Image Processing. Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010

Size: px
Start display at page:

Download "Image Processing. Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010"

Transcription

1 Image Processing Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010

2

3 Ch3. Image Enhancement in the Spatial Domain

4

5 Note that T (m) = 0.5 E. The general law of contrast stretching is T (r) = (m/r) E.

6

7

8 PLEASE, take care of storage classes (image types): if f = then mat2gray(f) will scale the whole range [.5, 1.5] to produce However, im2uint8(f) will truncate any thing outside [0, 1] to produce

9 Therefore, to convert f to an 8-bit image we have to scale it right to the range [0, 1] then convert it to an image. E.g., im2uint8(mat2gray(c*log(1+f)))

10

11

12

13

14

15 When we look at this image we feel that we need to darken the dark and whiten the white; which means stretch the contrast. So, it includes two power-law transformations with values of γ below and above one! (see figure 3.10a)

16

17

18

19

20 All of these images are binary. A pixel has one or zero depending on the value of bit-plane of this pixel. A bit plane can be easily calculated by dividing by 2 b, where b is the required bit level. In C, this can be done faster by shifting. (Try both) Advanced Homework: Write a C program that does bit-shift and link it to Matlab to extract the right bit-plane.

21

22 s = r 0 p r (x) dx Histogram Equalization s = T (r), s 0 p s (x) dx = r 0 p r (x) dx If p s is requied to be uniform, then

23 for any arbitrary desired p s G s (s) = r 0 p r (x) dx, s = G 1 ( r s 0 p r (x) dx )

24

25

26 Histogram Matching

27

28

29

30 Try enhancing this image using piece-wise transformation that tries to whiten the dark and keep the rest as is, or a power-law transformation with γ < 1; what is the difference? Let s try understanding the image first through this code, and run it in Matlab. figure ; imshow ( imadjust ( f, [ ], [ ],. 8 ) ) ; title ( power transformation with \gamma =. 8 ) ; Matlab Code 1: clc ; f=imread ( Fig ( a ). jpg ) ; whos f ; figure ; imshow ( f ) ; title ( o r i g i n a l image ) ; % D o e s t h e b a c k g r o u n d ( l e f t u p e r ) d a r k e r t h a n t h e r i g h l o w e r p a r t o f t h e % m o o n? L e t s s e e : f ( 1 : 1 0, 1 : 1 0 ) f (end 9:end, end 9:end) % N o, t h e r i g h t l o w e r i s d a r k e r! T a k e c a r e w h i l e p r o c e s s i n g. % L e t s s e e p o w e r t r a n s f o r m a t i o n :

31 figure ; imshow ( imadjust ( f, [ ], [ ],. 6 ) ) ; title ( power transformation with \gamma =. 6 ) ; figure ; imshow ( imadjust ( f, [ ], [ ],. 4 ) ) ; title ( power transformation with \gamma =. 4 ) ; % T o h o w l o n g s h o u l d I k e e p d e c r e a s i n g g a m m a? l e t s s e e w h e t h e r t h e i m a g e % i t s e l f i s t o o d a r k ; t h i s i s b y m a r k i n g t h e r e g i o n s o f 0 g r a y l e v e l a s % w h i t e. tmp=f ; tmp( find (tmp==0)) =255; figure ; imshow (tmp) ; title ( p i x e l s with zero gray l e v e l are marked as white ) ; % T h e r e f o r e, s c a l i n g w i l l k e e p t h e s e p i x e l s u n c h a n g e d!!

32 Global Histogram Statistics m = L 1 k=0 = L 1 k=0 r k p (r k ) n k r k n L 1 = 1 n = 1 MN k=0 r k n k M N i=1 j=1 f (i, j) So, averaging over pixels or using histogram is of course the same. statistics. The same is for other σ 2 = L 1 k=0 = 1 MN (r k m) 2 p (r k ) M N i=1 j=1 Local Histogram Statisticsge for a regoin S xy m Sxy = k = 1 S xy r k p (r k ) (f (i, j) m)2 f (i, j), (i,j) S xy

33 where S xy is the number of pixels in the region S xy. The figure is not available online, but we can easily make our code and image: Matlab Code 2: f=uint8 ( zeros (100:100) ) ; f ( 4 0 : 6 0, 40:60) =10; figure ; imshow ( f ) ; tmp=uint8 ( zeros ( size ( f, 1), size ( f, 2) ) ) ; % T a k e c a r e o f t h e u i n t 8 ; w i t h o u t i t t m p w i l l b e d o u b l e a n d a n y p i x e l

34 tmp=uint8 ( zeros ( size ( f, 1), size ( f, 2) ) ) ; l a r g e r t h a n o n e w i l l b e t r e a t e d a s 1 w=3; % t h e w i n d o w w i d t h i s 2 w + 1 for i=1+w: size ( f, 1) w for j=1+w: size ( f, 2) w win=h i s t e q ( f ( i w: i+w, j w: j+w) ) ; tmp( i, j )=win (w+1, w+1) ; % t h e m i d d l e p i x e l end; end; figure ; imshow (tmp) ; Now, let s see how local histogram equalization affects the photo of the moon: Matlab Code 3: f=imread ( Fig ( a ). jpg ) ; f=f ( 1 : 4 : end, 1 : 4 : end) ; % t o s p e e d u p e x e c u t i o n figure ; imshow ( f ) ;

35 However, with width 31(= ) it enhances local details but with leaving the black areas unchanged. w=25; % t h e w i n d o w w i d t h i s 2 w + 1 for i=1+w: size ( f, 1) w for j=1+w: size ( f, 2) w win=h i s t e q ( f ( i w: i+w, j w: j+w) ) ; tmp( i, j )=win (w+1, w+1) ; % t h e m i d d l e p i x e l end; end; figure ; imshow (tmp) ; title (w) ; Using a window of width 7(= ) gives this un-useful image:

36

37

38

39

40

41

42 Image Averaging g (x, y) = f (x, y) + η (x, y), where f (x, y) is the original image and η (x, y) is an additive noise, usually with zero mean. K g (x, y) = 1 g i (x, y), K k=1 E g (x, y) = f (x, y) Var g (x, y) = 1 K Var η (x, y), This is assuming that the noise η has zero mean and uncorrelated.

43

44

45 Basics of Spatial Filtering

46

47 The general form of a spatial filter is:

48

49

50 Image processed by averaging mask, followed by thresholding the gray level at 25%.

51 Median filter is effective in removing Salt-and-pepper noise. For example, in a 3 3 neighborhood, the median is the 5th largest value.

52 Sharpening Spatial Filters Since the idea of blurring involves integration (summation), we can anticipate that sharpening should involve differentiation. How should it be defined over a discrete space? Discrete derivative should possess: 2 f = f (x + 1) + f (x 1) 2f (x) x2 zero in flat segments. non-zero at the onset of a gray-level step or ramp. non-zero along ramps. which is also consistent with 2nd derivative should possess: zero in flat segments. f x f x = lim x 0 = f (x + 1) f (x), f (x + x) f (x) x non-zero at the onset and end of a gray-level step or ramp. zero along ramps with constant slope

53 Prove that these definitions of derivatives possess the desired properties. 1. First-order derivaties genrally produce thicker edges in an image. The definition of the second derivative should comply with applying the first derivative on the first derivative; i.e., 2 f x 2 x = f x x = (f (x + 1) f (x)) x = x f (x + 1) x f (x) = [f ((x + 1) + 1) f (x + 1)] [f (x + 1) f (x)] = f (x + 2) + f (x) 2f (x + 1) = 2 f x 2 (using book def.!) x+1 Said differently, 2 f x 2 book x = f x x x 1 It would be, mathematically, more consistent to use the other def. The following properties are observable from the following figure:

54 2. Second-order derivatives have a stronger response to fine detail, such as thin lines and isolated points. First-order derivatives are good for extracting edges. 3. First-order derivatives generally have a stronger response to a gray-level seop. 4. Second-order derivatives produce a double response at step changes in gray level. In general: Second-order derivatives are good in enhancing fine details.

55

56 Use of Second Derivatives for Enhancement (The Laplacian) This can be implemented using the follwing mask, with the ability to add the diagonal componenets as well. This is a linear operator and isotropic (invariant to rotation). 2 f = 2 f x f y 2. For digital image, we can define it as 2 f = [f (x + 1, y) + f (x 1, y) 2f (x, y)] + [f (x, y + 1) + f (x, y 1) 2f (x, y)] = f (x + 1, y) + f (x 1, y) + f (x, y + 1) + f (x, y 1) 4f (x, y).

57 The Laplacian will produce an image of grayish edges and discontinuties with featureless background. So, if superimposed on the original image it will enhance the fine details at which the

58 second derivatives produce this grayish edges: g (x, y) = f (x, y) 2 f g (x, y) = f (x, y) + 2 f for negative mask center, for positive mask center

59

60

61

62

63

64

65

66

67 Bibliography

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain:

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain: Image Enhancement: No Explicit definition Methods Spatial Domain: Linear Nonlinear Frequency Domain: Linear Nonlinear 1 Spatial Domain Process,, g x y T f x y 2 For 1 1 neighborhood: Contrast Enhancement/Stretching/Point

More information

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER?

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? : WHICH ONE LOOKS BETTER? 3.1 : WHICH ONE LOOKS BETTER? 3.2 1 Goal: Image enhancement seeks to improve the visual appearance of an image, or convert it to a form suited for analysis by a human or a machine.

More information

Local Enhancement. Local enhancement

Local Enhancement. Local enhancement Local Enhancement Local Enhancement Median filtering (see notes/slides, 3.5.2) HW4 due next Wednesday Required Reading: Sections 3.3, 3.4, 3.5, 3.6, 3.7 Local Enhancement 1 Local enhancement Sometimes

More information

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut.

Review Smoothing Spatial Filters Sharpening Spatial Filters. Spatial Filtering. Dr. Praveen Sankaran. Department of ECE NIT Calicut. Spatial Filtering Dr. Praveen Sankaran Department of ECE NIT Calicut January 7, 203 Outline 2 Linear Nonlinear 3 Spatial Domain Refers to the image plane itself. Direct manipulation of image pixels. Figure:

More information

Histogram Processing

Histogram Processing Histogram Processing The histogram of a digital image with gray levels in the range [0,L-] is a discrete function h ( r k ) = n k where r k n k = k th gray level = number of pixels in the image having

More information

Introduction to Computer Vision. 2D Linear Systems

Introduction to Computer Vision. 2D Linear Systems Introduction to Computer Vision D Linear Systems Review: Linear Systems We define a system as a unit that converts an input function into an output function Independent variable System operator or Transfer

More information

Local enhancement. Local Enhancement. Local histogram equalized. Histogram equalized. Local Contrast Enhancement. Fig 3.23: Another example

Local enhancement. Local Enhancement. Local histogram equalized. Histogram equalized. Local Contrast Enhancement. Fig 3.23: Another example Local enhancement Local Enhancement Median filtering Local Enhancement Sometimes Local Enhancement is Preferred. Malab: BlkProc operation for block processing. Left: original tire image. 0/07/00 Local

More information

Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ]

Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ] CEE 615: Digital Image Processing Spatial Enhancements 1 Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ] Template (Windowing) Operations Template (window, box, kernel)

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Restoration and Reconstruction I Dr. D. J. Jackson Lecture 11-1 Image restoration Restoration is an objective process that attempts to recover an image

More information

ECE 468: Digital Image Processing. Lecture 2

ECE 468: Digital Image Processing. Lecture 2 ECE 468: Digital Image Processing Lecture 2 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu Outline Image interpolation MATLAB tutorial Review of image elements Affine transforms of images Spatial-domain

More information

ECE Digital Image Processing and Introduction to Computer Vision. Outline

ECE Digital Image Processing and Introduction to Computer Vision. Outline 2/9/7 ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 207. Recap Outline 2. Sharpening Filtering Illustration

More information

ECE661: Homework 6. Ahmed Mohamed October 28, 2014

ECE661: Homework 6. Ahmed Mohamed October 28, 2014 ECE661: Homework 6 Ahmed Mohamed (akaseb@purdue.edu) October 28, 2014 1 Otsu Segmentation Algorithm Given a grayscale image, my implementation of the Otsu algorithm follows these steps: 1. Construct a

More information

Image Characteristics

Image Characteristics 1 Image Characteristics Image Mean I I av = i i j I( i, j 1 j) I I NEW (x,y)=i(x,y)-b x x Changing the image mean Image Contrast The contrast definition of the entire image is ambiguous In general it is

More information

Lecture 04 Image Filtering

Lecture 04 Image Filtering Institute of Informatics Institute of Neuroinformatics Lecture 04 Image Filtering Davide Scaramuzza 1 Lab Exercise 2 - Today afternoon Room ETH HG E 1.1 from 13:15 to 15:00 Work description: your first

More information

3.8 Combining Spatial Enhancement Methods 137

3.8 Combining Spatial Enhancement Methods 137 3.8 Combining Spatial Enhancement Methods 137 a b FIGURE 3.45 Optical image of contact lens (note defects on the boundary at 4 and 5 o clock). (b) Sobel gradient. (Original image courtesy of Mr. Pete Sites,

More information

Lecture 7: Edge Detection

Lecture 7: Edge Detection #1 Lecture 7: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Definition of an Edge First Order Derivative Approximation as Edge Detector #2 This Lecture Examples of Edge Detection

More information

Machine vision. Summary # 4. The mask for Laplacian is given

Machine vision. Summary # 4. The mask for Laplacian is given 1 Machine vision Summary # 4 The mask for Laplacian is given L = 0 1 0 1 4 1 (6) 0 1 0 Another Laplacian mask that gives more importance to the center element is L = 1 1 1 1 8 1 (7) 1 1 1 Note that the

More information

Prof. Mohd Zaid Abdullah Room No:

Prof. Mohd Zaid Abdullah Room No: EEE 52/4 Advnced Digital Signal and Image Processing Tuesday, 00-300 hrs, Data Com. Lab. Friday, 0800-000 hrs, Data Com. Lab Prof. Mohd Zaid Abdullah Room No: 5 Email: mza@usm.my www.eng.usm.my Electromagnetic

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis CS 593 / 791 Computer Science and Electrical Engineering Dept. West Virginia University 23rd January 2006 Outline 1 Recap 2 Edge Enhancement 3 Experimental Results 4 The rest of

More information

COMP344 Digital Image Processing Fall 2007 Final Examination

COMP344 Digital Image Processing Fall 2007 Final Examination COMP344 Digital Image Processing Fall 2007 Final Examination Time allowed: 2 hours Name Student ID Email Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Total With model answer HK University

More information

Fourier Transforms 1D

Fourier Transforms 1D Fourier Transforms 1D 3D Image Processing Alireza Ghane 1 Overview Recap Intuitions Function representations shift-invariant spaces linear, time-invariant (LTI) systems complex numbers Fourier Transforms

More information

Colorado School of Mines Image and Multidimensional Signal Processing

Colorado School of Mines Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Department of Electrical Engineering and Computer Science Spatial Filtering Main idea Spatial filtering Define a neighborhood of a pixel

More information

EECS490: Digital Image Processing. Lecture #11

EECS490: Digital Image Processing. Lecture #11 Lecture #11 Filtering Applications: OCR, scanning Highpass filters Laplacian in the frequency domain Image enhancement using highpass filters Homomorphic filters Bandreject/bandpass/notch filters Correlation

More information

Machine vision, spring 2018 Summary 4

Machine vision, spring 2018 Summary 4 Machine vision Summary # 4 The mask for Laplacian is given L = 4 (6) Another Laplacian mask that gives more importance to the center element is given by L = 8 (7) Note that the sum of the elements in the

More information

Image Segmentation: Definition Importance. Digital Image Processing, 2nd ed. Chapter 10 Image Segmentation.

Image Segmentation: Definition Importance. Digital Image Processing, 2nd ed. Chapter 10 Image Segmentation. : Definition Importance Detection of Discontinuities: 9 R = wi z i= 1 i Point Detection: 1. A Mask 2. Thresholding R T Line Detection: A Suitable Mask in desired direction Thresholding Line i : R R, j

More information

18/10/2017. Image Enhancement in the Spatial Domain: Gray-level transforms. Image Enhancement in the Spatial Domain: Gray-level transforms

18/10/2017. Image Enhancement in the Spatial Domain: Gray-level transforms. Image Enhancement in the Spatial Domain: Gray-level transforms Gray-level transforms Gray-level transforms Generic, possibly nonlinear, pointwise operator (intensity mapping, gray-level transformation): Basic gray-level transformations: Negative: s L 1 r Generic log:

More information

Templates, Image Pyramids, and Filter Banks

Templates, Image Pyramids, and Filter Banks Templates, Image Pyramids, and Filter Banks 09/9/ Computer Vision James Hays, Brown Slides: Hoiem and others Review. Match the spatial domain image to the Fourier magnitude image 2 3 4 5 B A C D E Slide:

More information

Image preprocessing in spatial domain

Image preprocessing in spatial domain Image preprocessing in spatial domain Sharpening, image derivatives, Laplacian, edges Revision: 1.2, dated: May 25, 2007 Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering Center

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

Digital Image Processing. Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009

Digital Image Processing. Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 2009 Digital Image Processing Lecture 6 (Enhancement) Bu-Ali Sina University Computer Engineering Dep. Fall 009 Outline Image Enhancement in Spatial Domain Spatial Filtering Smoothing Filters Median Filter

More information

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. 3. Image processing 1 Image processing An image processing operation typically defines

More information

Image Degradation Model (Linear/Additive)

Image Degradation Model (Linear/Additive) Image Degradation Model (Linear/Additive),,,,,,,, g x y h x y f x y x y G uv H uv F uv N uv 1 Source of noise Image acquisition (digitization) Image transmission Spatial properties of noise Statistical

More information

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters

Lecture Outline. Basics of Spatial Filtering Smoothing Spatial Filters. Sharpening Spatial Filters 1 Lecture Outline Basics o Spatial Filtering Smoothing Spatial Filters Averaging ilters Order-Statistics ilters Sharpening Spatial Filters Laplacian ilters High-boost ilters Gradient Masks Combining Spatial

More information

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Technischen Universität München Winter Semester 0/0 TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Slobodan Ilić Overview Image formation Convolution Non-liner filtering: Median

More information

Physics 6303 Lecture 2 August 22, 2018

Physics 6303 Lecture 2 August 22, 2018 Physics 6303 Lecture 2 August 22, 2018 LAST TIME: Coordinate system construction, covariant and contravariant vector components, basics vector review, gradient, divergence, curl, and Laplacian operators

More information

Biomedical Image Analysis. Segmentation by Thresholding

Biomedical Image Analysis. Segmentation by Thresholding Biomedical Image Analysis Segmentation by Thresholding Contents: Thresholding principles Ridler & Calvard s method Ridler TW, Calvard S (1978). Picture thresholding using an iterative selection method,

More information

Edge Detection. Introduction to Computer Vision. Useful Mathematics Funcs. The bad news

Edge Detection. Introduction to Computer Vision. Useful Mathematics Funcs. The bad news Edge Detection Introduction to Computer Vision CS / ECE 8B Thursday, April, 004 Edge detection (HO #5) Edge detection is a local area operator that seeks to find significant, meaningful changes in image

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 11 Oct 3 rd, 2017 Pranav Mantini Slides from Dr. Shishir K Shah, and Frank Liu Review: 2D Discrete Fourier Transform If I is an image of size N then Sin

More information

Basics on 2-D 2 D Random Signal

Basics on 2-D 2 D Random Signal Basics on -D D Random Signal Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Time: Fourier Analysis for -D signals Image enhancement via spatial filtering

More information

DESIGNING CNN GENES. Received January 23, 2003; Revised April 2, 2003

DESIGNING CNN GENES. Received January 23, 2003; Revised April 2, 2003 Tutorials and Reviews International Journal of Bifurcation and Chaos, Vol. 13, No. 10 (2003 2739 2824 c World Scientific Publishing Company DESIGNING CNN GENES MAKOTO ITOH Department of Information and

More information

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities

MA 1128: Lecture 08 03/02/2018. Linear Equations from Graphs And Linear Inequalities MA 1128: Lecture 08 03/02/2018 Linear Equations from Graphs And Linear Inequalities Linear Equations from Graphs Given a line, we would like to be able to come up with an equation for it. I ll go over

More information

Digital Image Processing I HW1 Solutions. + 1 f max f

Digital Image Processing I HW1 Solutions. + 1 f max f 151-361 Digital Image Processing I HW1 Solutions 1. (a) Quantizing from m bits to n bits can be modeled by using Q {f[x]} = f[x] 2 m n where f Z, f 2 m 1, and x is the floor of x. The expression f[x] Q

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

Noisy Word Recognition Using Denoising and Moment Matrix Discriminants

Noisy Word Recognition Using Denoising and Moment Matrix Discriminants Noisy Word Recognition Using Denoising and Moment Matrix Discriminants Mila Nikolova Département TSI ENST, rue Barrault, 753 Paris Cedex 13, France, nikolova@tsi.enst.fr Alfred Hero Dept. of EECS, Univ.

More information

CS540 Machine learning Lecture 5

CS540 Machine learning Lecture 5 CS540 Machine learning Lecture 5 1 Last time Basis functions for linear regression Normal equations QR SVD - briefly 2 This time Geometry of least squares (again) SVD more slowly LMS Ridge regression 3

More information

Taking derivative by convolution

Taking derivative by convolution Taking derivative by convolution Partial derivatives with convolution For 2D function f(x,y), the partial derivative is: For discrete data, we can approximate using finite differences: To implement above

More information

Linear Operators and Fourier Transform

Linear Operators and Fourier Transform Linear Operators and Fourier Transform DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 13, 2013

More information

IMAGE ENHANCEMENT II (CONVOLUTION)

IMAGE ENHANCEMENT II (CONVOLUTION) MOTIVATION Recorded images often exhibit problems such as: blurry noisy Image enhancement aims to improve visual quality Cosmetic processing Usually empirical techniques, with ad hoc parameters ( whatever

More information

Announcements. Filtering. Image Filtering. Linear Filters. Example: Smoothing by Averaging. Homework 2 is due Apr 26, 11:59 PM Reading:

Announcements. Filtering. Image Filtering. Linear Filters. Example: Smoothing by Averaging. Homework 2 is due Apr 26, 11:59 PM Reading: Announcements Filtering Homework 2 is due Apr 26, :59 PM eading: Chapter 4: Linear Filters CSE 52 Lecture 6 mage Filtering nput Output Filter (From Bill Freeman) Example: Smoothing by Averaging Linear

More information

Computational Photography

Computational Photography Computational Photography Si Lu Spring 208 http://web.cecs.pdx.edu/~lusi/cs50/cs50_computati onal_photography.htm 04/0/208 Last Time o Digital Camera History of Camera Controlling Camera o Photography

More information

GUIDED NOTES 2.5 QUADRATIC EQUATIONS

GUIDED NOTES 2.5 QUADRATIC EQUATIONS GUIDED NOTES 5 QUADRATIC EQUATIONS LEARNING OBJECTIVES In this section, you will: Solve quadratic equations by factoring. Solve quadratic equations by the square root property. Solve quadratic equations

More information

Computer Vision Lecture 3

Computer Vision Lecture 3 Computer Vision Lecture 3 Linear Filters 03.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Demo Haribo Classification Code available on the class website...

More information

Filtering and Edge Detection

Filtering and Edge Detection Filtering and Edge Detection Local Neighborhoods Hard to tell anything from a single pixel Example: you see a reddish pixel. Is this the object s color? Illumination? Noise? The next step in order of complexity

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 13 Oct 2 nd, 2018 Pranav Mantini Slides from Dr. Shishir K Shah, and Frank Liu Review f 0 0 0 1 0 0 0 0 w 1 2 3 2 8 Zero Padding 0 0 0 0 0 0 0 1 0 0 0 0

More information

Problem Session #5. EE368/CS232 Digital Image Processing

Problem Session #5. EE368/CS232 Digital Image Processing Problem Session #5 EE368/CS232 Digital Image Processing 1. Solving a Jigsaw Puzzle Please download the image hw5_puzzle_pieces.jpg from the handouts webpage, which shows the pieces of a jigsaw puzzle.

More information

Binary Image Analysis

Binary Image Analysis Binary Image Analysis Binary image analysis consists of a set of image analysis operations that are used to produce or process binary images, usually images of 0 s and 1 s. 0 represents the background

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 3: Fourier Transform and Filtering in the Frequency Domain AASS Learning Systems Lab, Dep. Teknik Room T109 (Fr, 11-1 o'clock) achim.lilienthal@oru.se Course Book Chapter

More information

Empirical Mean and Variance!

Empirical Mean and Variance! Global Image Properties! Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.!

More information

Chapter 2: Approximating Solutions of Linear Systems

Chapter 2: Approximating Solutions of Linear Systems Linear of Chapter 2: Solutions of Linear Peter W. White white@tarleton.edu Department of Mathematics Tarleton State University Summer 2015 / Numerical Analysis Overview Linear of Linear of Linear of Linear

More information

Some Interesting Problems in Pattern Recognition and Image Processing

Some Interesting Problems in Pattern Recognition and Image Processing Some Interesting Problems in Pattern Recognition and Image Processing JEN-MEI CHANG Department of Mathematics and Statistics California State University, Long Beach jchang9@csulb.edu University of Southern

More information

Research Article Effect of Different Places in Applying Laplacian Filter on the Recovery Algorithm in Spatial Domain Watermarking

Research Article Effect of Different Places in Applying Laplacian Filter on the Recovery Algorithm in Spatial Domain Watermarking Research Journal of Applied Sciences, Engineering and Technology 7(24): 5157-5162, 2014 DOI:10.19026/rjaset.7.912 ISSN: 2040-7459; e-issn: 2040-7467 2014 Maxwell Scientific Publication Corp. Submitted:

More information

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline.

Dependence. Practitioner Course: Portfolio Optimization. John Dodson. September 10, Dependence. John Dodson. Outline. Practitioner Course: Portfolio Optimization September 10, 2008 Before we define dependence, it is useful to define Random variables X and Y are independent iff For all x, y. In particular, F (X,Y ) (x,

More information

ECE 468: Digital Image Processing. Lecture 8

ECE 468: Digital Image Processing. Lecture 8 ECE 68: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Point Descriptors Point Descriptors Describe image properties in the neighborhood of a keypoint Descriptors

More information

Morphology Gonzalez and Woods, Chapter 9 Except sections 9.5.7, 9.5.8, and Repetition of binary dilatation, erosion, opening, closing

Morphology Gonzalez and Woods, Chapter 9 Except sections 9.5.7, 9.5.8, and Repetition of binary dilatation, erosion, opening, closing 09.11.2011 Anne Solberg Morphology Gonzalez and Woods, Chapter 9 Except sections 9.5.7, 9.5.8, 9.5.9 and 9.6.4 Repetition of binary dilatation, erosion, opening, closing Binary region processing: connected

More information

Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2

Slide a window along the input arc sequence S. Least-squares estimate. σ 2. σ Estimate 1. Statistically test the difference between θ 1 and θ 2 Corner Detection 2D Image Features Corners are important two dimensional features. Two dimensional image features are interesting local structures. They include junctions of dierent types Slide 3 They

More information

Computer Assisted Image Analysis

Computer Assisted Image Analysis Computer Assisted Image Analysis Lecture 0 - Object Descriptors II Amin Allalou amin@cb.uu.se Centre for Image Analysis Uppsala University 2009-04-27 A. Allalou (Uppsala University) Object Descriptors

More information

Image Enhancement in the frequency domain. GZ Chapter 4

Image Enhancement in the frequency domain. GZ Chapter 4 Image Enhancement in the frequency domain GZ Chapter 4 Contents In this lecture we will look at image enhancement in the frequency domain The Fourier series & the Fourier transform Image Processing in

More information

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications Edge Detection Roadmap Introduction to image analysis (computer vision) Its connection with psychology and neuroscience Why is image analysis difficult? Theory of edge detection Gradient operator Advanced

More information

Corner. Corners are the intersections of two edges of sufficiently different orientations.

Corner. Corners are the intersections of two edges of sufficiently different orientations. 2D Image Features Two dimensional image features are interesting local structures. They include junctions of different types like Y, T, X, and L. Much of the work on 2D features focuses on junction L,

More information

Corner detection: the basic idea

Corner detection: the basic idea Corner detection: the basic idea At a corner, shifting a window in any direction should give a large change in intensity flat region: no change in all directions edge : no change along the edge direction

More information

EDGES AND CONTOURS(1)

EDGES AND CONTOURS(1) KOM31 Image Processing in Industrial Sstems Dr Muharrem Mercimek 1 EDGES AND CONTOURS1) KOM31 Image Processing in Industrial Sstems Some o the contents are adopted rom R. C. Gonzalez, R. E. Woods, Digital

More information

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5.

MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 5.2) Extrema, Inflection Points, and Graphing (Section 5. MA 137 Calculus 1 with Life Science Applications Monotonicity and Concavity (Section 52) Extrema, Inflection Points, and Graphing (Section 53) Alberto Corso albertocorso@ukyedu Department of Mathematics

More information

Digital Image Processing: Sharpening Filtering in Spatial Domain CSC Biomedical Imaging and Analysis Dr. Kazunori Okada

Digital Image Processing: Sharpening Filtering in Spatial Domain CSC Biomedical Imaging and Analysis Dr. Kazunori Okada Homework Exercise Start project coding work according to the project plan Adjust project plans according to my comments (reply ilearn threads) New Exercise: Install VTK & FLTK. Find a simple hello world

More information

Digital Image Processing ERRATA. Wilhelm Burger Mark J. Burge. An algorithmic introduction using Java. Second Edition. Springer

Digital Image Processing ERRATA. Wilhelm Burger Mark J. Burge. An algorithmic introduction using Java. Second Edition. Springer Wilhelm Burger Mark J. Burge Digital Image Processing An algorithmic introduction using Java Second Edition ERRATA Springer Berlin Heidelberg NewYork Hong Kong London Milano Paris Tokyo 5 Filters K K No

More information

6 The SVD Applied to Signal and Image Deblurring

6 The SVD Applied to Signal and Image Deblurring 6 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

From Fourier Series to Analysis of Non-stationary Signals - II

From Fourier Series to Analysis of Non-stationary Signals - II From Fourier Series to Analysis of Non-stationary Signals - II prof. Miroslav Vlcek October 10, 2017 Contents Signals 1 Signals 2 3 4 Contents Signals 1 Signals 2 3 4 Contents Signals 1 Signals 2 3 4 Contents

More information

CITS 4402 Computer Vision

CITS 4402 Computer Vision CITS 4402 Computer Vision Prof Ajmal Mian Adj/A/Prof Mehdi Ravanbakhsh, CEO at Mapizy (www.mapizy.com) and InFarm (www.infarm.io) Lecture 04 Greyscale Image Analysis Lecture 03 Summary Images as 2-D signals

More information

INTEREST POINTS AT DIFFERENT SCALES

INTEREST POINTS AT DIFFERENT SCALES INTEREST POINTS AT DIFFERENT SCALES Thank you for the slides. They come mostly from the following sources. Dan Huttenlocher Cornell U David Lowe U. of British Columbia Martial Hebert CMU Intuitively, junctions

More information

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform Cris Luengo TD396 fall 4 cris@cbuuse Today s lecture Local neighbourhood processing smoothing an image sharpening an image The convolution What is it? What is it useful for? How can I compute it? Removing

More information

Enhancement Using Local Histogram

Enhancement Using Local Histogram Enhancement Using Local Histogram Used to enhance details over small portions o the image. Deine a square or rectangular neighborhood hose center moves rom piel to piel. Compute local histogram based on

More information

Multimedia Databases. Previous Lecture. 4.1 Multiresolution Analysis. 4 Shape-based Features. 4.1 Multiresolution Analysis

Multimedia Databases. Previous Lecture. 4.1 Multiresolution Analysis. 4 Shape-based Features. 4.1 Multiresolution Analysis Previous Lecture Multimedia Databases Texture-Based Image Retrieval Low Level Features Tamura Measure, Random Field Model High-Level Features Fourier-Transform, Wavelets Wolf-Tilo Balke Silviu Homoceanu

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Homework Set 3 Solutions REVISED EECS 455 Oct. 25, Revisions to solutions to problems 2, 6 and marked with ***

Homework Set 3 Solutions REVISED EECS 455 Oct. 25, Revisions to solutions to problems 2, 6 and marked with *** Homework Set 3 Solutions REVISED EECS 455 Oct. 25, 2006 Revisions to solutions to problems 2, 6 and marked with ***. Let U be a continuous random variable with pdf p U (u). Consider an N-point quantizer

More information

8 The SVD Applied to Signal and Image Deblurring

8 The SVD Applied to Signal and Image Deblurring 8 The SVD Applied to Signal and Image Deblurring We will discuss the restoration of one-dimensional signals and two-dimensional gray-scale images that have been contaminated by blur and noise. After an

More information

Multimedia Databases. 4 Shape-based Features. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis

Multimedia Databases. 4 Shape-based Features. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis 4 Shape-based Features Multimedia Databases Wolf-Tilo Balke Silviu Homoceanu Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 4 Multiresolution Analysis

More information

ECE Digital Image Processing and Introduction to Computer Vision

ECE Digital Image Processing and Introduction to Computer Vision ECE592-064 Digital Image Processing and Introduction to Computer Vision Depart. of ECE, NC State University Instructor: Tianfu (Matt) Wu Spring 2017 Outline Recap, image degradation / restoration Template

More information

Total Variation Image Edge Detection

Total Variation Image Edge Detection Total Variation Image Edge Detection PETER NDAJAH Graduate School of Science and Technology, Niigata University, 8050, Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-28, JAPAN ndajah@telecom0.eng.niigata-u.ac.jp

More information

Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig

Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig Multimedia Databases Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 4 Previous Lecture Texture-Based Image Retrieval Low

More information

EE5356 Digital Image Processing

EE5356 Digital Image Processing EE5356 Digital Image Processing INSTRUCTOR: Dr KR Rao Spring 007, Final Thursday, 10 April 007 11:00 AM 1:00 PM ( hours) (Room 111 NH) INSTRUCTIONS: 1 Closed books and closed notes All problems carry weights

More information

Image Enhancement (Spatial Filtering 2)

Image Enhancement (Spatial Filtering 2) Image Enhancement (Spatial Filtering ) Dr. Samir H. Abdul-Jauwad Electrical Engineering Department College o Engineering Sciences King Fahd University o Petroleum & Minerals Dhahran Saudi Arabia samara@kupm.edu.sa

More information

Edge Detection. Image Processing - Computer Vision

Edge Detection. Image Processing - Computer Vision Image Processing - Lesson 10 Edge Detection Image Processing - Computer Vision Low Level Edge detection masks Gradient Detectors Compass Detectors Second Derivative - Laplace detectors Edge Linking Image

More information

Capturing and Processing Deep Space Images. Petros Pissias Eumetsat Astronomy Club 15/03/2018

Capturing and Processing Deep Space Images. Petros Pissias Eumetsat Astronomy Club 15/03/2018 Capturing and Processing Deep Space Images Petros Pissias Eumetsat Astronomy Club 15/03/2018 Agenda Introduction Basic Equipment Preparation Acquisition Processing Quick demo Petros Pissias Eumetsat Astronomy

More information

Independent Component Analysis. PhD Seminar Jörgen Ungh

Independent Component Analysis. PhD Seminar Jörgen Ungh Independent Component Analysis PhD Seminar Jörgen Ungh Agenda Background a motivater Independence ICA vs. PCA Gaussian data ICA theory Examples Background & motivation The cocktail party problem Bla bla

More information

Chapter 16. Local Operations

Chapter 16. Local Operations Chapter 16 Local Operations g[x, y] =O{f[x ± x, y ± y]} In many common image processing operations, the output pixel is a weighted combination of the gray values of pixels in the neighborhood of the input

More information

Case Studies of Logical Computation on Stochastic Bit Streams

Case Studies of Logical Computation on Stochastic Bit Streams Case Studies of Logical Computation on Stochastic Bit Streams Peng Li 1, Weikang Qian 2, David J. Lilja 1, Kia Bazargan 1, and Marc D. Riedel 1 1 Electrical and Computer Engineering, University of Minnesota,

More information

Problem Set 4. f(a + h) = P k (h) + o( h k ). (3)

Problem Set 4. f(a + h) = P k (h) + o( h k ). (3) Analysis 2 Antti Knowles Problem Set 4 1. Let f C k+1 in a neighborhood of a R n. In class we saw that f can be expressed using its Taylor series as f(a + h) = P k (h) + R k (h) (1) where P k (h).= k r=0

More information

Image Noise: Detection, Measurement and Removal Techniques. Zhifei Zhang

Image Noise: Detection, Measurement and Removal Techniques. Zhifei Zhang Image Noise: Detection, Measurement and Removal Techniques Zhifei Zhang Outline Noise measurement Filter-based Block-based Wavelet-based Noise removal Spatial domain Transform domain Non-local methods

More information

What is Image Deblurring?

What is Image Deblurring? What is Image Deblurring? When we use a camera, we want the recorded image to be a faithful representation of the scene that we see but every image is more or less blurry, depending on the circumstances.

More information

Lecture 6: Edge Detection. CAP 5415: Computer Vision Fall 2008

Lecture 6: Edge Detection. CAP 5415: Computer Vision Fall 2008 Lecture 6: Edge Detection CAP 5415: Computer Vision Fall 2008 Announcements PS 2 is available Please read it by Thursday During Thursday lecture, I will be going over it in some detail Monday - Computer

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Michael J. Black Sept 2009 Lecture 8: Pyramids and image derivatives Goals Images as functions Derivatives of images Edges and gradients Laplacian pyramids Code for lecture

More information