.knanosys.com Outline Long-range Interactions Ewald Sum Fast Multipole Method Spherically Truncated Coulombic Potential Speeding up Calculations SPaSM

More information

Biomolecules are dynamic no single structure is a perfect model

Biomolecules are dynamic no single structure is a perfect model Molecular Dynamics Simulations of Biomolecules References: A. R. Leach Molecular Modeling Principles and Applications Prentice Hall, 2001. M. P. Allen and D. J. Tildesley "Computer Simulation of Liquids",

More information

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Hong-ming Ding 1 & Yu-qiang Ma 1,2, 1 National Laboratory of Solid State Microstructures and Department

More information

Supporting Information

Supporting Information Projection of atomistic simulation data for the dynamics of entangled polymers onto the tube theory: Calculation of the segment survival probability function and comparison with modern tube models Pavlos

More information

Principles and Applications of Molecular Dynamics Simulations with NAMD

Principles and Applications of Molecular Dynamics Simulations with NAMD Principles and Applications of Molecular Dynamics Simulations with NAMD Nov. 14, 2016 Computational Microscope NCSA supercomputer JC Gumbart Assistant Professor of Physics Georgia Institute of Technology

More information

Ab initio molecular dynamics. Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy. Bangalore, 04 September 2014

Ab initio molecular dynamics. Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy. Bangalore, 04 September 2014 Ab initio molecular dynamics Simone Piccinin CNR-IOM DEMOCRITOS Trieste, Italy Bangalore, 04 September 2014 What is MD? 1) Liquid 4) Dye/TiO2/electrolyte 2) Liquids 3) Solvated protein 5) Solid to liquid

More information

Why study protein dynamics?

Why study protein dynamics? Why study protein dynamics? Protein flexibility is crucial for function. One average structure is not enough. Proteins constantly sample configurational space. Transport - binding and moving molecules

More information

Molecular Dynamics Simulation of a Nanoconfined Water Film

Molecular Dynamics Simulation of a Nanoconfined Water Film Molecular Dynamics Simulation of a Nanoconfined Water Film Kyle Lindquist, Shu-Han Chao May 7, 2013 1 Introduction The behavior of water confined in nano-scale environment is of interest in many applications.

More information

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166 Subject Index Ab-initio calculation 24, 122, 161. 165 Acentric factor 279, 338 Activity absolute 258, 295 coefficient 7 definition 7 Atom 23 Atomic units 93 Avogadro number 5, 92 Axilrod-Teller-forces

More information

Scientific Computing II

Scientific Computing II Scientific Computing II Molecular Dynamics Simulation Michael Bader SCCS Summer Term 2015 Molecular Dynamics Simulation, Summer Term 2015 1 Continuum Mechanics for Fluid Mechanics? Molecular Dynamics the

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Length Scales (c) ICAMS: http://www.icams.de/cms/upload/01_home/01_research_at_icams/length_scales_1024x780.png Goals for today: Background

More information

Molecular dynamics simulation of Aquaporin-1. 4 nm

Molecular dynamics simulation of Aquaporin-1. 4 nm Molecular dynamics simulation of Aquaporin-1 4 nm Molecular Dynamics Simulations Schrödinger equation i~@ t (r, R) =H (r, R) Born-Oppenheimer approximation H e e(r; R) =E e (R) e(r; R) Nucleic motion described

More information

Gromacs Workshop Spring CSC

Gromacs Workshop Spring CSC Gromacs Workshop Spring 2007 @ CSC Erik Lindahl Center for Biomembrane Research Stockholm University, Sweden David van der Spoel Dept. Cell & Molecular Biology Uppsala University, Sweden Berk Hess Max-Planck-Institut

More information

Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles. Srikanth Sastry

Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles. Srikanth Sastry JNCASR August 20, 21 2009 Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles Srikanth Sastry Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore

More information

Supporting Information Soft Nanoparticles: Nano Ionic Networks of Associated Ionic Polymers

Supporting Information Soft Nanoparticles: Nano Ionic Networks of Associated Ionic Polymers Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Supporting Information Soft Nanoparticles: Nano Ionic Networks of Associated Ionic Polymers Dipak

More information

LAMMPS Performance Benchmark on VSC-1 and VSC-2

LAMMPS Performance Benchmark on VSC-1 and VSC-2 LAMMPS Performance Benchmark on VSC-1 and VSC-2 Daniel Tunega and Roland Šolc Institute of Soil Research, University of Natural Resources and Life Sciences VSC meeting, Neusiedl am See, February 27-28,

More information

Advanced Molecular Molecular Dynamics

Advanced Molecular Molecular Dynamics Advanced Molecular Molecular Dynamics Technical details May 12, 2014 Integration of harmonic oscillator r m period = 2 k k and the temperature T determine the sampling of x (here T is related with v 0

More information

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below

ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below ICCP Project 2 - Advanced Monte Carlo Methods Choose one of the three options below Introduction In statistical physics Monte Carlo methods are considered to have started in the Manhattan project (1940

More information

Ab initio molecular dynamics and nuclear quantum effects

Ab initio molecular dynamics and nuclear quantum effects Ab initio molecular dynamics and nuclear quantum effects Luca M. Ghiringhelli Fritz Haber Institute Hands on workshop density functional theory and beyond: First principles simulations of molecules and

More information

JASS Modeling and visualization of molecular dynamic processes

JASS Modeling and visualization of molecular dynamic processes JASS 2009 Konstantin Shefov Modeling and visualization of molecular dynamic processes St Petersburg State University, Physics faculty, Department of Computational Physics Supervisor PhD Stepanova Margarita

More information

Ab Ini'o Molecular Dynamics (MD) Simula?ons

Ab Ini'o Molecular Dynamics (MD) Simula?ons Ab Ini'o Molecular Dynamics (MD) Simula?ons Rick Remsing ICMS, CCDM, Temple University, Philadelphia, PA What are Molecular Dynamics (MD) Simulations? Technique to compute statistical and transport properties

More information

Hands-on : Model Potential Molecular Dynamics

Hands-on : Model Potential Molecular Dynamics Hands-on : Model Potential Molecular Dynamics OUTLINE 0. DL_POLY code introduction 0.a Input files 1. THF solvent molecule 1.a Geometry optimization 1.b NVE/NVT dynamics 2. Liquid THF 2.a Equilibration

More information

Molecular Dynamics. A very brief introduction

Molecular Dynamics. A very brief introduction Molecular Dynamics A very brief introduction Sander Pronk Dept. of Theoretical Physics KTH Royal Institute of Technology & Science For Life Laboratory Stockholm, Sweden Why computer simulations? Two primary

More information

4/18/2011. Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania

4/18/2011. Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania 1. Introduction Titus Beu University Babes-Bolyai Department of Theoretical and Computational Physics Cluj-Napoca, Romania Bibliography Computer experiments Ensemble averages and time averages Molecular

More information

Simulation of molecular systems by molecular dynamics

Simulation of molecular systems by molecular dynamics Simulation of molecular systems by molecular dynamics Yohann Moreau yohann.moreau@ujf-grenoble.fr November 26, 2015 Yohann Moreau (UJF) Molecular Dynamics, Label RFCT 2015 November 26, 2015 1 / 35 Introduction

More information

Supporting Information for: Physics Behind the Water Transport through. Nanoporous Graphene and Boron Nitride

Supporting Information for: Physics Behind the Water Transport through. Nanoporous Graphene and Boron Nitride Supporting Information for: Physics Behind the Water Transport through Nanoporous Graphene and Boron Nitride Ludovic Garnier, Anthony Szymczyk, Patrice Malfreyt, and Aziz Ghoufi, Institut de Physique de

More information

Reactive potentials and applications

Reactive potentials and applications 1.021, 3.021, 10.333, 22.00 Introduction to Modeling and Simulation Spring 2011 Part I Continuum and particle methods Reactive potentials and applications Lecture 8 Markus J. Buehler Laboratory for Atomistic

More information

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea The Scaled Effective Solvent Method for Predicting the Equilibrium Ensemble of Structures with Analysis of Thermodynamic Properties of Amorphous Polyethylene Glycol-Water Mixtures Hyeyoung Shin a, Tod

More information

Brief Review of Statistical Mechanics

Brief Review of Statistical Mechanics Brief Review of Statistical Mechanics Introduction Statistical mechanics: a branch of physics which studies macroscopic systems from a microscopic or molecular point of view (McQuarrie,1976) Also see (Hill,1986;

More information

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar.

Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. Why Proteins Fold? (Parts of this presentation are based on work of Ashok Kolaskar) CS490B: Introduction to Bioinformatics Mar. 25, 2002 Molecular Dynamics: Introduction At physiological conditions, the

More information

Lecture 11: Potential Energy Functions

Lecture 11: Potential Energy Functions Lecture 11: Potential Energy Functions Dr. Ronald M. Levy ronlevy@temple.edu Originally contributed by Lauren Wickstrom (2011) Microscopic/Macroscopic Connection The connection between microscopic interactions

More information

Non-bonded interactions

Non-bonded interactions speeding up the number-crunching continued Marcus Elstner and Tomáš Kubař December 3, 2013 why care? number of individual pair-wise interactions bonded interactions proportional to N: O(N) non-bonded interactions

More information

Computer Simulation of Shock Waves in Condensed Matter. Matthew R. Farrow 2 November 2007

Computer Simulation of Shock Waves in Condensed Matter. Matthew R. Farrow 2 November 2007 Computer Simulation of Shock Waves in Condensed Matter Matthew R. Farrow 2 November 2007 Outline of talk Shock wave theory Results Conclusion Computer simulation of shock waves Shock Wave Theory Shock

More information

Computation of non-bonded interactions: Part 1

Computation of non-bonded interactions: Part 1 Computation of non-bonded interactions: Part 1 Computation of non-local (non-bonded) interactions in the potential function E p non-local scales with the number of atoms as N. For the large molecular systems

More information

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane

Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane + Xenon and Xenon + Ethane International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.6, pp 2975-2979, Oct-Dec 2013 Phase Equilibria of binary mixtures by Molecular Simulation and PR-EOS: Methane +

More information

Time-Dependent Statistical Mechanics 1. Introduction

Time-Dependent Statistical Mechanics 1. Introduction Time-Dependent Statistical Mechanics 1. Introduction c Hans C. Andersen Announcements September 24, 2009 Lecture 1 9/22/09 1 Topics of concern in the course We shall be concerned with the time dependent

More information

Modelação e Simulação de Sistemas para Micro/Nano Tecnologias

Modelação e Simulação de Sistemas para Micro/Nano Tecnologias Modelação e Simulação de Sistemas para Micro/Nano Tecnologias http://gec.di.uminho.pt/mmnt/modsim/ Alberto José Proença, António Joaquim Esteves 2011/12 Mestrado em Micro/Nano Tecnologias ESCOLA DE ENGENHARIA

More information

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations

Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations The Hilltop Review Volume 7 Issue 1 Winter 2014 Article 10 December 2014 Advantages of a Finite Extensible Nonlinear Elastic Potential in Lattice Boltzmann Simulations Tai-Hsien Wu Western Michigan University

More information

Scalable, performant, and resilient large-scale applications of molecular process engineering

Scalable, performant, and resilient large-scale applications of molecular process engineering Scalable, performant, and resilient large-scale applications of molecular process engineering M. Horsch,1 P. Gralka,2 C. Niethammer,3 N. Tchipev,4 J. Vrabec,5 H. Hasse1 1 University of Kaiserslautern,

More information

SIMCON - Computer Simulation of Condensed Matter

SIMCON - Computer Simulation of Condensed Matter Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2017 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

WATER PERMEATION THROUGH GRAPHENE NANOSLIT BY MOLECULAR DYNAMICS SIMULATION

WATER PERMEATION THROUGH GRAPHENE NANOSLIT BY MOLECULAR DYNAMICS SIMULATION WATER PERMEATION THROUGH GRAPHENE NANOSLIT BY MOLECULAR DYNAMICS SIMULATION Taro Yamada 1 and Ryosuke Matsuzaki 2 1 Department of Mechanical Engineering, Tokyo University of Science, 2641 Yamazaki, Noda,

More information

Biomolecular modeling I

Biomolecular modeling I 2015, December 15 Biomolecular simulation Elementary body atom Each atom x, y, z coordinates A protein is a set of coordinates. (Gromacs, A. P. Heiner) Usually one molecule/complex of interest (e.g. protein,

More information

Structural Bioinformatics (C3210) Molecular Mechanics

Structural Bioinformatics (C3210) Molecular Mechanics Structural Bioinformatics (C3210) Molecular Mechanics How to Calculate Energies Calculation of molecular energies is of key importance in protein folding, molecular modelling etc. There are two main computational

More information

Long-range Interactions in Particle Simulations ScaFaCoS. Olaf Lenz

Long-range Interactions in Particle Simulations ScaFaCoS. Olaf Lenz Long-range Interactions in Particle Simulations ScaFaCoS 1/33 Outline Many-particle Simulations Short-range Interactions Long-range Interactions: ScaFaCoS If time permits: ESPResSo and coarse-graining

More information

The Molecular Dynamics Method

The Molecular Dynamics Method The Molecular Dynamics Method Thermal motion of a lipid bilayer Water permeation through channels Selective sugar transport Potential Energy (hyper)surface What is Force? Energy U(x) F = d dx U(x) Conformation

More information

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane Supplementary Information: Simulation Procedure and Physical Property Analysis Simulation Procedure The molecular

More information

Multiscale Materials Modeling

Multiscale Materials Modeling Multiscale Materials Modeling Lecture 02 Capabilities of Classical Molecular Simulation These notes created by David Keffer, University of Tennessee, Knoxville, 2009. Outline Capabilities of Classical

More information

Imperfect Gases. NC State University

Imperfect Gases. NC State University Chemistry 431 Lecture 3 Imperfect Gases NC State University The Compression Factor One way to represent the relationship between ideal and real gases is to plot the deviation from ideality as the gas is

More information

Non-bonded interactions

Non-bonded interactions speeding up the number-crunching Marcus Elstner and Tomáš Kubař May 8, 2015 why care? key to understand biomolecular structure and function binding of a ligand efficiency of a reaction color of a chromophore

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation CE 530 Molecular Simulation Lecture 20 Phase Equilibria David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Thermodynamic Phase Equilibria Certain thermodynamic states

More information

hydrated Nafion-117 for fuel cell application

hydrated Nafion-117 for fuel cell application A molecular dynamics simulation study of oxygen within hydrated Nafion-117 for fuel cell application Jeffrey P. Fuller, Giuseppe F. Brunello, Seung Soon Jang School of Materials Science and Engineering

More information

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water?

Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Can a continuum solvent model reproduce the free energy landscape of a β-hairpin folding in water? Ruhong Zhou 1 and Bruce J. Berne 2 1 IBM Thomas J. Watson Research Center; and 2 Department of Chemistry,

More information

Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization

Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization Supplementary Information for Atomistic Simulation of Spinodal Phase Separation Preceding Polymer Crystallization Richard H. Gee * Naida Lacevic and Laurence E. Fried University of California Lawrence

More information

Molecular Dynamic Simulation Study of the Volume Transition of PNIPAAm Hydrogels

Molecular Dynamic Simulation Study of the Volume Transition of PNIPAAm Hydrogels Molecular Dynamic Simulation Study of the Volume Transition of PNIPAAm Hydrogels Jonathan Walter 1, Jadran Vrabec 2, Hans Hasse 1 1 Laboratory of Engineering, University of Kaiserslautern, Germany 2 and

More information

Diffusion of Water and Diatomic Oxygen in Poly(3-hexylthiophene) Melt: A Molecular Dynamics Simulation Study

Diffusion of Water and Diatomic Oxygen in Poly(3-hexylthiophene) Melt: A Molecular Dynamics Simulation Study Diffusion of Water and Diatomic Oxygen in Poly(3-hexylthiophene) Melt: A Molecular Dynamics Simulation Study Julia Deitz, Yeneneh Yimer, and Mesfin Tsige Department of Polymer Science University of Akron

More information

Heterogeneous Hydrate Nucleation on Calcite {1014} and Kaolinite {001} Surfaces: A Molecular Dynamics Simulation Study

Heterogeneous Hydrate Nucleation on Calcite {1014} and Kaolinite {001} Surfaces: A Molecular Dynamics Simulation Study Heterogeneous Hydrate Nucleation on Calcite {1014} and Kaolinite {001} Surfaces: A Molecular Dynamics Simulation Study Numan Mohammad Department of Physics and Technology University of Bergen, Norway June

More information

Methods of Computer Simulation. Molecular Dynamics and Monte Carlo

Methods of Computer Simulation. Molecular Dynamics and Monte Carlo Molecular Dynamics Time is of the essence in biological processes therefore how do we understand time-dependent processes at the molecular level? How do we do this experimentally? How do we do this computationally?

More information

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together.

Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions. Let's get together. Lecture C2 Microscopic to Macroscopic, Part 2: Intermolecular Interactions Let's get together. Most gases are NOT ideal except at very low pressures: Z=1 for ideal gases Intermolecular interactions come

More information

Coarse-Grained Models!

Coarse-Grained Models! Coarse-Grained Models! Large and complex molecules (e.g. long polymers) can not be simulated on the all-atom level! Requires coarse-graining of the model! Coarse-grained models are usually also particles

More information

Classical Molecular Dynamics

Classical Molecular Dynamics Classical Molecular Dynamics Matt Probert Condensed Matter Dynamics Group Department of Physics, University of York, U.K. http://www-users.york.ac.uk/~mijp1 Overview of lecture n Motivation n Types of

More information

Equilibrium sampling of self-associating polymer solutions: A parallel selective tempering approach

Equilibrium sampling of self-associating polymer solutions: A parallel selective tempering approach THE JOURNAL OF CHEMICAL PHYSICS 123, 124912 2005 Equilibrium sampling of self-associating polymer solutions: A parallel selective tempering approach Chakravarthy Ayyagari, a Dmitry Bedrov, and Grant D.

More information

This semester. Books

This semester. Books Models mostly proteins from detailed to more abstract models Some simulation methods This semester Books None necessary for my group and Prof Rarey Molecular Modelling: Principles and Applications Leach,

More information

Molecular Dynamics Study on the Binary Collision of Nanometer-Sized Droplets of Liquid Argon

Molecular Dynamics Study on the Binary Collision of Nanometer-Sized Droplets of Liquid Argon Molecular Dynamics Study on the Binary Collision Bull. Korean Chem. Soc. 2011, Vol. 32, No. 6 2027 DOI 10.5012/bkcs.2011.32.6.2027 Molecular Dynamics Study on the Binary Collision of Nanometer-Sized Droplets

More information

Efficient Parallelization of Molecular Dynamics Simulations on Hybrid CPU/GPU Supercoputers

Efficient Parallelization of Molecular Dynamics Simulations on Hybrid CPU/GPU Supercoputers Efficient Parallelization of Molecular Dynamics Simulations on Hybrid CPU/GPU Supercoputers Jaewoon Jung (RIKEN, RIKEN AICS) Yuji Sugita (RIKEN, RIKEN AICS, RIKEN QBiC, RIKEN ithes) Molecular Dynamics

More information

Force fields in computer simulation of soft nanomaterials

Force fields in computer simulation of soft nanomaterials Lecture 2 Part B Force fields in computer simulation of soft nanomaterials Recommended reading: Leach Chapter 4 1 Force Field Methods Force field methods are simulation methods that use classical force

More information

Interface Resistance and Thermal Transport in Nano-Confined Liquids

Interface Resistance and Thermal Transport in Nano-Confined Liquids 1 Interface Resistance and Thermal Transport in Nano-Confined Liquids Murat Barisik and Ali Beskok CONTENTS 1.1 Introduction...1 1.2 Onset of Continuum Behavior...2 1.3 Boundary Treatment Effects on Interface

More information

Lecture 2+3: Simulations of Soft Matter. 1. Why Lecture 1 was irrelevant 2. Coarse graining 3. Phase equilibria 4. Applications

Lecture 2+3: Simulations of Soft Matter. 1. Why Lecture 1 was irrelevant 2. Coarse graining 3. Phase equilibria 4. Applications Lecture 2+3: Simulations of Soft Matter 1. Why Lecture 1 was irrelevant 2. Coarse graining 3. Phase equilibria 4. Applications D. Frenkel, Boulder, July 6, 2006 What distinguishes Colloids from atoms or

More information

STUDY OF INTEGRATION ALGORITHM AND TIME STEP ON MOLECULAR DYNAMIC SIMULATION. Janusz Bytnar, Anna Kucaba-Piętal

STUDY OF INTEGRATION ALGORITHM AND TIME STEP ON MOLECULAR DYNAMIC SIMULATION. Janusz Bytnar, Anna Kucaba-Piętal Business and Engineering Applications of Intelligent and Information Systems 11 STUDY OF INTEGRATION ALGORITHM AND TIME STEP ON MOLECULAR DYNAMIC SIMULATION Janusz Bytnar, Anna Kucaba-Piętal Abstract:

More information

Melting line of the Lennard-Jones system, infinite size, and full potential

Melting line of the Lennard-Jones system, infinite size, and full potential THE JOURNAL OF CHEMICAL PHYSICS 127, 104504 2007 Melting line of the Lennard-Jones system, infinite size, and full potential Ethan A. Mastny a and Juan J. de Pablo b Chemical and Biological Engineering

More information

Biomolecular modeling II

Biomolecular modeling II 2015, December 16 System boundary and the solvent Biomolecule in solution typical MD simulations molecular system in aqueous solution task make the system as small as possible (reduce cost) straightforward

More information

Advanced Molecular Dynamics

Advanced Molecular Dynamics Advanced Molecular Dynamics Introduction May 2, 2017 Who am I? I am an associate professor at Theoretical Physics Topics I work on: Algorithms for (parallel) molecular simulations including GPU acceleration

More information

The GROMOS Software for (Bio)Molecular Simulation

The GROMOS Software for (Bio)Molecular Simulation The GROMOS Software for (Bio)Molecular Simulation Volume 2: Algorithms and Formulae for Modelling of Molecular Systems September 28, 2017 Contents Chapter 1. Introduction 2-1 Chapter 2. Basic choices

More information

Copyright 2001 University of Cambridge. Not to be quoted or copied without permission.

Copyright 2001 University of Cambridge. Not to be quoted or copied without permission. Course MP3 Lecture 4 13/11/2006 Monte Carlo method I An introduction to the use of the Monte Carlo method in materials modelling Dr James Elliott 4.1 Why Monte Carlo? The name derives from the association

More information

An FPGA Implementation of Reciprocal Sums for SPME

An FPGA Implementation of Reciprocal Sums for SPME An FPGA Implementation of Reciprocal Sums for SPME Sam Lee and Paul Chow Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto Objectives Accelerate part of Molecular

More information

Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects

Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects Statistical Thermodynamics Lecture 12: Solvation Models: Molecular Mechanics Modeling of Hydration Effects Dr. Ronald M. Levy ronlevy@temple.edu Bare Molecular Mechanics Atomistic Force Fields: torsion

More information

An introduction to Molecular Dynamics. EMBO, June 2016

An introduction to Molecular Dynamics. EMBO, June 2016 An introduction to Molecular Dynamics EMBO, June 2016 What is MD? everything that living things do can be understood in terms of the jiggling and wiggling of atoms. The Feynman Lectures in Physics vol.

More information

The Molecular Dynamics Simulation Process

The Molecular Dynamics Simulation Process The Molecular Dynamics Simulation Process For textbooks see: M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids.Oxford University Press, New York, 1987. D. Frenkel and B. Smit. Understanding

More information

Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids

Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids Cameron F. Abrams Department of Chemical and Biological Engineering Drexel University Philadelphia, PA USA 9 June

More information

Sunyia Hussain 06/15/2012 ChE210D final project. Hydration Dynamics at a Hydrophobic Surface. Abstract:

Sunyia Hussain 06/15/2012 ChE210D final project. Hydration Dynamics at a Hydrophobic Surface. Abstract: Hydration Dynamics at a Hydrophobic Surface Sunyia Hussain 6/15/212 ChE21D final project Abstract: Water is the universal solvent of life, crucial to the function of all biomolecules. Proteins, membranes,

More information

Supporting information

Supporting information Electronic Supplementary Material ESI for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2018 Supporting information Understanding three-body contributions to coarse-grained force

More information

Multiple time step Monte Carlo

Multiple time step Monte Carlo JOURNAL OF CHEMICAL PHYSICS VOLUME 117, NUMBER 18 8 NOVEMBER 2002 Multiple time step Monte Carlo Balázs Hetényi a) Department of Chemistry, Princeton University, Princeton, NJ 08544 and Department of Chemistry

More information

MatSci 331 Homework 4 Molecular Dynamics and Monte Carlo: Stress, heat capacity, quantum nuclear effects, and simulated annealing

MatSci 331 Homework 4 Molecular Dynamics and Monte Carlo: Stress, heat capacity, quantum nuclear effects, and simulated annealing MatSci 331 Homework 4 Molecular Dynamics and Monte Carlo: Stress, heat capacity, quantum nuclear effects, and simulated annealing Due Thursday Feb. 21 at 5pm in Durand 110. Evan Reed In this homework,

More information

k θ (θ θ 0 ) 2 angles r i j r i j

k θ (θ θ 0 ) 2 angles r i j r i j 1 Force fields 1.1 Introduction The term force field is slightly misleading, since it refers to the parameters of the potential used to calculate the forces (via gradient) in molecular dynamics simulations.

More information

Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry

Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry Finite Ring Geometries and Role of Coupling in Molecular Dynamics and Chemistry Petr Pracna J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic, Prague ZiF Cooperation

More information

Viscous Flow Computations with Molecular Dynamics

Viscous Flow Computations with Molecular Dynamics FAKULTÄT FÜR INFORMATIK DER TECHNISCHEN UNIVERSITÄT MÜNCHEN Bachelorarbeit in Informatik Viscous Flow Computations with Molecular Dynamics Ching-Yu Kao FAKULTÄT FÜR INFORMATIK DER TECHNISCHEN UNIVERSITÄT

More information

APMA 2811T. By Zhen Li. Today s topic: Lecture 2: Theoretical foundation and parameterization. Sep. 15, 2016

APMA 2811T. By Zhen Li. Today s topic: Lecture 2: Theoretical foundation and parameterization. Sep. 15, 2016 Today s topic: APMA 2811T Dissipative Particle Dynamics Instructor: Professor George Karniadakis Location: 170 Hope Street, Room 118 Time: Thursday 12:00pm 2:00pm Dissipative Particle Dynamics: Foundation,

More information