Histogram Processing

Size: px
Start display at page:

Download "Histogram Processing"

Transcription

1 Histogram Processing The histogram of a digital image with gray levels in the range [0,L-] is a discrete function h ( r k ) = n k where r k n k = k th gray level = number of pixels in the image having gray level value r k

2 Normalization: h( r ) p( r ) = k = k n n k n n p( r k ) = total number of pixels in the image = probability of occurrence of gray level r k k p( ) = r k

3 p(r k ) =h(r k )/n r k = 255 k p( ) = r k

4 Uniformly distributed histogram yields HIGH CONTRAST IMAGE Hence, histogram processing requires the stretching of gray level uniformly over the entire gray level range. This is histogram equalization

5 Histogram p(r) r =

6 Histogram equalization p(s) 0 s

7 . Requires the distribution of histogram peaks uniformly over the entire gray level range 2. Equalize the height of the peaks Let us define the gray level values (r) to be Continuous and Normalized between [0,]

8 r = 0 Black r = White For any r, the transformation s = T( r) ; 0 r

9 Let us require that the transformation function T(r) should satisfy. T(r) is single valued and monotonically increasing in the interval 0 r 2. 0 T(r) for 0 r

10 s T(r) r Single valued and monotonically increasing

11 s T(r) Not single valued r Inverse transformation of the T(r) will not give the original image

12 Non-monotonic transformation function s T(r) r Transformation from black white Transformation from white black

13 Hence the requirements:. T(r) should be single valued which ensures the inverse transformation will exists The monotonicity condition preserves the increasing order from black to white in the output image 2. Condition (b) guarantees the output gray levels will be in the same range as that of input range

14 The gray levels (r or s) in an image random variable in the interval [0,] p r ( r) & p ( s) s are the PDFs of random variables r and s, respectively From the PDF theory of the random variable: ps ( s) ds = pr ( r) dr

15 To make the histogram uniform: ) ( = s p s ) ( ) ( ) ( ) ( r T d p s d p ds dr r p ds r r r r s r = = = = ω ω ω ω Put,

16 r s = T ( r) = p ( ω) dω r 0 Hence, the transformation function (T(r)) is equal to the CDF of random variable, r a)t(r) is singled valued and monotonically increasing function. Hence the first condition is satisfied. b) Values of T(r) or s lie in the range [0,]

17 For discrete values, 0,,..., ) ( = = L k n n r p k k r = = = k j j r k k r p r T s 0 ) ( ) (..., 0,,, ) ( 0 = = = = L k for n n r T s k j j k k

18 This will do the histogram equalization AUTOMATICALLY

19

20 Image averaging Noisy image can be enhanced by averaging it over a set of images A noisy image (g(x,y)) can be expressed as g( x, y) = f ( x, y) + η( x, y)

21 where f ( x, y) = Original image η ( x, y) = Noise If the noise η(x,y) is uncorrelated, then η( The expected value of the noise η(x,y) = 0 The expected covariance of the two random variables = 0

22 { g ( x, y)} i Represents a set of noisy image The average image is formed by, g( x, y) = K K i= g i ( x, y) K K = f + K i i= i= η i

23 Take expectation either side E K ( g) = E( f ) + E( η ) i i K i= i= K f i is a constant and same for all the images E { f } = f i i &

24 E{ η } = i 0 E { g( x, y)} = f ( x, y)

25 K=8 K=6 K=64 K=28

26

27 Scaling of the gray levels during mathematical operation + = unscaled scaled

28 - unscaled = scaled

29 Mask filtering in spatial domain Subimage Subimage filter, mask, kernel, template, or window

30 The subimages can be

31 Subimage is a small matrix whose elements are called COFFIECIENTS Preferably, the size of the mask should be odd If (m x n) size of the mask Then, m=2a+ and n=2b+ a, b are integers

32 Linear filter: = = + + = b b t a a s t y s x f t s w y x g ), ( ), ( ), ( The coefficients w(x,y) are defined by the user; depending on the nature of the filter required

33 eg., for an average filter of mask 3x3, each coefficient should be /9 W = /9

34 To perform the averaging, vary x =0,,2,.M- y =0,,2 N-

35 2 W = / Weighted average

36 = = = = + + = b b t a a s b b t a a s t s w t y s x f t s w y x g ), ( ), ( ), ( ), ( Hence the general expression for avg.

37 Mask reaches the border: (a) (b) Padding

38 Mask size --, 3 5, 9 5, 35

39 Averaging removes smaller details It leads to blurring

40

41 Non-linear filters: e.g., Median filter, variance filter Median filter is very powerful in removing random noise with considerably less blurring than linear avg. filter of similar size Median filters are effective for impulse noise.

42 Find median of the set of 5 numbers 5, 7, 4, 5, 3, 6, 8, 7, 2,, 0, 4, 4,, 3 a) Arrange them as 0,,, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 2, 4 Median = 5

43 Find median of the set of 4 numbers 87, 55, 67, 87, 98, 80, 45, 65, 75, 67, 87, 92, 87, 63 Arrange them 45, 55, 63, 65, 67, 67, 75, 80, 87, 87, 87, 87, 92, 98 Median = Avg(75,80) = 77.5

44

45 Noisy image Median filtered image (3x3 mask)

46 Comparison

47 a) Max filter The pixel value is replaced by the maximum calculated from the neighborhood. b) Min Filter The pixel value is replaced by the minimum calculated from the neighborhood. c) Mid point filter The pixel value is replaced by the 0.5*(min+max) calculated from the neighborhood.

48

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Restoration and Reconstruction I Dr. D. J. Jackson Lecture 11-1 Image restoration Restoration is an objective process that attempts to recover an image

More information

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER?

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? : WHICH ONE LOOKS BETTER? 3.1 : WHICH ONE LOOKS BETTER? 3.2 1 Goal: Image enhancement seeks to improve the visual appearance of an image, or convert it to a form suited for analysis by a human or a machine.

More information

Local enhancement. Local Enhancement. Local histogram equalized. Histogram equalized. Local Contrast Enhancement. Fig 3.23: Another example

Local enhancement. Local Enhancement. Local histogram equalized. Histogram equalized. Local Contrast Enhancement. Fig 3.23: Another example Local enhancement Local Enhancement Median filtering Local Enhancement Sometimes Local Enhancement is Preferred. Malab: BlkProc operation for block processing. Left: original tire image. 0/07/00 Local

More information

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain:

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain: Image Enhancement: No Explicit definition Methods Spatial Domain: Linear Nonlinear Frequency Domain: Linear Nonlinear 1 Spatial Domain Process,, g x y T f x y 2 For 1 1 neighborhood: Contrast Enhancement/Stretching/Point

More information

Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ]

Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ] CEE 615: Digital Image Processing Spatial Enhancements 1 Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ] Template (Windowing) Operations Template (window, box, kernel)

More information

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut.

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut. Spatial Filtering Dr. Praveen Sankaran Department of ECE NIT Calicut January 7, 203 Outline 2 Linear Nonlinear 3 Spatial Domain Refers to the image plane itself. Direct manipulation of image pixels. Figure:

More information

18/10/2017. Image Enhancement in the Spatial Domain: Gray-level transforms. Image Enhancement in the Spatial Domain: Gray-level transforms

18/10/2017. Image Enhancement in the Spatial Domain: Gray-level transforms. Image Enhancement in the Spatial Domain: Gray-level transforms Gray-level transforms Gray-level transforms Generic, possibly nonlinear, pointwise operator (intensity mapping, gray-level transformation): Basic gray-level transformations: Negative: s L 1 r Generic log:

More information

Introduction to Computer Vision. 2D Linear Systems

Introduction to Computer Vision. 2D Linear Systems Introduction to Computer Vision D Linear Systems Review: Linear Systems We define a system as a unit that converts an input function into an output function Independent variable System operator or Transfer

More information

Lecture 04 Image Filtering

Lecture 04 Image Filtering Institute of Informatics Institute of Neuroinformatics Lecture 04 Image Filtering Davide Scaramuzza 1 Lab Exercise 2 - Today afternoon Room ETH HG E 1.1 from 13:15 to 15:00 Work description: your first

More information

IMAGE ENHANCEMENT II (CONVOLUTION)

IMAGE ENHANCEMENT II (CONVOLUTION) MOTIVATION Recorded images often exhibit problems such as: blurry noisy Image enhancement aims to improve visual quality Cosmetic processing Usually empirical techniques, with ad hoc parameters ( whatever

More information

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. 3. Image processing 1 Image processing An image processing operation typically defines

More information

Local Enhancement. Local enhancement

Local Enhancement. Local enhancement Local Enhancement Local Enhancement Median filtering (see notes/slides, 3.5.2) HW4 due next Wednesday Required Reading: Sections 3.3, 3.4, 3.5, 3.6, 3.7 Local Enhancement 1 Local enhancement Sometimes

More information

Image Processing. Transforms. Mylène Christine Queiroz de Farias

Image Processing. Transforms. Mylène Christine Queiroz de Farias Image Processing Transforms Mylène Christine Queiroz de Farias Departamento de Engenharia Elétrica Universidade de Brasília (UnB) Brasília, DF 70910-900 mylene@unb.br 13 de Março de 2017 Class 03: Chapter

More information

Empirical Mean and Variance!

Empirical Mean and Variance! Global Image Properties! Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.!

More information

Image Processing. Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010

Image Processing. Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010 Image Processing Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010 Ch3. Image Enhancement in the Spatial Domain Note that T (m) = 0.5 E. The general law of contrast

More information

Colorado School of Mines Image and Multidimensional Signal Processing

Colorado School of Mines Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Department of Electrical Engineering and Computer Science Spatial Filtering Main idea Spatial filtering Define a neighborhood of a pixel

More information

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform Cris Luengo TD396 fall 4 cris@cbuuse Today s lecture Local neighbourhood processing smoothing an image sharpening an image The convolution What is it? What is it useful for? How can I compute it? Removing

More information

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh, CEO at Mapizy (www.mapizy.com) and InFarm (www.infarm.io) Lecture 04 Greyscale Image Analysis Lecture 03 Summary Images as 2-D signals

More information

Fourier Transforms 1D

Fourier Transforms 1D Fourier Transforms 1D 3D Image Processing Alireza Ghane 1 Overview Recap Intuitions Function representations shift-invariant spaces linear, time-invariant (LTI) systems complex numbers Fourier Transforms

More information

Biomedical Image Analysis. Segmentation by Thresholding

Biomedical Image Analysis. Segmentation by Thresholding Biomedical Image Analysis Segmentation by Thresholding Contents: Thresholding principles Ridler & Calvard s method Ridler TW, Calvard S (1978). Picture thresholding using an iterative selection method,

More information

Lecture 7: Edge Detection

Lecture 7: Edge Detection #1 Lecture 7: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Definition of an Edge First Order Derivative Approximation as Edge Detector #2 This Lecture Examples of Edge Detection

More information

Linear Operators and Fourier Transform

Linear Operators and Fourier Transform Linear Operators and Fourier Transform DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 13, 2013

More information

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters 1 Lecture Outline Basics o Spatial Filtering Smoothing Spatial Filters Averaging ilters Order-Statistics ilters Sharpening Spatial Filters Laplacian ilters High-boost ilters Gradient Masks Combining Spatial

More information

Image Degradation Model (Linear/Additive)

Image Degradation Model (Linear/Additive) Image Degradation Model (Linear/Additive),,,,,,,, g x y h x y f x y x y G uv H uv F uv N uv 1 Source of noise Image acquisition (digitization) Image transmission Spatial properties of noise Statistical

More information

at Some sort of quantization is necessary to represent continuous signals in digital form

at Some sort of quantization is necessary to represent continuous signals in digital form Quantization at Some sort of quantization is necessary to represent continuous signals in digital form x(n 1,n ) x(t 1,tt ) D Sampler Quantizer x q (n 1,nn ) Digitizer (A/D) Quantization is also used for

More information

Image Degradation Model (Linear/Additive)

Image Degradation Model (Linear/Additive) Image Degradation Model (Linear/Additive),,,,,,,, g x y f x y h x y x y G u v F u v H u v N u v 1 Source of noise Objects Impurities Image acquisition (digitization) Image transmission Spatial properties

More information

Image Characteristics

Image Characteristics 1 Image Characteristics Image Mean I I av = i i j I( i, j 1 j) I I NEW (x,y)=i(x,y)-b x x Changing the image mean Image Contrast The contrast definition of the entire image is ambiguous In general it is

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno

Stochastic Processes. M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno Stochastic Processes M. Sami Fadali Professor of Electrical Engineering University of Nevada, Reno 1 Outline Stochastic (random) processes. Autocorrelation. Crosscorrelation. Spectral density function.

More information

Image Noise: Detection, Measurement and Removal Techniques. Zhifei Zhang

Image Noise: Detection, Measurement and Removal Techniques. Zhifei Zhang Image Noise: Detection, Measurement and Removal Techniques Zhifei Zhang Outline Noise measurement Filter-based Block-based Wavelet-based Noise removal Spatial domain Transform domain Non-local methods

More information

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Technischen Universität München Winter Semester 0/0 TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Slobodan Ilić Overview Image formation Convolution Non-liner filtering: Median

More information

Filtering in Frequency Domain

Filtering in Frequency Domain Dr. Praveen Sankaran Department of ECE NIT Calicut February 4, 2013 Outline 1 2D DFT - Review 2 2D Sampling 2D DFT - Review 2D Impulse Train s [t, z] = m= n= δ [t m T, z n Z] (1) f (t, z) s [t, z] sampled

More information

LPA-ICI Applications in Image Processing

LPA-ICI Applications in Image Processing LPA-ICI Applications in Image Processing Denoising Deblurring Derivative estimation Edge detection Inverse halftoning Denoising Consider z (x) =y (x)+η (x), wherey is noise-free image and η is noise. assume

More information

Sampling in 1D ( ) Continuous time signal f(t) Discrete time signal. f(t) comb

Sampling in 1D ( ) Continuous time signal f(t) Discrete time signal. f(t) comb Sampling in 2D 1 Sampling in 1D Continuous time signal f(t) Discrete time signal t ( ) f [ k] = f( kt ) = f( t) δ t kt s k s f(t) comb k 2 Nyquist theorem (1D) At least 2 sample/period are needed to represent

More information

Computer Vision Lecture 3

Computer Vision Lecture 3 Computer Vision Lecture 3 Linear Filters 03.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Demo Haribo Classification Code available on the class website...

More information

UNIT III IMAGE RESTORATION Part A Questions 1. What is meant by Image Restoration? Restoration attempts to reconstruct or recover an image that has been degraded by using a clear knowledge of the degrading

More information

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITK Filters Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITCS 6010:Biomedical Imaging and Visualization 1 ITK Filters:

More information

BAYESIAN DECISION THEORY

BAYESIAN DECISION THEORY Last updated: September 17, 2012 BAYESIAN DECISION THEORY Problems 2 The following problems from the textbook are relevant: 2.1 2.9, 2.11, 2.17 For this week, please at least solve Problem 2.3. We will

More information

COMP344 Digital Image Processing Fall 2007 Final Examination

COMP344 Digital Image Processing Fall 2007 Final Examination COMP344 Digital Image Processing Fall 2007 Final Examination Time allowed: 2 hours Name Student ID Email Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Total With model answer HK University

More information

ECE Digital Image Processing and Introduction to Computer Vision. Outline

ECE Digital Image Processing and Introduction to Computer Vision. Outline 2/9/7 ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 207. Recap Outline 2. Sharpening Filtering Illustration

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 11 Oct 3 rd, 2017 Pranav Mantini Slides from Dr. Shishir K Shah, and Frank Liu Review: 2D Discrete Fourier Transform If I is an image of size N then Sin

More information

LoG Blob Finding and Scale. Scale Selection. Blobs (and scale selection) Achieving scale covariance. Blob detection in 2D. Blob detection in 2D

LoG Blob Finding and Scale. Scale Selection. Blobs (and scale selection) Achieving scale covariance. Blob detection in 2D. Blob detection in 2D Achieving scale covariance Blobs (and scale selection) Goal: independently detect corresponding regions in scaled versions of the same image Need scale selection mechanism for finding characteristic region

More information

Over-enhancement Reduction in Local Histogram Equalization using its Degrees of Freedom. Alireza Avanaki

Over-enhancement Reduction in Local Histogram Equalization using its Degrees of Freedom. Alireza Avanaki Over-enhancement Reduction in Local Histogram Equalization using its Degrees of Freedom Alireza Avanaki ABSTRACT A well-known issue of local (adaptive) histogram equalization (LHE) is over-enhancement

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ Image Compression 2 Image Compression Goal: Reduce amount

More information

Computational Photography

Computational Photography Computational Photography Si Lu Spring 208 http://web.cecs.pdx.edu/~lusi/cs50/cs50_computati onal_photography.htm 04/0/208 Last Time o Digital Camera History of Camera Controlling Camera o Photography

More information

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I Code: 15A04304 R15 B.Tech II Year I Semester (R15) Regular Examinations November/December 016 PROBABILITY THEY & STOCHASTIC PROCESSES (Electronics and Communication Engineering) Time: 3 hours Max. Marks:

More information

Outline. Convolution. Filtering

Outline. Convolution. Filtering Filtering Outline Convolution Filtering Logistics HW1 HW2 - out tomorrow Recall: what is a digital (grayscale) image? Matrix of integer values Images as height fields Let s think of image as zero-padded

More information

A NO-REFERENCE SHARPNESS METRIC SENSITIVE TO BLUR AND NOISE. Xiang Zhu and Peyman Milanfar

A NO-REFERENCE SHARPNESS METRIC SENSITIVE TO BLUR AND NOISE. Xiang Zhu and Peyman Milanfar A NO-REFERENCE SARPNESS METRIC SENSITIVE TO BLUR AND NOISE Xiang Zhu and Peyman Milanfar Electrical Engineering Department University of California at Santa Cruz, CA, 9564 xzhu@soeucscedu ABSTRACT A no-reference

More information

Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2

Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2 Corner Detection 2D Image Features Corners are important two dimensional features. Two dimensional image features are interesting local structures. They include junctions of dierent types Slide 3 They

More information

Lecture 8: Interest Point Detection. Saad J Bedros

Lecture 8: Interest Point Detection. Saad J Bedros #1 Lecture 8: Interest Point Detection Saad J Bedros sbedros@umn.edu Last Lecture : Edge Detection Preprocessing of image is desired to eliminate or at least minimize noise effects There is always tradeoff

More information

Locality function LOC(.) and loss function LOSS (.) and a priori knowledge on images inp

Locality function LOC(.) and loss function LOSS (.) and a priori knowledge on images inp L. Yaroslavsky. Course 0510.7211 Digital Image Processing: Applications Lecture 12. Nonlinear filters for image restoration and enhancement Local criteria of image quality: AVLOSS( k, l) = AV LOC( m, n;

More information

Corner. Corners are the intersections of two edges of sufficiently different orientations.

Corner. Corners are the intersections of two edges of sufficiently different orientations. 2D Image Features Two dimensional image features are interesting local structures. They include junctions of different types like Y, T, X, and L. Much of the work on 2D features focuses on junction L,

More information

Achieving scale covariance

Achieving scale covariance Achieving scale covariance Goal: independently detect corresponding regions in scaled versions of the same image Need scale selection mechanism for finding characteristic region size that is covariant

More information

Using Entropy and 2-D Correlation Coefficient as Measuring Indices for Impulsive Noise Reduction Techniques

Using Entropy and 2-D Correlation Coefficient as Measuring Indices for Impulsive Noise Reduction Techniques Using Entropy and 2-D Correlation Coefficient as Measuring Indices for Impulsive Noise Reduction Techniques Zayed M. Ramadan Department of Electronics and Communications Engineering, Faculty of Engineering,

More information

Optimum Ordering and Pole-Zero Pairing. Optimum Ordering and Pole-Zero Pairing Consider the scaled cascade structure shown below

Optimum Ordering and Pole-Zero Pairing. Optimum Ordering and Pole-Zero Pairing Consider the scaled cascade structure shown below Pole-Zero Pairing of the Cascade Form IIR Digital Filter There are many possible cascade realiations of a higher order IIR transfer function obtained by different pole-ero pairings and ordering Each one

More information

Detection of signal transitions by order statistics filtering

Detection of signal transitions by order statistics filtering Detection of signal transitions by order statistics filtering A. Raji Images, Signals and Intelligent Systems Laboratory Paris-Est Creteil University, France Abstract In this article, we present a non

More information

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

PCA & ICA. CE-717: Machine Learning Sharif University of Technology Spring Soleymani PCA & ICA CE-717: Machine Learning Sharif University of Technology Spring 2015 Soleymani Dimensionality Reduction: Feature Selection vs. Feature Extraction Feature selection Select a subset of a given

More information

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory

Chapter 1 Statistical Reasoning Why statistics? Section 1.1 Basics of Probability Theory Chapter 1 Statistical Reasoning Why statistics? Uncertainty of nature (weather, earth movement, etc. ) Uncertainty in observation/sampling/measurement Variability of human operation/error imperfection

More information

Signals and Spectra - Review

Signals and Spectra - Review Signals and Spectra - Review SIGNALS DETERMINISTIC No uncertainty w.r.t. the value of a signal at any time Modeled by mathematical epressions RANDOM some degree of uncertainty before the signal occurs

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Image Processing /6.865 Frédo Durand A bunch of slides by Bill Freeman (MIT) & Alyosha Efros (CMU)

Image Processing /6.865 Frédo Durand A bunch of slides by Bill Freeman (MIT) & Alyosha Efros (CMU) Image Processing 6.815/6.865 Frédo Durand A bunch of slides by Bill Freeman (MIT) & Alyosha Efros (CMU) define cumulative histogram work on hist eq proof rearrange Fourier order discuss complex exponentials

More information

3.8 Combining Spatial Enhancement Methods 137

3.8 Combining Spatial Enhancement Methods 137 3.8 Combining Spatial Enhancement Methods 137 a b FIGURE 3.45 Optical image of contact lens (note defects on the boundary at 4 and 5 o clock). (b) Sobel gradient. (Original image courtesy of Mr. Pete Sites,

More information

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design

EE4512 Analog and Digital Communications Chapter 4. Chapter 4 Receiver Design Chapter 4 Receiver Design Chapter 4 Receiver Design Probability of Bit Error Pages 124-149 149 Probability of Bit Error The low pass filtered and sampled PAM signal results in an expression for the probability

More information

Descriptive Statistics

Descriptive Statistics Descriptive Statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Descriptive statistics Techniques to visualize

More information

Tutorial 9 The Discrete Fourier Transform (DFT) SIPC , Spring 2017 Technion, CS Department

Tutorial 9 The Discrete Fourier Transform (DFT) SIPC , Spring 2017 Technion, CS Department Tutorial 9 The Discrete Fourier Transform (DFT) SIPC 236327, Spring 2017 Technion, CS Department The DFT Matrix The DFT matrix of size M M is defined as DFT = 1 M W 0 0 W 0 W 0 W where W = e i2π M i =

More information

Bayes Theorem. Jan Kracík. Department of Applied Mathematics FEECS, VŠB - TU Ostrava

Bayes Theorem. Jan Kracík. Department of Applied Mathematics FEECS, VŠB - TU Ostrava Jan Kracík Department of Applied Mathematics FEECS, VŠB - TU Ostrava Introduction Bayes theorem fundamental theorem in probability theory named after reverend Thomas Bayes (1701 1761) discovered in Bayes

More information

Prof. Mohd Zaid Abdullah Room No:

Prof. Mohd Zaid Abdullah Room No: EEE 52/4 Advnced Digital Signal and Image Processing Tuesday, 00-300 hrs, Data Com. Lab. Friday, 0800-000 hrs, Data Com. Lab Prof. Mohd Zaid Abdullah Room No: 5 Email: mza@usm.my www.eng.usm.my Electromagnetic

More information

Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR. Digital Filter

Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR. Digital Filter Optimum Ordering and Pole-Zero Pairing of the Cascade Form IIR Digital Filter There are many possible cascade realiations of a higher order IIR transfer function obtained by different pole-ero pairings

More information

Digital Image Processing ERRATA. Wilhelm Burger Mark J. Burge. An algorithmic introduction using Java. Second Edition. Springer

Digital Image Processing ERRATA. Wilhelm Burger Mark J. Burge. An algorithmic introduction using Java. Second Edition. Springer Wilhelm Burger Mark J. Burge Digital Image Processing An algorithmic introduction using Java Second Edition ERRATA Springer Berlin Heidelberg NewYork Hong Kong London Milano Paris Tokyo 5 Filters K K No

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY 1 BME 50500: Image and Signal Processing in Biomedicine Lecture 5: Correlation and Power-Spectrum Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

Enhancement Using Local Histogram

Enhancement Using Local Histogram Enhancement Using Local Histogram Used to enhance details over small portions o the image. Deine a square or rectangular neighborhood hose center moves rom piel to piel. Compute local histogram based on

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS) Image Processing 1 (IP1) Bildverarbeitung 1 Lecture 7 Spectral Image Processing and Convolution Winter Semester 2014/15 Slides: Prof. Bernd

More information

IMAGE COMPRESSION-II. Week IX. 03/6/2003 Image Compression-II 1

IMAGE COMPRESSION-II. Week IX. 03/6/2003 Image Compression-II 1 IMAGE COMPRESSION-II Week IX 3/6/23 Image Compression-II 1 IMAGE COMPRESSION Data redundancy Self-information and Entropy Error-free and lossy compression Huffman coding Predictive coding Transform coding

More information

Wavelets and Multiresolution Processing

Wavelets and Multiresolution Processing Wavelets and Multiresolution Processing Wavelets Fourier transform has it basis functions in sinusoids Wavelets based on small waves of varying frequency and limited duration In addition to frequency,

More information

Templates, Image Pyramids, and Filter Banks

Templates, Image Pyramids, and Filter Banks Templates, Image Pyramids, and Filter Banks 09/9/ Computer Vision James Hays, Brown Slides: Hoiem and others Review. Match the spatial domain image to the Fourier magnitude image 2 3 4 5 B A C D E Slide:

More information

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering

ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering ECE276A: Sensing & Estimation in Robotics Lecture 10: Gaussian Mixture and Particle Filtering Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu Anwesan Pal:

More information

Spatially adaptive alpha-rooting in BM3D sharpening

Spatially adaptive alpha-rooting in BM3D sharpening Spatially adaptive alpha-rooting in BM3D sharpening Markku Mäkitalo and Alessandro Foi Department of Signal Processing, Tampere University of Technology, P.O. Box FIN-553, 33101, Tampere, Finland e-mail:

More information

Estimators for Orientation and Anisotropy in Digitized Images

Estimators for Orientation and Anisotropy in Digitized Images Estimators for Orientation and Anisotropy in Digitized Images Lucas J. van Vliet and Piet W. Verbeek Pattern Recognition Group of the Faculty of Applied Physics Delft University of Technolo Lorentzweg,

More information

Satellite image deconvolution using complex wavelet packets

Satellite image deconvolution using complex wavelet packets Satellite image deconvolution using complex wavelet packets André Jalobeanu, Laure Blanc-Féraud, Josiane Zerubia ARIANA research group INRIA Sophia Antipolis, France CNRS / INRIA / UNSA www.inria.fr/ariana

More information

Statistical signal processing

Statistical signal processing Statistical signal processing Short overview of the fundamentals Outline Random variables Random processes Stationarity Ergodicity Spectral analysis Random variable and processes Intuition: A random variable

More information

Random Number Generation. CS1538: Introduction to simulations

Random Number Generation. CS1538: Introduction to simulations Random Number Generation CS1538: Introduction to simulations Random Numbers Stochastic simulations require random data True random data cannot come from an algorithm We must obtain it from some process

More information

Introduction to the Discrete Fourier Transform

Introduction to the Discrete Fourier Transform Introduction to the Discrete ourier Transform Lucas J. van Vliet www.ph.tn.tudelft.nl/~lucas TNW: aculty of Applied Sciences IST: Imaging Science and technology PH: Linear Shift Invariant System A discrete

More information

Edge Detection in Computer Vision Systems

Edge Detection in Computer Vision Systems 1 CS332 Visual Processing in Computer and Biological Vision Systems Edge Detection in Computer Vision Systems This handout summarizes much of the material on the detection and description of intensity

More information

Gaussian Random Variables Why we Care

Gaussian Random Variables Why we Care Gaussian Random Variables Why we Care I Gaussian random variables play a critical role in modeling many random phenomena. I By central limit theorem, Gaussian random variables arise from the superposition

More information

Revision of Lecture 4

Revision of Lecture 4 Revision of Lecture 4 We have completed studying digital sources from information theory viewpoint We have learnt all fundamental principles for source coding, provided by information theory Practical

More information

6.435, System Identification

6.435, System Identification System Identification 6.435 SET 3 Nonparametric Identification Munther A. Dahleh 1 Nonparametric Methods for System ID Time domain methods Impulse response Step response Correlation analysis / time Frequency

More information

Announcements. Filtering. Image Filtering. Linear Filters. Example: Smoothing by Averaging. Homework 2 is due Apr 26, 11:59 PM Reading:

Announcements. Filtering. Image Filtering. Linear Filters. Example: Smoothing by Averaging. Homework 2 is due Apr 26, 11:59 PM Reading: Announcements Filtering Homework 2 is due Apr 26, :59 PM eading: Chapter 4: Linear Filters CSE 52 Lecture 6 mage Filtering nput Output Filter (From Bill Freeman) Example: Smoothing by Averaging Linear

More information

Statistical Data Analysis

Statistical Data Analysis DS-GA 0 Lecture notes 8 Fall 016 1 Descriptive statistics Statistical Data Analysis In this section we consider the problem of analyzing a set of data. We describe several techniques for visualizing the

More information

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance.

Chapter 2. Random Variable. Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. Chapter 2 Random Variable CLO2 Define single random variables in terms of their PDF and CDF, and calculate moments such as the mean and variance. 1 1. Introduction In Chapter 1, we introduced the concept

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #21 Friday, October 24, 2003 Types of causal FIR (generalized) linear-phase filters: Type I: Symmetric impulse response: with order M an even

More information

EE5356 Digital Image Processing

EE5356 Digital Image Processing EE5356 Digital Image Processing INSTRUCTOR: Dr KR Rao Spring 007, Final Thursday, 10 April 007 11:00 AM 1:00 PM ( hours) (Room 111 NH) INSTRUCTIONS: 1 Closed books and closed notes All problems carry weights

More information

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver

Probability Space. J. McNames Portland State University ECE 538/638 Stochastic Signals Ver Stochastic Signals Overview Definitions Second order statistics Stationarity and ergodicity Random signal variability Power spectral density Linear systems with stationary inputs Random signal memory Correlation

More information

Multiresolution image processing

Multiresolution image processing Multiresolution image processing Laplacian pyramids Some applications of Laplacian pyramids Discrete Wavelet Transform (DWT) Wavelet theory Wavelet image compression Bernd Girod: EE368 Digital Image Processing

More information

Morphological image processing

Morphological image processing INF 4300 Digital Image Analysis Morphological image processing Fritz Albregtsen 09.11.2017 1 Today Gonzalez and Woods, Chapter 9 Except sections 9.5.7 (skeletons), 9.5.8 (pruning), 9.5.9 (reconstruction)

More information

SUMMARIZING MEASURED DATA. Gaia Maselli

SUMMARIZING MEASURED DATA. Gaia Maselli SUMMARIZING MEASURED DATA Gaia Maselli maselli@di.uniroma1.it Computer Network Performance 2 Overview Basic concepts Summarizing measured data Summarizing data by a single number Summarizing variability

More information

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics

Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Chapter 2: Fundamentals of Statistics Lecture 15: Models and statistics Data from one or a series of random experiments are collected. Planning experiments and collecting data (not discussed here). Analysis:

More information

Business Statistics Midterm Exam Fall 2015 Russell. Please sign here to acknowledge

Business Statistics Midterm Exam Fall 2015 Russell. Please sign here to acknowledge Business Statistics Midterm Exam Fall 5 Russell Name Do not turn over this page until you are told to do so. You will have hour and 3 minutes to complete the exam. There are a total of points divided into

More information

Multimedia Databases. Previous Lecture. 4.1 Multiresolution Analysis. 4 Shape-based Features. 4.1 Multiresolution Analysis

Multimedia Databases. Previous Lecture. 4.1 Multiresolution Analysis. 4 Shape-based Features. 4.1 Multiresolution Analysis Previous Lecture Multimedia Databases Texture-Based Image Retrieval Low Level Features Tamura Measure, Random Field Model High-Level Features Fourier-Transform, Wavelets Wolf-Tilo Balke Silviu Homoceanu

More information

Lecture 14: Multivariate mgf s and chf s

Lecture 14: Multivariate mgf s and chf s Lecture 14: Multivariate mgf s and chf s Multivariate mgf and chf For an n-dimensional random vector X, its mgf is defined as M X (t) = E(e t X ), t R n and its chf is defined as φ X (t) = E(e ıt X ),

More information

Expectation Maximization Deconvolution Algorithm

Expectation Maximization Deconvolution Algorithm Epectation Maimization Deconvolution Algorithm Miaomiao ZHANG March 30, 2011 Abstract In this paper, we use a general mathematical and eperimental methodology to analyze image deconvolution. The main procedure

More information