Image Degradation Model (Linear/Additive)

Size: px
Start display at page:

Download "Image Degradation Model (Linear/Additive)"

Transcription

1 Image Degradation Model (Linear/Additive),,,,,,,, g x y h x y f x y x y G uv H uv F uv N uv 1

2 Source of noise Image acquisition (digitization) Image transmission Spatial properties of noise Statistical behavior of the gray level values of pixels Noise parameters, correlation with the image Frequency properties of noise Fourier spectrum Ex. white noise (a constant Fourier spectrum) 2

3 Noise Model p z exp z z a p z zaexp uza b b b b1 az az 1! p z az ae u z p z e u z b 1 p z u z a u z b b a p z P za P zb a b 3

4 Test Pattern Histogram has three Spikes! 4

5 Noisy Images Gaussian Rayleigh Gamma 5

6 Noisy Images Exponential Uniform Salt & Pepper 6

7 Periodic Noise: Electronic Devices 7

8 Periodic noise Observe the frequency spectrum Random noise with PDFs Case 1: imaging system is available Capture images of flat environment Case 2: noisy images available Take a strip from constant area Draw the histogram and observe it Measure the mean and variance 8

9 Medical Example: MRI Artifact: Phantom: Phantom Gibbs Noise 9

10 Medical Example: CT Metal Artifact: 10

11 Noise Estimation: Shape: Histogram of a subimage (Background) 11

12 Noise only spatial filter: g(x,y)=f(x,y)+η(x,y) Adaptive, local noise reduction: If is small, return g(x,y) If L>>, return value close to g(x,y) If L, return the arithmetic mean m L 2 2 L f ˆ x, y g x, y g x, y m L 12

13 Example: Original Noisy A- Mean G- Mean Local 13

14 Linear Degradation: gx, y H f x, y x, y L-System: H f x, y f, H x, y dd hx, y,, H x, y H f x, y f, hx, ydd LSI-Syste m: gx, y f x, yhx, y x, y Guv, Fuv, Huv, Nuv, 14

15 Degradation Estimation: Image Observation: Look at the image and Experiments: Acquire image using well defined object (Flat, pinhole, and etc.) Modeling: Introduce certain model for certain degradation using physical knowledge. 15

16 Degradation (Using Observation/PSF) Original Object Degraded Object H s uv, G uv, Hs u, v Hs u, v Fˆ u, v A s PSF 16

17 Medical Image Analysis and Processing Atmospheric Turbulence: 17

18 Modeling of turbulence in atmospheric images: 2 2, exp H u v k u v 56 18

19 Motion Blurring Modeling:, 0, 0 T g x y f x x t y y t dt 0 T j 2 ux vy G u, v f x x 0 t, y y 0 t dt e dxdy 0 T j 2 ux t vy t 0 0 G uv, F uv, e dt F uv, H uv, 0 19

20 Linear one/two dimensional motion blurring: T x 0 tat T, tmax T H u, v sinuae ua x t at T, y t bt T 0 0 T H u, v sin ua vb e ua vb jua j uavb 20

21 Motion Blurring Example: 21

22 MR Motion Artifact: 22

23 Motion Blurring Discrete Modeling: 23

24 Inverse Filtering: Without Noise: Hˆ u, v ˆ G u, v F u, v H u, v F u, v F u, v Hˆ u, v Problem of division by zero! 24

25 Inverse Filtering: With Noise: ˆ ˆ G u, v F u, v H u, v N u, v N u, v F u, v F u, v Hˆ uv, H uv, Hˆ uv, Problem of division by zero! Impossible to recover even if H(.,.) is known!! 25

26 Pseudo Inverse (Constrained) Filtering: Set infinite (large) value to zero; Multiply H(u,v) by a I/G/B LPF G u, v ˆ H u, v H ˆ, ˆ H u v F u, v G u, v ˆ H u, v H HTHR G u, v Hˆ u, v H ˆ ˆ F u, v H u, v T Hˆ u, v H THR THR THR THR HTHR 0 26

27 Full Band 60 Band 70 Band 85 Band 27

28 Phase Problem: Look at this formulation: 1 ˆ Hu, v ˆ, ˆ H u v Fu, v Gu, v 1 Hˆ u, v HTHR H H THR THR We preserve the Correct Phase! 28

29 Phase Problem: 29

30 Wiener Filtering : f(x,y) Degradation g(x,y) g(x,y) De Degradation f(x,y),,,,,, Wu v Gu v,, ˆ,,,., 2, g xy sxy xy Guv Suv Nuv Fˆ u, v,., E uv F uv F uv F uv W uv G uv E E u v E F WG F WG 30

31 Wiener Filtering in 2D case: W 2 E E u, v P WP W W P WP 2,, 2 FF GG FG GF E E u, v PFG u, v 0 Wu, v P u, v P u, v E X : Spectral Estimation XX P u, v E XY : Cross Spectral Estimation XY P u v P u v XY YX GG 31

32 Wiener Filtering in 2D case: Special Cases: Noise Only:,,,,,, g x y f x y x y G u v F u v N u v Uncorrelated Noise and Image: W u, v FF PFF u, v,, P u v P u v NN 32

33 Degradation plus Noise:,,,,,,,, g x y f x y h x y x y G uv F uv H uv N uv Uncorrelated Noise and Image: W P H FF u, v 2 PFF H PNN H 1 H 1 P H P 2 2 H 2 NN H 2 PFF FF 2 H H P P NN FF H P NN SNR 1 33

34 Degradation plus Noise: White Noise 1 H H H 2 2 K Select Interavtively 34

35 Wiener Filter is known as: Wiener-Hopf Minimum Mean Square Error Least Square Error Problems with Wiener: P FF P NN 35

36 Phase in Wiener Filter: W H W 2 2 PNN 1 H H PFF P 1 H H 2 H NN PFF W H No Phase compensation! 36

37 Wiener Filter vs. Inverse Filter: 1 H H H 0 W lim W 0 2 H 2 P P NN NN H H 0 H 0 P FF 37

38 Full Inverse Pseudo Inverse Wiener 38

39 Inverse Motion Blurring +Noise Wiener Noise Decrease 39

40 Iterative Wiener Filter: We formulate for noise only case: 0. i = 0 1. P 2. W i FF i1 i i i1 i1 i1 3. F W G 4. P GG FF FF NN i1 i1 = E F FF = P P P P 2 5. Repeat 2,3,4 until convergence. 40

41 Adaptive Wiener Filter: Image are Non Stationary! Need Adaptive WF which is locally optimal. Assume small region which image are stationary Image Model in each region: Noise Image:,,, f x y x y x y f : zero-mean white noise with unit variance!, : Constant over each region. f f f g x, y f x, y v x, y, v : Constant over each region 41

42 Local Wiener Filter in each region: W a u, v P f,, f xy f xyg xy x y 2 ff f 2 2 ff Pvv f v 2 2 f v fˆ x, y g x, y w x, y f a f ˆ f x, ygx, yf f 2 f 2 2 f v, : Low-pass filtered on noisy image.,,, Zero mean assumption g x, y, : Hi-pass filtered on noisy image. f P 2 wa x y x y ˆ xy, f x, y HPx, y LPx, y 2 f 2 2 f xy, v 42

43 Parameter Estimation: 2 g 2 v Local Noisy Image Variance Variance in a smooth image region or background xy, xy, f g v 43

44 Results: 44

45 Results: 45

46 Results: 46

47 Results: 47

48 Matlab Command: deconvblind: Restore image using blind deconvolution deconvlucy: Restore image using accelerated Richardson Lucy algorithm deconvreg: Restore image using Regularized filter deconvwnr: Restore image using Wiener filter wiener2: Perform 2 D adaptive noise removal filtering edgetaper: Taper the discontinuities along the image edges 48

Image Degradation Model (Linear/Additive)

Image Degradation Model (Linear/Additive) Image Degradation Model (Linear/Additive),,,,,,,, g x y f x y h x y x y G u v F u v H u v N u v 1 Source of noise Objects Impurities Image acquisition (digitization) Image transmission Spatial properties

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Restoration and Reconstruction I Dr. D. J. Jackson Lecture 11-1 Image restoration Restoration is an objective process that attempts to recover an image

More information

UNIT III IMAGE RESTORATION Part A Questions 1. What is meant by Image Restoration? Restoration attempts to reconstruct or recover an image that has been degraded by using a clear knowledge of the degrading

More information

Wiener Filter for Deterministic Blur Model

Wiener Filter for Deterministic Blur Model Wiener Filter for Deterministic Blur Model Based on Ch. 5 of Gonzalez & Woods, Digital Image Processing, nd Ed., Addison-Wesley, 00 One common application of the Wiener filter has been in the area of simultaneous

More information

ERRORS. 2. Diffraction of electromagnetic waves at aperture stop of the lens. telephoto lenses. 5. Row jittering synchronization of frame buffer

ERRORS. 2. Diffraction of electromagnetic waves at aperture stop of the lens. telephoto lenses. 5. Row jittering synchronization of frame buffer ERRORS סטיה העדשה (Hubble) 1. Lens Aberration 2. Diffraction of electromagnetic waves at aperture stop of the lens למקד 3. Defocusing תנועות ותנודות של המצלמה 4. Motions and vibrations of the camera telephoto

More information

Prof. Mohd Zaid Abdullah Room No:

Prof. Mohd Zaid Abdullah Room No: EEE 52/4 Advnced Digital Signal and Image Processing Tuesday, 00-300 hrs, Data Com. Lab. Friday, 0800-000 hrs, Data Com. Lab Prof. Mohd Zaid Abdullah Room No: 5 Email: mza@usm.my www.eng.usm.my Electromagnetic

More information

MATHEMATICAL MODEL OF IMAGE DEGRADATION. = s

MATHEMATICAL MODEL OF IMAGE DEGRADATION. = s MATHEMATICAL MODEL OF IMAGE DEGRADATION H s u v G s u v F s u v ^ F u v G u v H s u v Gaussian Kernel Source: C. Rasmussen Gaussian filters pixel 5 pixels 0 pixels 30 pixels Gaussian filter Removes high-frequency

More information

COMP344 Digital Image Processing Fall 2007 Final Examination

COMP344 Digital Image Processing Fall 2007 Final Examination COMP344 Digital Image Processing Fall 2007 Final Examination Time allowed: 2 hours Name Student ID Email Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Total With model answer HK University

More information

Empirical Mean and Variance!

Empirical Mean and Variance! Global Image Properties! Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.!

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Part 3: Fourier Transform and Filtering in the Frequency Domain AASS Learning Systems Lab, Dep. Teknik Room T109 (Fr, 11-1 o'clock) achim.lilienthal@oru.se Course Book Chapter

More information

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain 10/31/05 wk9-a-1 The spatial frequency domain Recall: plane wave propagation x path delay increases linearly with x λ z=0 θ E 0 x exp i2π sinθ + λ z i2π cosθ λ z plane of observation 10/31/05 wk9-a-2 Spatial

More information

Local Enhancement. Local enhancement

Local Enhancement. Local enhancement Local Enhancement Local Enhancement Median filtering (see notes/slides, 3.5.2) HW4 due next Wednesday Required Reading: Sections 3.3, 3.4, 3.5, 3.6, 3.7 Local Enhancement 1 Local enhancement Sometimes

More information

Local enhancement. Local Enhancement. Local histogram equalized. Histogram equalized. Local Contrast Enhancement. Fig 3.23: Another example

Local enhancement. Local Enhancement. Local histogram equalized. Histogram equalized. Local Contrast Enhancement. Fig 3.23: Another example Local enhancement Local Enhancement Median filtering Local Enhancement Sometimes Local Enhancement is Preferred. Malab: BlkProc operation for block processing. Left: original tire image. 0/07/00 Local

More information

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain:

Image Enhancement: Methods. Digital Image Processing. No Explicit definition. Spatial Domain: Frequency Domain: Image Enhancement: No Explicit definition Methods Spatial Domain: Linear Nonlinear Frequency Domain: Linear Nonlinear 1 Spatial Domain Process,, g x y T f x y 2 For 1 1 neighborhood: Contrast Enhancement/Stretching/Point

More information

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Lecture 4 Filtering in the Frequency Domain Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Outline Background From Fourier series to Fourier transform Properties of the Fourier

More information

Histogram Processing

Histogram Processing Histogram Processing The histogram of a digital image with gray levels in the range [0,L-] is a discrete function h ( r k ) = n k where r k n k = k th gray level = number of pixels in the image having

More information

Image Enhancement in the frequency domain. Inel 5046 Prof. Vidya Manian

Image Enhancement in the frequency domain. Inel 5046 Prof. Vidya Manian Image Enhancement in the frequency domain Inel 5046 Prof. Vidya Manian Introduction 2D Fourier transform Basics of filtering in frequency domain Ideal low pass filter Gaussian low pass filter Ideal high

More information

Digital Image Processing. Chapter 4: Image Enhancement in the Frequency Domain

Digital Image Processing. Chapter 4: Image Enhancement in the Frequency Domain Digital Image Processing Chapter 4: Image Enhancement in the Frequency Domain Image Enhancement in Frequency Domain Objective: To understand the Fourier Transform and frequency domain and how to apply

More information

GBS765 Electron microscopy

GBS765 Electron microscopy GBS765 Electron microscopy Lecture 1 Waves and Fourier transforms 10/14/14 9:05 AM Some fundamental concepts: Periodicity! If there is some a, for a function f(x), such that f(x) = f(x + na) then function

More information

Convolution Spatial Aliasing Frequency domain filtering fundamentals Applications Image smoothing Image sharpening

Convolution Spatial Aliasing Frequency domain filtering fundamentals Applications Image smoothing Image sharpening Frequency Domain Filtering Correspondence between Spatial and Frequency Filtering Fourier Transform Brief Introduction Sampling Theory 2 D Discrete Fourier Transform Convolution Spatial Aliasing Frequency

More information

G52IVG, School of Computer Science, University of Nottingham

G52IVG, School of Computer Science, University of Nottingham Image Transforms Fourier Transform Basic idea 1 Image Transforms Fourier transform theory Let f(x) be a continuous function of a real variable x. The Fourier transform of f(x) is F ( u) f ( x)exp[ j2πux]

More information

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6)

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement to the material discussed in

More information

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Technischen Universität München Winter Semester 0/0 TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Slobodan Ilić Overview Image formation Convolution Non-liner filtering: Median

More information

Deconvolution. Parameter Estimation in Linear Inverse Problems

Deconvolution. Parameter Estimation in Linear Inverse Problems Image Parameter Estimation in Linear Inverse Problems Chair for Computer Aided Medical Procedures & Augmented Reality Department of Computer Science, TUM November 10, 2006 Contents A naive approach......with

More information

Multimedia communications

Multimedia communications Multimedia communications Comunicazione multimediale G. Menegaz gloria.menegaz@univr.it Prologue Context Context Scale Scale Scale Course overview Goal The course is about wavelets and multiresolution

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 05 SUBJECT NAME : Probability & Random Process SUBJECT CODE : MA6 MATERIAL NAME : University Questions MATERIAL CODE : JM08AM004 REGULATION : R008 UPDATED ON : Nov-Dec 04 (Scan

More information

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if.

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if jt X ( ) = xte ( ) dt, (3-) then X ( ) represents its energy spectrum. his follows from Parseval

More information

Science Insights: An International Journal

Science Insights: An International Journal Available online at http://www.urpjournals.com Science Insights: An International Journal Universal Research Publications. All rights reserved ISSN 2277 3835 Original Article Object Recognition using Zernike

More information

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY

BME 50500: Image and Signal Processing in Biomedicine. Lecture 5: Correlation and Power-Spectrum CCNY 1 BME 50500: Image and Signal Processing in Biomedicine Lecture 5: Correlation and Power-Spectrum Lucas C. Parra Biomedical Engineering Department CCNY http://bme.ccny.cuny.edu/faculty/parra/teaching/signal-and-image/

More information

Feedback Control of Turbulent Wall Flows

Feedback Control of Turbulent Wall Flows Feedback Control of Turbulent Wall Flows Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Outline Introduction Standard approach Wiener-Hopf approach Conclusions Drag reduction A model problem:

More information

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER?

Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? Intensity Transformations and Spatial Filtering: WHICH ONE LOOKS BETTER? : WHICH ONE LOOKS BETTER? 3.1 : WHICH ONE LOOKS BETTER? 3.2 1 Goal: Image enhancement seeks to improve the visual appearance of an image, or convert it to a form suited for analysis by a human or a machine.

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITK Filters Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITCS 6010:Biomedical Imaging and Visualization 1 ITK Filters:

More information

Filtering in the Frequency Domain

Filtering in the Frequency Domain Filtering in the Frequency Domain Outline Fourier Transform Filtering in Fourier Transform Domain 2/20/2014 2 Fourier Series and Fourier Transform: History Jean Baptiste Joseph Fourier, French mathematician

More information

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I

for valid PSD. PART B (Answer all five units, 5 X 10 = 50 Marks) UNIT I Code: 15A04304 R15 B.Tech II Year I Semester (R15) Regular Examinations November/December 016 PROBABILITY THEY & STOCHASTIC PROCESSES (Electronics and Communication Engineering) Time: 3 hours Max. Marks:

More information

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. 3. Image processing 1 Image processing An image processing operation typically defines

More information

Computer Vision. Filtering in the Frequency Domain

Computer Vision. Filtering in the Frequency Domain Computer Vision Filtering in the Frequency Domain Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 Introduction

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 13 Oct 2 nd, 2018 Pranav Mantini Slides from Dr. Shishir K Shah, and Frank Liu Review f 0 0 0 1 0 0 0 0 w 1 2 3 2 8 Zero Padding 0 0 0 0 0 0 0 1 0 0 0 0

More information

IMAGE ENHANCEMENT II (CONVOLUTION)

IMAGE ENHANCEMENT II (CONVOLUTION) MOTIVATION Recorded images often exhibit problems such as: blurry noisy Image enhancement aims to improve visual quality Cosmetic processing Usually empirical techniques, with ad hoc parameters ( whatever

More information

Fourier series: Any periodic signals can be viewed as weighted sum. different frequencies. view frequency as an

Fourier series: Any periodic signals can be viewed as weighted sum. different frequencies. view frequency as an Image Enhancement in the Frequency Domain Fourier series: Any periodic signals can be viewed as weighted sum of sinusoidal signals with different frequencies Frequency Domain: view frequency as an independent

More information

Biomedical Engineering Image Formation II

Biomedical Engineering Image Formation II Biomedical Engineering Image Formation II PD Dr. Frank G. Zöllner Computer Assisted Clinical Medicine Medical Faculty Mannheim Fourier Series - A Fourier series decomposes periodic functions or periodic

More information

Image Enhancement in the frequency domain. GZ Chapter 4

Image Enhancement in the frequency domain. GZ Chapter 4 Image Enhancement in the frequency domain GZ Chapter 4 Contents In this lecture we will look at image enhancement in the frequency domain The Fourier series & the Fourier transform Image Processing in

More information

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued)

Introduction to the Fourier transform. Computer Vision & Digital Image Processing. The Fourier transform (continued) The Fourier transform (continued) Introduction to the Fourier transform Computer Vision & Digital Image Processing Fourier Transform Let f(x) be a continuous function of a real variable x The Fourier transform of f(x), denoted by I {f(x)}

More information

Atmospheric Turbulence Effects Removal on Infrared Sequences Degraded by Local Isoplanatism

Atmospheric Turbulence Effects Removal on Infrared Sequences Degraded by Local Isoplanatism Atmospheric Turbulence Effects Removal on Infrared Sequences Degraded by Local Isoplanatism Magali Lemaitre 1, Olivier Laligant 1, Jacques Blanc-Talon 2, and Fabrice Mériaudeau 1 1 Le2i Laboratory, University

More information

Name of the Student: Problems on Discrete & Continuous R.Vs

Name of the Student: Problems on Discrete & Continuous R.Vs Engineering Mathematics 08 SUBJECT NAME : Probability & Random Processes SUBJECT CODE : MA645 MATERIAL NAME : University Questions REGULATION : R03 UPDATED ON : November 07 (Upto N/D 07 Q.P) (Scan the

More information

LPA-ICI Applications in Image Processing

LPA-ICI Applications in Image Processing LPA-ICI Applications in Image Processing Denoising Deblurring Derivative estimation Edge detection Inverse halftoning Denoising Consider z (x) =y (x)+η (x), wherey is noise-free image and η is noise. assume

More information

PROBABILITY AND RANDOM PROCESSESS

PROBABILITY AND RANDOM PROCESSESS PROBABILITY AND RANDOM PROCESSESS SOLUTIONS TO UNIVERSITY QUESTION PAPER YEAR : JUNE 2014 CODE NO : 6074 /M PREPARED BY: D.B.V.RAVISANKAR ASSOCIATE PROFESSOR IT DEPARTMENT MVSR ENGINEERING COLLEGE, NADERGUL

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009 2065-33 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Introduction to two-dimensional digital signal processing Fabio Mammano University

More information

Image Processing. Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010

Image Processing. Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010 Image Processing Waleed A. Yousef Faculty of Computers and Information, Helwan University. April 3, 2010 Ch3. Image Enhancement in the Spatial Domain Note that T (m) = 0.5 E. The general law of contrast

More information

EE5356 Digital Image Processing

EE5356 Digital Image Processing EE5356 Digital Image Processing INSTRUCTOR: Dr KR Rao Spring 007, Final Thursday, 10 April 007 11:00 AM 1:00 PM ( hours) (Room 111 NH) INSTRUCTIONS: 1 Closed books and closed notes All problems carry weights

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS) Image Processing 1 (IP1) Bildverarbeitung 1 Lecture 7 Spectral Image Processing and Convolution Winter Semester 2014/15 Slides: Prof. Bernd

More information

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10

Digital Band-pass Modulation PROF. MICHAEL TSAI 2011/11/10 Digital Band-pass Modulation PROF. MICHAEL TSAI 211/11/1 Band-pass Signal Representation a t g t General form: 2πf c t + φ t g t = a t cos 2πf c t + φ t Envelope Phase Envelope is always non-negative,

More information

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform Cris Luengo TD396 fall 4 cris@cbuuse Today s lecture Local neighbourhood processing smoothing an image sharpening an image The convolution What is it? What is it useful for? How can I compute it? Removing

More information

BOOK CORRECTIONS, CLARIFICATIONS, AND CORRECTIONS TO PROBLEM SOLUTIONS

BOOK CORRECTIONS, CLARIFICATIONS, AND CORRECTIONS TO PROBLEM SOLUTIONS Digital Image Processing, nd Ed. Gonzalez and Woods Prentice Hall 00 BOOK CORRECTIONS, CLARIFICATIONS, AND CORRECTIONS TO PROBLEM SOLUTIONS NOTE: Depending on the country in which you purchase the book,

More information

Introduction to Computer Vision. 2D Linear Systems

Introduction to Computer Vision. 2D Linear Systems Introduction to Computer Vision D Linear Systems Review: Linear Systems We define a system as a unit that converts an input function into an output function Independent variable System operator or Transfer

More information

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else

ECE 450 Homework #3. 1. Given the joint density function f XY (x,y) = 0.5 1<x<2, 2<y< <x<4, 2<y<3 0 else ECE 450 Homework #3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3 4 5

More information

Image Processing and Computer Vision

Image Processing and Computer Vision Image Processing and Computer Vision Processing of continuous images Image Processing and Computer Vision linear filtering Fourier transformation Wiener filtering Nonlinear diffusion Visual Computing:

More information

Digital Image Processing. Image Enhancement: Filtering in the Frequency Domain

Digital Image Processing. Image Enhancement: Filtering in the Frequency Domain Digital Image Processing Image Enhancement: Filtering in the Frequency Domain 2 Contents In this lecture we will look at image enhancement in the frequency domain Jean Baptiste Joseph Fourier The Fourier

More information

Computer Vision Lecture 3

Computer Vision Lecture 3 Computer Vision Lecture 3 Linear Filters 03.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Demo Haribo Classification Code available on the class website...

More information

Blur Insensitive Texture Classification Using Local Phase Quantization

Blur Insensitive Texture Classification Using Local Phase Quantization Blur Insensitive Texture Classification Using Local Phase Quantization Ville Ojansivu and Janne Heikkilä Machine Vision Group, Department of Electrical and Information Engineering, University of Oulu,

More information

IMAGE COMPRESSION-II. Week IX. 03/6/2003 Image Compression-II 1

IMAGE COMPRESSION-II. Week IX. 03/6/2003 Image Compression-II 1 IMAGE COMPRESSION-II Week IX 3/6/23 Image Compression-II 1 IMAGE COMPRESSION Data redundancy Self-information and Entropy Error-free and lossy compression Huffman coding Predictive coding Transform coding

More information

Fourier Methods in Digital Signal Processing Final Exam ME 579, Spring 2015 NAME

Fourier Methods in Digital Signal Processing Final Exam ME 579, Spring 2015 NAME Fourier Methods in Digital Signal Processing Final Exam ME 579, Instructions for this CLOSED BOOK EXAM 2 hours long. Monday, May 8th, 8-10am in ME1051 Answer FIVE Questions, at LEAST ONE from each section.

More information

FILTERING IN THE FREQUENCY DOMAIN

FILTERING IN THE FREQUENCY DOMAIN 1 FILTERING IN THE FREQUENCY DOMAIN Lecture 4 Spatial Vs Frequency domain 2 Spatial Domain (I) Normal image space Changes in pixel positions correspond to changes in the scene Distances in I correspond

More information

Machine vision, spring 2018 Summary 4

Machine vision, spring 2018 Summary 4 Machine vision Summary # 4 The mask for Laplacian is given L = 4 (6) Another Laplacian mask that gives more importance to the center element is given by L = 8 (7) Note that the sum of the elements in the

More information

Single Exposure Enhancement and Reconstruction. Some slides are from: J. Kosecka, Y. Chuang, A. Efros, C. B. Owen, W. Freeman

Single Exposure Enhancement and Reconstruction. Some slides are from: J. Kosecka, Y. Chuang, A. Efros, C. B. Owen, W. Freeman Single Exposure Enhancement and Reconstruction Some slides are from: J. Kosecka, Y. Chuang, A. Efros, C. B. Owen, W. Freeman 1 Reconstruction as an Inverse Problem Original image f Distortion & Sampling

More information

PH880 Topics in Physics

PH880 Topics in Physics PH880 Topics in Physics Modern Optical Imaging (Fall 2010) Monday Fourier Optics Overview of week 3 Transmission function, Diffraction 4f telescopic system PSF, OTF Wednesday Conjugate Plane Bih Bright

More information

Introduction to MOMFBD

Introduction to MOMFBD Introduction to MOMFBD a short overview Mats Löfdahl Institute for Solar Physics Stockholm University 1st CASSDA-SOLARNET Workshop Freiburg 18-20 February, 2014 Mats Löfdahl (Institute for Solar Physics)

More information

Medical Physics. Image Quality 1) Ho Kyung Kim. Pusan National University

Medical Physics. Image Quality 1) Ho Kyung Kim. Pusan National University Medical Physics Prince & Links 3 Image Quality 1) Ho Kyung Kim hokyung@pusan.ac.kr Pusan National University 1) The degree to which an image allows medical professionals to accomplish their goals (e.g.,

More information

&& && F( u)! "{ f (x)} = f (x)e # j 2$ u x. f (x)! " #1. F(u,v) = f (x, y) e. f (x, y) = 2D Fourier Transform. Fourier Transform - review.

&& && F( u)! { f (x)} = f (x)e # j 2$ u x. f (x)!  #1. F(u,v) = f (x, y) e. f (x, y) = 2D Fourier Transform. Fourier Transform - review. 2D Fourier Transfor 2-D DFT & Properties 2D Fourier Transfor 1 Fourier Transfor - review 1-D: 2-D: F( u)! "{ f (x)} = f (x)e # j 2$ u x % & #% dx f (x)! " #1 { F(u) } = F(u)e j 2$ u x du F(u,v) = f (x,

More information

Image Processing and Computer Vision. Visual Computing: Joachim M. Buhmann 1/66

Image Processing and Computer Vision. Visual Computing: Joachim M. Buhmann 1/66 Image Processing and Computer Vision Visual Computing: Joachim M. Buhmann 1/66 Image Processing and Computer Vision Processing of continuous images linear filtering Fourier transformation Wiener filtering

More information

Chapter 4: Continuous channel and its capacity

Chapter 4: Continuous channel and its capacity meghdadi@ensil.unilim.fr Reference : Elements of Information Theory by Cover and Thomas Continuous random variable Gaussian multivariate random variable AWGN Band limited channel Parallel channels Flat

More information

Blind Image Deconvolution Using The Sylvester Matrix

Blind Image Deconvolution Using The Sylvester Matrix Blind Image Deconvolution Using The Sylvester Matrix by Nora Abdulla Alkhaldi A thesis submitted to the Department of Computer Science in conformity with the requirements for the degree of PhD Sheffield

More information

Today: Fundamentals of Monte Carlo

Today: Fundamentals of Monte Carlo Today: Fundamentals of Monte Carlo What is Monte Carlo? Named at Los Alamos in 940 s after the casino. Any method which uses (pseudo)random numbers as an essential part of the algorithm. Stochastic - not

More information

ECE Homework Set 3

ECE Homework Set 3 ECE 450 1 Homework Set 3 0. Consider the random variables X and Y, whose values are a function of the number showing when a single die is tossed, as show below: Exp. Outcome 1 3 4 5 6 X 3 3 4 4 Y 0 1 3

More information

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit dwm/courses/2tf

2A1H Time-Frequency Analysis II Bugs/queries to HT 2011 For hints and answers visit   dwm/courses/2tf Time-Frequency Analysis II (HT 20) 2AH 2AH Time-Frequency Analysis II Bugs/queries to david.murray@eng.ox.ac.uk HT 20 For hints and answers visit www.robots.ox.ac.uk/ dwm/courses/2tf David Murray. A periodic

More information

Contents. Signals as functions (1D, 2D)

Contents. Signals as functions (1D, 2D) Fourier Transform The idea A signal can be interpreted as en electromagnetic wave. This consists of lights of different color, or frequency, that can be split apart usign an optic prism. Each component

More information

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University

Communication Systems Lecture 21, 22. Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University Communication Systems Lecture 1, Dong In Kim School of Information & Comm. Eng. Sungkyunkwan University 1 Outline Linear Systems with WSS Inputs Noise White noise, Gaussian noise, White Gaussian noise

More information

Gaussian, Markov and stationary processes

Gaussian, Markov and stationary processes Gaussian, Markov and stationary processes Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ November

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 13, 2013 Mårten Björkman

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

Colorado School of Mines Image and Multidimensional Signal Processing

Colorado School of Mines Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Department of Electrical Engineering and Computer Science Spatial Filtering Main idea Spatial filtering Define a neighborhood of a pixel

More information

SIMG-782 Digital Image Processing Homework 6

SIMG-782 Digital Image Processing Homework 6 SIMG-782 Digital Image Processing Homework 6 Ex. 1 (Circular Convolution) Let f [1, 3, 1, 2, 0, 3] and h [ 1, 3, 2]. (a) Calculate the convolution f h assuming that both f and h are zero-padded to a length

More information

DWI acquisition schemes and Diffusion Tensor estimation

DWI acquisition schemes and Diffusion Tensor estimation DWI acquisition schemes and Diffusion Tensor estimation A simulation based study Santiago Aja-Fernández, Antonio Tristán-Vega, Pablo Casaseca-de-la-Higuera Laboratory of Image Processing L A B O R A T

More information

3 Applications of partial differentiation

3 Applications of partial differentiation Advanced Calculus Chapter 3 Applications of partial differentiation 37 3 Applications of partial differentiation 3.1 Stationary points Higher derivatives Let U R 2 and f : U R. The partial derivatives

More information

Lock-in Thermography on Electronic Devices Using Spatial Deconvolution

Lock-in Thermography on Electronic Devices Using Spatial Deconvolution Lock-in Thermography on Electronic Devices Using Spatial Deconvolution by M. Hejjo Al Rifai, O. Breitenstein and J.P. Rakotoniaina Max Planck Institute of Microstructure Physics, Halle, Germany Abstract

More information

EECS490: Digital Image Processing. Lecture #11

EECS490: Digital Image Processing. Lecture #11 Lecture #11 Filtering Applications: OCR, scanning Highpass filters Laplacian in the frequency domain Image enhancement using highpass filters Homomorphic filters Bandreject/bandpass/notch filters Correlation

More information

5 Analog carrier modulation with noise

5 Analog carrier modulation with noise 5 Analog carrier modulation with noise 5. Noisy receiver model Assume that the modulated signal x(t) is passed through an additive White Gaussian noise channel. A noisy receiver model is illustrated in

More information

Contents. Signals as functions (1D, 2D)

Contents. Signals as functions (1D, 2D) Fourier Transform The idea A signal can be interpreted as en electromagnetic wave. This consists of lights of different color, or frequency, that can be split apart usign an optic prism. Each component

More information

What is Image Deblurring?

What is Image Deblurring? What is Image Deblurring? When we use a camera, we want the recorded image to be a faithful representation of the scene that we see but every image is more or less blurry, depending on the circumstances.

More information

1. Abstract. 2. Introduction/Problem Statement

1. Abstract. 2. Introduction/Problem Statement Advances in polarimetric deconvolution Capt. Kurtis G. Engelson Air Force Institute of Technology, Student Dr. Stephen C. Cain Air Force Institute of Technology, Professor 1. Abstract One of the realities

More information

IMAGE ENHANCEMENT: FILTERING IN THE FREQUENCY DOMAIN. Francesca Pizzorni Ferrarese

IMAGE ENHANCEMENT: FILTERING IN THE FREQUENCY DOMAIN. Francesca Pizzorni Ferrarese IMAGE ENHANCEMENT: FILTERING IN THE FREQUENCY DOMAIN Francesca Pizzorni Ferrarese Contents In this lecture we will look at image enhancement in the frequency domain Jean Baptiste Joseph Fourier The Fourier

More information

conditional cdf, conditional pdf, total probability theorem?

conditional cdf, conditional pdf, total probability theorem? 6 Multiple Random Variables 6.0 INTRODUCTION scalar vs. random variable cdf, pdf transformation of a random variable conditional cdf, conditional pdf, total probability theorem expectation of a random

More information

ENERGY METHODS IN IMAGE PROCESSING WITH EDGE ENHANCEMENT

ENERGY METHODS IN IMAGE PROCESSING WITH EDGE ENHANCEMENT ENERGY METHODS IN IMAGE PROCESSING WITH EDGE ENHANCEMENT PRASHANT ATHAVALE Abstract. Digital images are can be realized as L 2 (R 2 objects. Noise is introduced in a digital image due to various reasons.

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Filtering in the Frequency Domain http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background

More information

Computer Vision & Digital Image Processing. Periodicity of the Fourier transform

Computer Vision & Digital Image Processing. Periodicity of the Fourier transform Computer Vision & Digital Image Processing Fourier Transform Properties, the Laplacian, Convolution and Correlation Dr. D. J. Jackson Lecture 9- Periodicity of the Fourier transform The discrete Fourier

More information

SYDE 575: Introduction to Image Processing. Image Compression Part 2: Variable-rate compression

SYDE 575: Introduction to Image Processing. Image Compression Part 2: Variable-rate compression SYDE 575: Introduction to Image Processing Image Compression Part 2: Variable-rate compression Variable-rate Compression: Transform-based compression As mentioned earlier, we wish to transform image data

More information

Machine vision. Summary # 4. The mask for Laplacian is given

Machine vision. Summary # 4. The mask for Laplacian is given 1 Machine vision Summary # 4 The mask for Laplacian is given L = 0 1 0 1 4 1 (6) 0 1 0 Another Laplacian mask that gives more importance to the center element is L = 1 1 1 1 8 1 (7) 1 1 1 Note that the

More information

Finite Apertures, Interfaces

Finite Apertures, Interfaces 1 Finite Apertures, Interfaces & Point Spread Functions (PSF) & Convolution Tutorial by Jorge Márquez Flores 2 Figure 1. Visual acuity (focus) depends on aperture (iris), lenses, focal point location,

More information

INTRODUCTION Noise is present in many situations of daily life for ex: Microphones will record noise and speech. Goal: Reconstruct original signal Wie

INTRODUCTION Noise is present in many situations of daily life for ex: Microphones will record noise and speech. Goal: Reconstruct original signal Wie WIENER FILTERING Presented by N.Srikanth(Y8104060), M.Manikanta PhaniKumar(Y8104031). INDIAN INSTITUTE OF TECHNOLOGY KANPUR Electrical Engineering dept. INTRODUCTION Noise is present in many situations

More information

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process

ECE6604 PERSONAL & MOBILE COMMUNICATIONS. Week 3. Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 1 ECE6604 PERSONAL & MOBILE COMMUNICATIONS Week 3 Flat Fading Channels Envelope Distribution Autocorrelation of a Random Process 2 Multipath-Fading Mechanism local scatterers mobile subscriber base station

More information