Prof. Mohd Zaid Abdullah Room No:

Size: px
Start display at page:

Download "Prof. Mohd Zaid Abdullah Room No:"

Transcription

1 EEE 52/4 Advnced Digital Signal and Image Processing Tuesday, hrs, Data Com. Lab. Friday, hrs, Data Com. Lab Prof. Mohd Zaid Abdullah Room No: 5 mza@usm.my

2 Electromagnetic Wave Wavelength () = C: speed of light 8 c m/s Speed (C) Frequency (f) Energy (E) = hf h: Planck s constant h Js

3 Electromagnetic Spectrum

4

5 Biological Image Acuisition the human eye

6 Electronic Image Acuisition Camera Scanner Video camera Photocopying machine

7 Image Acquisition System Video signal Programma ble acquisition gain A/D converter Look-up table Image buffer Host 32- bit PCI bus PCI bus interface Image buffer control

8 Charge Couple Devices Select Column bus FET transistor Light Active mode Capacitor Photodiode Select Reset FET transistors Column bus V DD Light Passive mode Capacitor Photodiode

9 CCD Architectures CCD elements CCD cells Shift register Linear Integratio n area Sh ift re gis te r Sh ift re gis te r Sh ift re gis te r Sh ift re gis te r Storage area Frame transfer Shift register Interline Shift register

10 Digital Image Formation i (x,y) r (x,y) f (x,y) i (x,y): incident component r (x,y): reflected component f (x,y): image component

11 Sampling f t f 2 t 2 f2 f

12 Frequency Response f s f Nyquist Undersampled f s f Nyquist Nyquist rate f s f Nyquist Oversampled

13 Time domain Fourier Transform Spectrum Cosine Gaussian Impulse Impulses

14 Sampling and Quantization Continuous Scan line A-B Sampling Quantization

15 Sampling and Quantization Continuous Sampled

16 Igital Image Processing

17 Coordinate Convention System

18 Spatial and Gray Level Resolution l 0,255 Down sampling

19 28 x x x 32 Spatial and Gray Level Resolution Fixed gray level resolution - 8 bit Varying spatial resolution l 0, x x x 256

20 4 bits l = [0,5] 3 bits l = [0,7] 2 bits l = [0,3] bit l = [0,] Spatial and Gray Level Resolution Varying gray level resolution Fixed spatial resolution 8 bits l = [0,255] 7 bits l = [0,27] 6 bits l = [0,65] 5 bits l = [0,3]

21 Image Enhancement in the Spatial Domain

22 Gray Level Transformation

23 Histogram Processing

24 Transformation Function

25 Histogram Equalization

26 Transformation Functions

27 Histogram Matching

28 Histogram Equalization vs Histogram matching

29 Histogram Equalization

30 Histogram Matching

31 Spatial Filtering

32 3 x 3 Spatial Mask

33 Smoothing or averaging masks

34 Results of smoothing by filter mask of different sizes

35 Results of smoothing by filter

36 First and second order derivatives f (x) noise ramp thin line x

37 Isotropic filters

38 original Laplacian Laplacian scaled Enhanced using (5)

39 Gradient filters

40 Sobel filters original filtered

41 Image Enhancement in the Frequency Domain the Fourier discovery f f 2 f 3 f 4 f > f 2 > f 3 > f 4 f + f 2 + f 3 + f 4

42 Inverse relation

43 Fourier spectrum representations low high high low frequencies low high high high frequencies high high standard low low frequencies high high low high low low high high frequencies low low low frequencies low low optical high high frequencies low low high

44 Fourier spectrum of 20x40 white block (52 x 52 image)

45 SEM image of damaged IC

46 Notch filtering

47 Low pass filtering (LPF) and high pass filtering (HPF) LPF HPF

48 pass Ideal Low pass filter (ILPF) pass H(u,v) - D(u,v) - D o +D o + D(u,v)

49 Ideal Low pass filtering with different cut-off frequencies R=80, =98% R=5, =94.6% R=5, =92% R=230, =99.5% R=30, =96.4%

50 Ideal Low pass filtering, is total power removed R=30 =3.6% R=80, =2% R=230, =0.5% original R=5, =8% R=5, = 5.4%

51 H(u,v), R=5 Ideal Low pass filtering h(x,y) H(u,v) (x,y) g(x,y) (x,y) h(x,y)

52 Mini project groupings Group Group 2 Group 3 PROJECT 4 PROJECT 2 PROJECT 6 Group 4 Group 5 Group 6 PROJECT 5 PROJECT 3 PROJECT

53 Butterworth Low pass filter (BLPF)

54 2 nd order BLP filtering original R=5 R=5 R=30 R=80 R=230

55 BLPFs of different orders st 2 nd 3 rd 4 th

56 Gaussian Low pass filter (GLPF)

57 GLP filtering original R=5 R=5 R=30 R=80 R=230

58 High pass filters (HPFs) Ideal Butterworth Gaussian

59 Spatial representations Ideal Butterworth Gausssian

60 Ideal high pass filtering original D 0 =5 D 0 =30 D 0 =80

61 Butterworth high pass filtering, n=2 original D 0 =5 D 0 =30 D 0 =80

62 Gaussian high pass filtering, n=2 original D 0 =5 D 0 =30 D 0 =80

63 Homomorphic filtering original filtered L = 0.5 H = 2.0

64 Noise models Gaussian Rayleigh Gamma Exponential Uniform Impulse

65 Noise free test pattern black near white gray

66 Noisy images and histograms Gaussian Rayleigh Gamma

67 Noisy images and histograms Exponential Uniform Salt & pepper

68 Experimentation Impulse Degraded Impulse

69 Turbulence model H 2 2 k u v u, v e 5/ 6 Original Severe k = Mild k = 0.00 Low k =

70 Inverse filtering Original (M=N=480) Full Cut-off 40 Cut-off 70 Cut-off 85 Radially limited)

71 Wiener filtering Original Full inverse Radially limited inverse Weiner Iteratively chosen

72 Motion blurring N - g(x,y) = H(u,v) F(u,v) N M M Original, f(x,y) M = N = 400 H u, v i t = 40 i t u sin i M u sin M t e ju M i t

73 Inverse filtering Original Blurred Filtered F F for G( u, v) H ( u, v) u, v for u 0,20,30,..., 39 u v G u, v and F u, v G u, v, 2 2 u 0,20,30,...,39

74 Wiener filtering Original Blurred Filtered = 0.00

75 Inverse Inverse vs Wiener filtering Wiener Original Blurred

76 Inverse Noisy restoration Weiner Original Original + gaussian noise Blurred = 0.00

77 M = N = 8 First one First two 0 Fourier basis images (real) First three 2 First four All 6 7

78 M = N = 8 Fourier basis images (imaginary) First one First two 0 First three 2 First four All 6 7

79 Test image M = N =

80 Fourier reconstruction First five, E=539.5 First six, E=370.9 First seven, E=248.6 All, E=0 Original First one, E=895.7 First two, E=885.0 First three, E=785.2 First four, E=539.5

81 M = N = 8 First one 0 Harr basis images First two First three 2 First four All 6 7

82 Harr reconstruction First five, E=65.0 First six, E=603.7 First seven, E=587.5 All, E=0 Original First one, E=895.7 First two, E=895.7 First three, E=879.0 First four, E=832.7

83 Hadamard matrices Core 2 H 2 nd order 2 H H H 2 = H 2

84 Hadamard matrices 3 rd order 2 3 H H H H 3

85 Hadamard matrix, H 3 8 H 3 Sequency Not sequency order

86 Walsh- Hadamard matrix, H 3 8 H 3 Sequency Sequency order

87 M = N = 8 First one 0 Walsh-Hadamard basis images First two First three 2 First four All 6 7

88 W-H reconstruction First five, E=674. First six, E=674. First seven, E=0 Original First one, E=895.7 First two, E=895.7 First three, E=832.7 First four, E=832.7

89 E (%) Error in reconstruction Fourier Harr W-H First First 2First 3First 4First 5First 6First 7First 8 No. of basis images

90 Harr scaling functions 0,0 x x 2 2 x x 0, x 2 2x,0 x 2 2x,

91 Expansion x 0.5 x x 0. x f,0, 25, 4

92 Decomposition 0,0 x,0 2, 2

93 Harr wavelett functions 0, x x 0 Mother wavelett 2 x x 2 0,2 Child 2 x 2 2x,0 Child

94 Wavelett expansion f x = f x fa 0,0 0,2 f d 0,0 0,

95 Wavelett Series Expansion f x c j x j, k x d j k j, k x k 0 0 j j 0 k d j c j 0 : arbitrary starting scale j 0 k x x : approximation or scaling coefficients : detail or wavelet coefficients : scaling function : wavelet function c x f x, x f x x j j k j, k d 0 0, 0 x f x, x f x x j j, k j, k dx dx

96 Wavelett series expansion 2 y x

97 Given f Discrete Wavelet Transform x f x xx for x 0,,2,, M 0 j, k f x j k x W 0 0, M x j, k f x j k x W, M x Inverse DWT let j0 0 and M 2 j 0,,2,, J j k 0,,2,,2 J f M x W j0, k j k x W j k j k x 0,,, k M j j 0 k

98 Fast Wavelet Transform (D) HPF h n 2 W j, n W j, n h n LPF 2 W j, n

99 Fast Wavelet Transform (D) 2-stage/2-scale FWT h n 2 W J, n f n J,n h n 2 W J 2, n h n 2 W J, n h n 2 W J 2, n

100 Fast Wavelet Transform (D) Single stage synthesis W j, n 2 h n W j, n W j, n 2 h n

101 Fast Wavelet Transform (D) 2-stage synthesis W J, n J 2,n 2 2 h n h n 2 h n n J f W, n J 2,n 2 h n

102 Filter bank analysis h m 2 W D j, m, n h n 2 row, m j, m, n column, n h m h m 2 W V j, m, n row, m 2 W H j, m, n h n 2 row, m column, n h m 2 W j, m, n row, m

103 Decomposition W j, m, n j, m n W H j, m, n W, j, m nw D j, m, n W V,

104 Synthesis filter bank D j, m, n 2 h m V H j, m, n j, m, n row, m 2 row, m 2 h h m m 2 column, n h n W j, m, n j, m, n row, m 2 h m 2 column, n h n row, m

105 Sample image 52 x 52

106 Filter bank analysis first scale W j, m, n 256 x 256 W H j, m, n 256 x 256 W V j, m, n 256 x 256 W D j, m, n 256 x 256

107 Synthesis filter bank using (first-scale) W H D V j m, n, W j, m, n andw j, m, n, Original Reconstructed

108 Filter bank analysis Second-scale W H j, m, n 256 x 256 W V j, m, n 256 x 256 W D j, m, n 256 x 256

109 Synthesis filter bank using (two-scale) W j, m, n Original Reconstructed

Digital Image Processing. Chapter 4: Image Enhancement in the Frequency Domain

Digital Image Processing. Chapter 4: Image Enhancement in the Frequency Domain Digital Image Processing Chapter 4: Image Enhancement in the Frequency Domain Image Enhancement in Frequency Domain Objective: To understand the Fourier Transform and frequency domain and how to apply

More information

Computer Vision. Filtering in the Frequency Domain

Computer Vision. Filtering in the Frequency Domain Computer Vision Filtering in the Frequency Domain Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 Introduction

More information

Chapter 4: Filtering in the Frequency Domain. Fourier Analysis R. C. Gonzalez & R. E. Woods

Chapter 4: Filtering in the Frequency Domain. Fourier Analysis R. C. Gonzalez & R. E. Woods Fourier Analysis 1992 2008 R. C. Gonzalez & R. E. Woods Properties of δ (t) and (x) δ : f t) δ ( t t ) dt = f ( ) f x) δ ( x x ) = f ( ) ( 0 t0 x= ( 0 x0 1992 2008 R. C. Gonzalez & R. E. Woods Sampling

More information

Image Degradation Model (Linear/Additive)

Image Degradation Model (Linear/Additive) Image Degradation Model (Linear/Additive),,,,,,,, g x y h x y f x y x y G uv H uv F uv N uv 1 Source of noise Image acquisition (digitization) Image transmission Spatial properties of noise Statistical

More information

Image Enhancement in the frequency domain. Inel 5046 Prof. Vidya Manian

Image Enhancement in the frequency domain. Inel 5046 Prof. Vidya Manian Image Enhancement in the frequency domain Inel 5046 Prof. Vidya Manian Introduction 2D Fourier transform Basics of filtering in frequency domain Ideal low pass filter Gaussian low pass filter Ideal high

More information

Convolution Spatial Aliasing Frequency domain filtering fundamentals Applications Image smoothing Image sharpening

Convolution Spatial Aliasing Frequency domain filtering fundamentals Applications Image smoothing Image sharpening Frequency Domain Filtering Correspondence between Spatial and Frequency Filtering Fourier Transform Brief Introduction Sampling Theory 2 D Discrete Fourier Transform Convolution Spatial Aliasing Frequency

More information

Local enhancement. Local Enhancement. Local histogram equalized. Histogram equalized. Local Contrast Enhancement. Fig 3.23: Another example

Local enhancement. Local Enhancement. Local histogram equalized. Histogram equalized. Local Contrast Enhancement. Fig 3.23: Another example Local enhancement Local Enhancement Median filtering Local Enhancement Sometimes Local Enhancement is Preferred. Malab: BlkProc operation for block processing. Left: original tire image. 0/07/00 Local

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Restoration and Reconstruction I Dr. D. J. Jackson Lecture 11-1 Image restoration Restoration is an objective process that attempts to recover an image

More information

Local Enhancement. Local enhancement

Local Enhancement. Local enhancement Local Enhancement Local Enhancement Median filtering (see notes/slides, 3.5.2) HW4 due next Wednesday Required Reading: Sections 3.3, 3.4, 3.5, 3.6, 3.7 Local Enhancement 1 Local enhancement Sometimes

More information

EECS490: Digital Image Processing. Lecture #11

EECS490: Digital Image Processing. Lecture #11 Lecture #11 Filtering Applications: OCR, scanning Highpass filters Laplacian in the frequency domain Image enhancement using highpass filters Homomorphic filters Bandreject/bandpass/notch filters Correlation

More information

Image Enhancement in the frequency domain. GZ Chapter 4

Image Enhancement in the frequency domain. GZ Chapter 4 Image Enhancement in the frequency domain GZ Chapter 4 Contents In this lecture we will look at image enhancement in the frequency domain The Fourier series & the Fourier transform Image Processing in

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 13 Oct 2 nd, 2018 Pranav Mantini Slides from Dr. Shishir K Shah, and Frank Liu Review f 0 0 0 1 0 0 0 0 w 1 2 3 2 8 Zero Padding 0 0 0 0 0 0 0 1 0 0 0 0

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 3: Fourier Transform and Filtering in the Frequency Domain AASS Learning Systems Lab, Dep. Teknik Room T109 (Fr, 11-1 o'clock) achim.lilienthal@oru.se Course Book Chapter

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 13, 2013 Mårten Björkman

More information

Filtering in the Frequency Domain

Filtering in the Frequency Domain Filtering in the Frequency Domain Outline Fourier Transform Filtering in Fourier Transform Domain 2/20/2014 2 Fourier Series and Fourier Transform: History Jean Baptiste Joseph Fourier, French mathematician

More information

UNIT III IMAGE RESTORATION Part A Questions 1. What is meant by Image Restoration? Restoration attempts to reconstruct or recover an image that has been degraded by using a clear knowledge of the degrading

More information

Multimedia communications

Multimedia communications Multimedia communications Comunicazione multimediale G. Menegaz gloria.menegaz@univr.it Prologue Context Context Scale Scale Scale Course overview Goal The course is about wavelets and multiresolution

More information

DISCRETE FOURIER TRANSFORM

DISCRETE FOURIER TRANSFORM DD2423 Image Processing and Computer Vision DISCRETE FOURIER TRANSFORM Mårten Björkman Computer Vision and Active Perception School of Computer Science and Communication November 1, 2012 1 Terminology:

More information

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. 3. Image processing 1 Image processing An image processing operation typically defines

More information

Empirical Mean and Variance!

Empirical Mean and Variance! Global Image Properties! Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.!

More information

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain:

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain: Image Enhancement: No Explicit definition Methods Spatial Domain: Linear Nonlinear Frequency Domain: Linear Nonlinear 1 Spatial Domain Process,, g x y T f x y 2 For 1 1 neighborhood: Contrast Enhancement/Stretching/Point

More information

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 B 1,94-96 M,94-96 B oro!' 94-96 BIro!' 94-96 I/r, 79 2D linear system, 56 2D FFT, 119 2D Fourier transform, 1, 12, 18,91 2D sinc, 107, 112

More information

Linear Operators and Fourier Transform

Linear Operators and Fourier Transform Linear Operators and Fourier Transform DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 13, 2013

More information

Contents. Acknowledgments

Contents. Acknowledgments Table of Preface Acknowledgments Notation page xii xx xxi 1 Signals and systems 1 1.1 Continuous and discrete signals 1 1.2 Unit step and nascent delta functions 4 1.3 Relationship between complex exponentials

More information

Lecture 7: Edge Detection

Lecture 7: Edge Detection #1 Lecture 7: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Definition of an Edge First Order Derivative Approximation as Edge Detector #2 This Lecture Examples of Edge Detection

More information

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut.

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut. Spatial Filtering Dr. Praveen Sankaran Department of ECE NIT Calicut January 7, 203 Outline 2 Linear Nonlinear 3 Spatial Domain Refers to the image plane itself. Direct manipulation of image pixels. Figure:

More information

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER?

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? : WHICH ONE LOOKS BETTER? 3.1 : WHICH ONE LOOKS BETTER? 3.2 1 Goal: Image enhancement seeks to improve the visual appearance of an image, or convert it to a form suited for analysis by a human or a machine.

More information

Machine vision, spring 2018 Summary 4

Machine vision, spring 2018 Summary 4 Machine vision Summary # 4 The mask for Laplacian is given L = 4 (6) Another Laplacian mask that gives more importance to the center element is given by L = 8 (7) Note that the sum of the elements in the

More information

COMP344 Digital Image Processing Fall 2007 Final Examination

COMP344 Digital Image Processing Fall 2007 Final Examination COMP344 Digital Image Processing Fall 2007 Final Examination Time allowed: 2 hours Name Student ID Email Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Total With model answer HK University

More information

GBS765 Electron microscopy

GBS765 Electron microscopy GBS765 Electron microscopy Lecture 1 Waves and Fourier transforms 10/14/14 9:05 AM Some fundamental concepts: Periodicity! If there is some a, for a function f(x), such that f(x) = f(x + na) then function

More information

Machine vision. Summary # 4. The mask for Laplacian is given

Machine vision. Summary # 4. The mask for Laplacian is given 1 Machine vision Summary # 4 The mask for Laplacian is given L = 0 1 0 1 4 1 (6) 0 1 0 Another Laplacian mask that gives more importance to the center element is L = 1 1 1 1 8 1 (7) 1 1 1 Note that the

More information

IMAGE ENHANCEMENT II (CONVOLUTION)

IMAGE ENHANCEMENT II (CONVOLUTION) MOTIVATION Recorded images often exhibit problems such as: blurry noisy Image enhancement aims to improve visual quality Cosmetic processing Usually empirical techniques, with ad hoc parameters ( whatever

More information

Image Degradation Model (Linear/Additive)

Image Degradation Model (Linear/Additive) Image Degradation Model (Linear/Additive),,,,,,,, g x y f x y h x y x y G u v F u v H u v N u v 1 Source of noise Objects Impurities Image acquisition (digitization) Image transmission Spatial properties

More information

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Lecture 4 Filtering in the Frequency Domain Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Outline Background From Fourier series to Fourier transform Properties of the Fourier

More information

Fourier series: Any periodic signals can be viewed as weighted sum. different frequencies. view frequency as an

Fourier series: Any periodic signals can be viewed as weighted sum. different frequencies. view frequency as an Image Enhancement in the Frequency Domain Fourier series: Any periodic signals can be viewed as weighted sum of sinusoidal signals with different frequencies Frequency Domain: view frequency as an independent

More information

Fourier Transform. sin(n# x)), where! = 2" / L and

Fourier Transform. sin(n# x)), where! = 2 / L and Fourier Transform Henning Stahlberg Introduction The tools provided by the Fourier transform are helpful for the analysis of 1D signals (time and frequency (or Fourier) domains), as well as 2D/3D signals

More information

EE5356 Digital Image Processing

EE5356 Digital Image Processing EE5356 Digital Image Processing INSTRUCTOR: Dr KR Rao Spring 007, Final Thursday, 10 April 007 11:00 AM 1:00 PM ( hours) (Room 111 NH) INSTRUCTIONS: 1 Closed books and closed notes All problems carry weights

More information

Image Processing. Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010

Image Processing. Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010 Image Processing Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010 Ch3. Image Enhancement in the Spatial Domain Note that T (m) = 0.5 E. The general law of contrast

More information

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform Cris Luengo TD396 fall 4 cris@cbuuse Today s lecture Local neighbourhood processing smoothing an image sharpening an image The convolution What is it? What is it useful for? How can I compute it? Removing

More information

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington Image Filtering Slides, adapted from Steve Seitz and Rick Szeliski, U.Washington The power of blur All is Vanity by Charles Allen Gillbert (1873-1929) Harmon LD & JuleszB (1973) The recognition of faces.

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Wavelets and Multiresolution Processing (Wavelet Transforms) Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science 2 Contents Image pyramids

More information

FILTERING IN THE FREQUENCY DOMAIN

FILTERING IN THE FREQUENCY DOMAIN 1 FILTERING IN THE FREQUENCY DOMAIN Lecture 4 Spatial Vs Frequency domain 2 Spatial Domain (I) Normal image space Changes in pixel positions correspond to changes in the scene Distances in I correspond

More information

Image Acquisition and Sampling Theory

Image Acquisition and Sampling Theory Image Acquisition and Sampling Theory Electromagnetic Spectrum The wavelength required to see an object must be the same size of smaller than the object 2 Image Sensors 3 Sensor Strips 4 Digital Image

More information

Filtering in Frequency Domain

Filtering in Frequency Domain Dr. Praveen Sankaran Department of ECE NIT Calicut February 4, 2013 Outline 1 2D DFT - Review 2 2D Sampling 2D DFT - Review 2D Impulse Train s [t, z] = m= n= δ [t m T, z n Z] (1) f (t, z) s [t, z] sampled

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Filtering in the Frequency Domain http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Colorado School of Mines Image and Multidimensional Signal Processing

Colorado School of Mines Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Department of Electrical Engineering and Computer Science Spatial Filtering Main idea Spatial filtering Define a neighborhood of a pixel

More information

Gaussian derivatives

Gaussian derivatives Gaussian derivatives UCU Winter School 2017 James Pritts Czech Tecnical University January 16, 2017 1 Images taken from Noah Snavely s and Robert Collins s course notes Definition An image (grayscale)

More information

UNIVERSITI SAINS MALAYSIA. EEE 512/4 Advanced Digital Signal and Image Processing

UNIVERSITI SAINS MALAYSIA. EEE 512/4 Advanced Digital Signal and Image Processing -1- [EEE 512/4] UNIVERSITI SAINS MALAYSIA First Semester Examination 2013/2014 Academic Session December 2013 / January 2014 EEE 512/4 Advanced Digital Signal and Image Processing Duration : 3 hours Please

More information

CAP 5415 Computer Vision Fall 2011

CAP 5415 Computer Vision Fall 2011 CAP 545 Computer Vision Fall 2 Dr. Mubarak Sa Univ. o Central Florida www.cs.uc.edu/~vision/courses/cap545/all22 Oice 247-F HEC Filtering Lecture-2 General Binary Gray Scale Color Binary Images Y Row X

More information

Introduction to Computer Vision. 2D Linear Systems

Introduction to Computer Vision. 2D Linear Systems Introduction to Computer Vision D Linear Systems Review: Linear Systems We define a system as a unit that converts an input function into an output function Independent variable System operator or Transfer

More information

CAP 5415 Computer Vision

CAP 5415 Computer Vision CAP 545 Computer Vision Dr. Mubarak Sa Univ. o Central Florida Filtering Lecture-2 Contents Filtering/Smooting/Removing Noise Convolution/Correlation Image Derivatives Histogram Some Matlab Functions General

More information

ECE Digital Image Processing and Introduction to Computer Vision. Outline

ECE Digital Image Processing and Introduction to Computer Vision. Outline 2/9/7 ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 207. Recap Outline 2. Sharpening Filtering Illustration

More information

Image Filtering, Edges and Image Representation

Image Filtering, Edges and Image Representation Image Filtering, Edges and Image Representation Capturing what s important Req reading: Chapter 7, 9 F&P Adelson, Simoncelli and Freeman (handout online) Opt reading: Horn 7 & 8 FP 8 February 19, 8 A nice

More information

Multiscale Image Transforms

Multiscale Image Transforms Multiscale Image Transforms Goal: Develop filter-based representations to decompose images into component parts, to extract features/structures of interest, and to attenuate noise. Motivation: extract

More information

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain 10/31/05 wk9-a-1 The spatial frequency domain Recall: plane wave propagation x path delay increases linearly with x λ z=0 θ E 0 x exp i2π sinθ + λ z i2π cosθ λ z plane of observation 10/31/05 wk9-a-2 Spatial

More information

Finite Apertures, Interfaces

Finite Apertures, Interfaces 1 Finite Apertures, Interfaces & Point Spread Functions (PSF) & Convolution Tutorial by Jorge Márquez Flores 2 Figure 1. Visual acuity (focus) depends on aperture (iris), lenses, focal point location,

More information

Digital Image Processing. Filtering in the Frequency Domain

Digital Image Processing. Filtering in the Frequency Domain 2D Linear Systems 2D Fourier Transform and its Properties The Basics of Filtering in Frequency Domain Image Smoothing Image Sharpening Selective Filtering Implementation Tips 1 General Definition: System

More information

Introduction to the Mathematics of Medical Imaging

Introduction to the Mathematics of Medical Imaging Introduction to the Mathematics of Medical Imaging Second Edition Charles L. Epstein University of Pennsylvania Philadelphia, Pennsylvania EiaJTL Society for Industrial and Applied Mathematics Philadelphia

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE23 Digital Signal Processing Lecture 7B Sampling What is this Phenomena? https://www.youtube.com/watch?v=cxddi8m_mzk Sampling of Continuous ime Signals (Ch.4) Sampling: Conversion from C. (not quantized)

More information

From Fourier Series to Analysis of Non-stationary Signals - II

From Fourier Series to Analysis of Non-stationary Signals - II From Fourier Series to Analysis of Non-stationary Signals - II prof. Miroslav Vlcek October 10, 2017 Contents Signals 1 Signals 2 3 4 Contents Signals 1 Signals 2 3 4 Contents Signals 1 Signals 2 3 4 Contents

More information

Digital Image Processing Lectures 15 & 16

Digital Image Processing Lectures 15 & 16 Lectures 15 & 16, Professor Department of Electrical and Computer Engineering Colorado State University CWT and Multi-Resolution Signal Analysis Wavelet transform offers multi-resolution by allowing for

More information

Wiener Filter for Deterministic Blur Model

Wiener Filter for Deterministic Blur Model Wiener Filter for Deterministic Blur Model Based on Ch. 5 of Gonzalez & Woods, Digital Image Processing, nd Ed., Addison-Wesley, 00 One common application of the Wiener filter has been in the area of simultaneous

More information

Chapter 7 Wavelets and Multiresolution Processing. Subband coding Quadrature mirror filtering Pyramid image processing

Chapter 7 Wavelets and Multiresolution Processing. Subband coding Quadrature mirror filtering Pyramid image processing Chapter 7 Wavelets and Multiresolution Processing Wavelet transform vs Fourier transform Basis functions are small waves called wavelet with different frequency and limited duration Multiresolution theory:

More information

Histogram Processing

Histogram Processing Histogram Processing The histogram of a digital image with gray levels in the range [0,L-] is a discrete function h ( r k ) = n k where r k n k = k th gray level = number of pixels in the image having

More information

Frequency2: Sampling and Aliasing

Frequency2: Sampling and Aliasing CS 4495 Computer Vision Frequency2: Sampling and Aliasing Aaron Bobick School of Interactive Computing Administrivia Project 1 is due tonight. Submit what you have at the deadline. Next problem set stereo

More information

Fourier Transforms 1D

Fourier Transforms 1D Fourier Transforms 1D 3D Image Processing Alireza Ghane 1 Overview Recap Intuitions Function representations shift-invariant spaces linear, time-invariant (LTI) systems complex numbers Fourier Transforms

More information

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Technischen Universität München Winter Semester 0/0 TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Slobodan Ilić Overview Image formation Convolution Non-liner filtering: Median

More information

Some Interesting Problems in Pattern Recognition and Image Processing

Some Interesting Problems in Pattern Recognition and Image Processing Some Interesting Problems in Pattern Recognition and Image Processing JEN-MEI CHANG Department of Mathematics and Statistics California State University, Long Beach jchang9@csulb.edu University of Southern

More information

What is Image Deblurring?

What is Image Deblurring? What is Image Deblurring? When we use a camera, we want the recorded image to be a faithful representation of the scene that we see but every image is more or less blurry, depending on the circumstances.

More information

Computer Vision & Digital Image Processing. Periodicity of the Fourier transform

Computer Vision & Digital Image Processing. Periodicity of the Fourier transform Computer Vision & Digital Image Processing Fourier Transform Properties, the Laplacian, Convolution and Correlation Dr. D. J. Jackson Lecture 9- Periodicity of the Fourier transform The discrete Fourier

More information

ERRORS. 2. Diffraction of electromagnetic waves at aperture stop of the lens. telephoto lenses. 5. Row jittering synchronization of frame buffer

ERRORS. 2. Diffraction of electromagnetic waves at aperture stop of the lens. telephoto lenses. 5. Row jittering synchronization of frame buffer ERRORS סטיה העדשה (Hubble) 1. Lens Aberration 2. Diffraction of electromagnetic waves at aperture stop of the lens למקד 3. Defocusing תנועות ותנודות של המצלמה 4. Motions and vibrations of the camera telephoto

More information

IMAGE ENHANCEMENT: FILTERING IN THE FREQUENCY DOMAIN. Francesca Pizzorni Ferrarese

IMAGE ENHANCEMENT: FILTERING IN THE FREQUENCY DOMAIN. Francesca Pizzorni Ferrarese IMAGE ENHANCEMENT: FILTERING IN THE FREQUENCY DOMAIN Francesca Pizzorni Ferrarese Contents In this lecture we will look at image enhancement in the frequency domain Jean Baptiste Joseph Fourier The Fourier

More information

Templates, Image Pyramids, and Filter Banks

Templates, Image Pyramids, and Filter Banks Templates, Image Pyramids, and Filter Banks 09/9/ Computer Vision James Hays, Brown Slides: Hoiem and others Review. Match the spatial domain image to the Fourier magnitude image 2 3 4 5 B A C D E Slide:

More information

Lecture 04 Image Filtering

Lecture 04 Image Filtering Institute of Informatics Institute of Neuroinformatics Lecture 04 Image Filtering Davide Scaramuzza 1 Lab Exercise 2 - Today afternoon Room ETH HG E 1.1 from 13:15 to 15:00 Work description: your first

More information

Inverse Problems in Image Processing

Inverse Problems in Image Processing H D Inverse Problems in Image Processing Ramesh Neelamani (Neelsh) Committee: Profs. R. Baraniuk, R. Nowak, M. Orchard, S. Cox June 2003 Inverse Problems Data estimation from inadequate/noisy observations

More information

Chapter 4 Image Enhancement in the Frequency Domain

Chapter 4 Image Enhancement in the Frequency Domain Chapter 4 Image Enhancement in the Frequency Domain Yinghua He School of Computer Science and Technology Tianjin University Background Introduction to the Fourier Transform and the Frequency Domain Smoothing

More information

Midterm Summary Fall 08. Yao Wang Polytechnic University, Brooklyn, NY 11201

Midterm Summary Fall 08. Yao Wang Polytechnic University, Brooklyn, NY 11201 Midterm Summary Fall 8 Yao Wang Polytechnic University, Brooklyn, NY 2 Components in Digital Image Processing Output are images Input Image Color Color image image processing Image Image restoration Image

More information

BIOSIGNAL PROCESSING. Hee Chan Kim, Ph.D. Department of Biomedical Engineering College of Medicine Seoul National University

BIOSIGNAL PROCESSING. Hee Chan Kim, Ph.D. Department of Biomedical Engineering College of Medicine Seoul National University BIOSIGNAL PROCESSING Hee Chan Kim, Ph.D. Department of Biomedical Engineering College of Medicine Seoul National University INTRODUCTION Biosignals (biological signals) : space, time, or space-time records

More information

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion

Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion Analog Digital Sampling & Discrete Time Discrete Values & Noise Digital-to-Analog Conversion Analog-to-Digital Conversion 6.082 Fall 2006 Analog Digital, Slide Plan: Mixed Signal Architecture volts bits

More information

Image enhancement. Why image enhancement? Why image enhancement? Why image enhancement? Example of artifacts caused by image encoding

Image enhancement. Why image enhancement? Why image enhancement? Why image enhancement? Example of artifacts caused by image encoding 13 Why image enhancement? Image enhancement Example of artifacts caused by image encoding Computer Vision, Lecture 14 Michael Felsberg Computer Vision Laboratory Department of Electrical Engineering 12

More information

Introduction p. 1 Compression Techniques p. 3 Lossless Compression p. 4 Lossy Compression p. 5 Measures of Performance p. 5 Modeling and Coding p.

Introduction p. 1 Compression Techniques p. 3 Lossless Compression p. 4 Lossy Compression p. 5 Measures of Performance p. 5 Modeling and Coding p. Preface p. xvii Introduction p. 1 Compression Techniques p. 3 Lossless Compression p. 4 Lossy Compression p. 5 Measures of Performance p. 5 Modeling and Coding p. 6 Summary p. 10 Projects and Problems

More information

The Frequency Domain : Computational Photography Alexei Efros, CMU, Fall Many slides borrowed from Steve Seitz

The Frequency Domain : Computational Photography Alexei Efros, CMU, Fall Many slides borrowed from Steve Seitz The Frequency Domain 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 Somewhere in Cinque Terre, May 2005 Many slides borrowed from Steve Seitz Salvador Dali Gala Contemplating the Mediterranean

More information

Computer Vision Lecture 3

Computer Vision Lecture 3 Computer Vision Lecture 3 Linear Filters 03.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Demo Haribo Classification Code available on the class website...

More information

Digital Image Processing. Image Enhancement: Filtering in the Frequency Domain

Digital Image Processing. Image Enhancement: Filtering in the Frequency Domain Digital Image Processing Image Enhancement: Filtering in the Frequency Domain 2 Contents In this lecture we will look at image enhancement in the frequency domain Jean Baptiste Joseph Fourier The Fourier

More information

SC434L_DVCC-Tutorial 6 Subband Video Coding

SC434L_DVCC-Tutorial 6 Subband Video Coding SC434L_DVCC-Tutorial 6 Subband Video Coding Dr H.R. Wu Associate Professor Audiovisual Information Processing and Digital Communications Monash University http://www.csse.monash.edu.au/~hrw Email: hrw@csse.monash.edu.au

More information

A Recognition System for 3D Embossed Digits on Non-Smooth Metallic Surface

A Recognition System for 3D Embossed Digits on Non-Smooth Metallic Surface 2011 International Conference on elecommunication echnology and Applications Proc.of CSI vol.5 (2011) (2011) IACSI Press, Singapore A Recognition System for 3D Embossed Digits on Non-Smooth Metallic Surface

More information

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image Fundamentals: Coding redundancy The gray level histogram of an image can reveal a great deal of information about the image That probability (frequency) of occurrence of gray level r k is p(r k ), p n

More information

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise Edges and Scale Image Features From Sandlot Science Slides revised from S. Seitz, R. Szeliski, S. Lazebnik, etc. Origin of Edges surface normal discontinuity depth discontinuity surface color discontinuity

More information

Multiresolution schemes

Multiresolution schemes Multiresolution schemes Fondamenti di elaborazione del segnale multi-dimensionale Multi-dimensional signal processing Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione

More information

Computational Photography

Computational Photography Computational Photography Si Lu Spring 208 http://web.cecs.pdx.edu/~lusi/cs50/cs50_computati onal_photography.htm 04/0/208 Last Time o Digital Camera History of Camera Controlling Camera o Photography

More information

Wavelets and Multiresolution Processing

Wavelets and Multiresolution Processing Wavelets and Multiresolution Processing Wavelets Fourier transform has it basis functions in sinusoids Wavelets based on small waves of varying frequency and limited duration In addition to frequency,

More information

Satellite image deconvolution using complex wavelet packets

Satellite image deconvolution using complex wavelet packets Satellite image deconvolution using complex wavelet packets André Jalobeanu, Laure Blanc-Féraud, Josiane Zerubia ARIANA research group INRIA Sophia Antipolis, France CNRS / INRIA / UNSA www.inria.fr/ariana

More information

Multiresolution schemes

Multiresolution schemes Multiresolution schemes Fondamenti di elaborazione del segnale multi-dimensionale Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Elaborazione dei Segnali Multi-dimensionali e

More information

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ).

Wavelet Transform. Figure 1: Non stationary signal f(t) = sin(100 t 2 ). Wavelet Transform Andreas Wichert Department of Informatics INESC-ID / IST - University of Lisboa Portugal andreas.wichert@tecnico.ulisboa.pt September 3, 0 Short Term Fourier Transform Signals whose frequency

More information

Basics on 2-D 2 D Random Signal

Basics on 2-D 2 D Random Signal Basics on -D D Random Signal Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Time: Fourier Analysis for -D signals Image enhancement via spatial filtering

More information

EE5356 Digital Image Processing. Final Exam. 5/11/06 Thursday 1 1 :00 AM-1 :00 PM

EE5356 Digital Image Processing. Final Exam. 5/11/06 Thursday 1 1 :00 AM-1 :00 PM EE5356 Digital Image Processing Final Exam 5/11/06 Thursday 1 1 :00 AM-1 :00 PM I), Closed books and closed notes. 2), Problems carry weights as indicated. 3), Please print your name and last four digits

More information

1 The Continuous Wavelet Transform The continuous wavelet transform (CWT) Discretisation of the CWT... 2

1 The Continuous Wavelet Transform The continuous wavelet transform (CWT) Discretisation of the CWT... 2 Contents 1 The Continuous Wavelet Transform 1 1.1 The continuous wavelet transform (CWT)............. 1 1. Discretisation of the CWT...................... Stationary wavelet transform or redundant wavelet

More information

INTRODUCTION Noise is present in many situations of daily life for ex: Microphones will record noise and speech. Goal: Reconstruct original signal Wie

INTRODUCTION Noise is present in many situations of daily life for ex: Microphones will record noise and speech. Goal: Reconstruct original signal Wie WIENER FILTERING Presented by N.Srikanth(Y8104060), M.Manikanta PhaniKumar(Y8104031). INDIAN INSTITUTE OF TECHNOLOGY KANPUR Electrical Engineering dept. INTRODUCTION Noise is present in many situations

More information

Digital Image Processing

Digital Image Processing Digital Image Processing, 2nd ed. Digital Image Processing Chapter 7 Wavelets and Multiresolution Processing Dr. Kai Shuang Department of Electronic Engineering China University of Petroleum shuangkai@cup.edu.cn

More information