Bayes Theorem. Jan Kracík. Department of Applied Mathematics FEECS, VŠB - TU Ostrava

Size: px
Start display at page:

Download "Bayes Theorem. Jan Kracík. Department of Applied Mathematics FEECS, VŠB - TU Ostrava"

Transcription

1 Jan Kracík Department of Applied Mathematics FEECS, VŠB - TU Ostrava

2 Introduction Bayes theorem fundamental theorem in probability theory named after reverend Thomas Bayes ( ) discovered in Bayes work and published by Richard Price ( ) further developed by Pierre-Simon Laplace ( ) forms a cornerstone of statistical learning

3

4 - motivation Area of a plane region Volume of a solid Weight of a solid Count of elements Price of goods

5 - motivation Area of a plane region Volume of a solid Weight of a solid Count of elements Price of goods measures in a common sense

6 - area Area of a plane region A(R)... area of a region R (set) A(R) 0 for any region R A( ) = 0 If R 1 R 2 = then A(R 1 R 2 ) = A(R 1 ) + A(R 2 )

7 - volume Volume of a solid V (S)... volume of a solid S (set) V (S) 0 for any solid S V ( ) = 0 If S 1 S 2 = then V (S 1 S 2 ) = V (S 1 ) + V (S 2 )

8 - count Count of elements of a set C(S)... count of elements of a set S C(S) 0 for any set S C( ) = 0 If S 1 S 2 = then C(S 1 S 2 ) = C(S 1 ) + C(S 2 )

9 What are the common properties of the measures?

10 What are the common properties of the measures? Let Ω be an arbitrary set and F be a set of (all) subsets of Ω.

11 What are the common properties of the measures? Let Ω be an arbitrary set and F be a set of (all) subsets of Ω. is a function M : F [0, + ) {+ } such that for all S F: M(S) 0, M( ) = 0, if S 1, S 2 F and S 1 S 2 = then M(S 1 S 2 ) = M(S 1 ) + M(S 2 )

12 From mathematical point of view, a probability is a measure.

13 Random experiment - outcome of the experiment cannot be completely determined beforehand.

14 Random experiment - outcome of the experiment cannot be completely determined beforehand. Sample space Ω... set of all possible outcomes Random event A Ω A occurs if and only if the outcome ω A

15 Random experiment - outcome of the experiment cannot be completely determined beforehand. Sample space Ω... set of all possible outcomes Random event A Ω A occurs if and only if the outcome ω A A occurs

16 Random experiment - outcome of the experiment cannot be completely determined beforehand. Sample space Ω... set of all possible outcomes Random event A Ω A occurs if and only if the outcome ω A A does not occur

17 Random experiment - example Random experiment: rolling a dice Sample space Ω = {1, 2, 3, 4, 5, 6} Random event A... prime number is rolled Random event B... odd number is rolled

18 Random experiment - example Random experiment: rolling a dice Sample space Ω = {1, 2, 3, 4, 5, 6} Random event A... prime number is rolled Random event B... odd number is rolled Result: ω = 2. A occurred; B did not occur.

19 Let A, B be random events. A B occurs if and only if A occurs and B occurs (intersection) A B occurs if and only if A occurs or B occurs (union) A occurs if and only if A does not occur (complement)

20 Let A, B be random events. A B occurs if and only if A occurs and B occurs (intersection) A B occurs if and only if A occurs or B occurs (union) A occurs if and only if A does not occur (complement) A B

21 Let A, B be random events. A B occurs if and only if A occurs and B occurs (intersection) A B occurs if and only if A occurs or B occurs (union) A occurs if and only if A does not occur (complement) A B

22 Let A, B be random events. A B occurs if and only if A occurs and B occurs (intersection) A B occurs if and only if A occurs or B occurs (union) A occurs if and only if A does not occur (complement) A

23 Let F be the set of all random events in a sample space Ω.

24 Let F be the set of all random events in a sample space Ω. is a measure on F such that P(Ω) = 1.

25 Let F be the set of all random events in a sample space Ω. is a measure on F such that P(Ω) = 1. P(A) is interpreted as a measure of belief that A occur.

26 Let F be the set of all random events in a sample space Ω. is a measure on F such that P(Ω) = 1. P(A) is interpreted as a measure of belief that A occur. From the properties of measure it follows: P( ) = 0 P(A) = 1 P(A)...

27 Let F be the set of all random events in a sample space Ω. is a measure on F such that P(Ω) = 1. P(A) is interpreted as a measure of belief that A occur. From the properties of measure it follows: P( ) = 0 P(A) = 1 P(A)......

28 Let F be the set of all random events in a sample space Ω. is a measure on F such that P(Ω) = 1. P(A) is interpreted as a measure of belief that A occur. From the properties of measure it follows: P( ) = 0 P(A) = 1 P(A)

29 Let F be the set of all random events in a sample space Ω. is a measure on F such that P(Ω) = 1. P(A) is interpreted as a measure of belief that A occur. From the properties of measure it follows: P( ) = 0 P(A) = 1 P(A)

30 Let F be the set of all random events in a sample space Ω. is a measure on F such that P(Ω) = 1. P(A) is interpreted as a measure of belief that A occur. From the properties of measure it follows: P( ) = 0 P(A) = 1 P(A)

31 Let F be the set of all random events in a sample space Ω. is a measure on F such that P(Ω) = 1. P(A) is interpreted as a measure of belief that A occur. From the properties of measure it follows: P( ) = 0 P(A) = 1 P(A)

32 Let F be the set of all random events in a sample space Ω. is a measure on F such that P(Ω) = 1. P(A) is interpreted as a measure of belief that A occur. From the properties of measure it follows: P( ) = 0 P(A) = 1 P(A)

33 Let F be the set of all random events in a sample space Ω. is a measure on F such that P(Ω) = 1. P(A) is interpreted as a measure of belief that A occur. From the properties of measure it follows: P( ) = 0 P(A) = 1 P(A)

34 Let F be the set of all random events in a sample space Ω. is a measure on F such that P(Ω) = 1. P(A) is interpreted as a measure of belief that A occur. From the properties of measure it follows: P( ) = 0 P(A) = 1 P(A)

35 Conditional probability Let A, B be random events and P(B) > 0. Conditional probability of A given B P(A B) = P(A B) P(B) P(A B) is a measure of belief that A occurs if B occurred.

36 Conditional probability Let A, B be random events and P(B) > 0. Conditional probability of A given B P(A B) = P(A B) P(B) P(A B) is a measure of belief that A occurs if B occurred. P(A)... size of A (relative to the size of Ω)

37 Conditional probability Let A, B be random events and P(B) > 0. Conditional probability of A given B P(A B) = P(A B) P(B) P(A B) is a measure of belief that A occurs if B occurred. P(A B)... size of A B relative to the size of B

38 Let A, B be random events and P(A) > 0, P(B) > 0. P(A B) = P(B A)P(A) P(B).

39 Let A, B be random events and P(A) > 0, P(B) > 0. P(A B) = P(B A)P(A) P(B) = P(B A)P(A) P(B A)P(A) + P(B A)P(A).

40 Let A, B be random events and P(A) > 0, P(B) > 0. P(A B) = P(B A)P(A) P(B) = P(B A)P(A) P(B A)P(A) + P(B A)P(A) To evaluate P(A B) we need P(A), P(B A), and P(B A).

41 Let A, B be random events and P(A) > 0, P(B) > 0. P(A B) = P(B A)P(A) P(B) = P(B A)P(A) P(B A)P(A) + P(B A)P(A) To evaluate P(A B) we need P(A), P(B A), and P(B A). Prior and posterior probability P(A)... prior belief that A occur P(A B)... posterior belief that A occur if B occurred Occurrence of B (partial information) brings an information about A.

42 P(A B) = P(B A)P(A) P(B) represents a fundamental principle of statistical learning.

43 Example 2: Image Processing - Finding Charlie

44 Example 2: Image Processing - Finding Charlie Charlie was kidnapped last night. Please help!

45 Example: Image Processing Consider a binary digital image (black and white pixels) of a scene. White areas... foreground objects Black areas... background of the scene. Real-world scene

46 Example: Image Processing Consider a binary digital image (black and white pixels) of a scene. White areas... foreground objects Black areas... background of the scene. Real-world scene: small number of large objects is more likely than large number of small objects For example...

47 Original binary image (unobserved): pixels Observed gray-scale image: pixels

48 Original binary image (unobserved): pixels Random events: A 1, A 2,..., A A k occurs if and only if the original image is the k-th one. Observed gray-scale image: pixels

49 Original binary image (unobserved): pixels Random events: A 1, A 2,..., A A k occurs if and only if the original image is the k-th one. Observed gray-scale image: pixels Random events: B 1, B 2,..., B B n occurs if and only if the observed image is the n-th one.

50 Observed image... B O

51 Select observation model: P(B O A k ) for k = 1, 2,..., relates the observation to the original image (different Gaussian noise for black and white pixels)

52 Naive approach: Uniform prior P(A 1 ) = P(A 2 ) = = P(A ) = The image with highest posterior probability P(A E B O ) = max P(A k B O ) k

53 Naive approach: Uniform prior P(A 1 ) = P(A 2 ) = = P(A ) = The image with highest posterior probability P(A E B O ) = max P(A k B O ) k

54 Naive prior: P(A 1 ) = P(A 2 ) = = P(A ) = original result

55 Naive prior: P(A 1 ) = P(A 2 ) = = P(A ) = original result :-(

56 Sophisticated approach: select prior probabilities so that they reflect the prior knowledge: Small number of large objects is more likely than large number of small objects.

57 Sophisticated approach: select prior probabilities so that they reflect the prior knowledge: Small number of large objects is more likely than large number of small objects. c... constant P(A k ) = c exp( H(A k )) H(A k ) is the number of adjacent pixels with different color in image A k H(A k ) equals to the length of the border between black and white areas

58 Visualized posterior probability (of individual pixels being white) 3

59 Visualized posterior probability (of individual pixels being white) 2

60 Visualized posterior probability (of individual pixels being white) 1

61 Visualized posterior probability (of individual pixels being white)

62 Visualized estimated picture

63 Compare the results

64 Compare the results :-)

65 Compare the results Thank you for your attention!

66

67 The original image

CMPSCI 240: Reasoning about Uncertainty

CMPSCI 240: Reasoning about Uncertainty CMPSCI 240: Reasoning about Uncertainty Lecture 2: Sets and Events Andrew McGregor University of Massachusetts Last Compiled: January 27, 2017 Outline 1 Recap 2 Experiments and Events 3 Probabilistic Models

More information

Probability Review I

Probability Review I Probability Review I Harvard Math Camp - Econometrics Ashesh Rambachan Summer 2018 Outline Random Experiments The sample space and events σ-algebra and measures Basic probability rules Conditional Probability

More information

III. Naïve Bayes (pp.70-72) Probability review

III. Naïve Bayes (pp.70-72) Probability review III. Naïve Bayes (pp.70-72) This is a short section in our text, but we are presenting more material in these notes. Probability review Definition of probability: The probability of an even E is the ratio

More information

With Question/Answer Animations. Chapter 7

With Question/Answer Animations. Chapter 7 With Question/Answer Animations Chapter 7 Chapter Summary Introduction to Discrete Probability Probability Theory Bayes Theorem Section 7.1 Section Summary Finite Probability Probabilities of Complements

More information

Sample Space: Specify all possible outcomes from an experiment. Event: Specify a particular outcome or combination of outcomes.

Sample Space: Specify all possible outcomes from an experiment. Event: Specify a particular outcome or combination of outcomes. Chapter 2 Introduction to Probability 2.1 Probability Model Probability concerns about the chance of observing certain outcome resulting from an experiment. However, since chance is an abstraction of something

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Lecture 2 Probability Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Ch. 3-1 3.1 Definition Random Experiment a process leading to an uncertain

More information

Origins of Probability Theory

Origins of Probability Theory 1 16.584: INTRODUCTION Theory and Tools of Probability required to analyze and design systems subject to uncertain outcomes/unpredictability/randomness. Such systems more generally referred to as Experiments.

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Venn Diagrams; Probability Laws. Notes. Set Operations and Relations. Venn Diagram 2.1. Venn Diagrams; Probability Laws. Notes

Venn Diagrams; Probability Laws. Notes. Set Operations and Relations. Venn Diagram 2.1. Venn Diagrams; Probability Laws. Notes Lecture 2 s; Text: A Course in Probability by Weiss 2.4 STAT 225 Introduction to Probability Models January 8, 2014 s; Whitney Huang Purdue University 2.1 Agenda s; 1 2 2.2 Intersection: the intersection

More information

Probability- describes the pattern of chance outcomes

Probability- describes the pattern of chance outcomes Chapter 6 Probability the study of randomness Probability- describes the pattern of chance outcomes Chance behavior is unpredictable in the short run, but has a regular and predictable pattern in the long

More information

Math C067 Independence and Repeated Trials.

Math C067 Independence and Repeated Trials. Math C067 Independence and Repeated Trials. Richard Beigel February 7, 006 Socks. Bill s sock drawer contains 10 red socks, 0 green socks, and 30 blue socks. If Bill removes two socks from his drawer at

More information

The Practice of Statistics Third Edition

The Practice of Statistics Third Edition The Practice of Statistics Third Edition Chapter 6: Probability and Simulation: The Study of Randomness Copyright 2008 by W. H. Freeman & Company Probability Rules True probability can only be found by

More information

CMPSCI 240: Reasoning Under Uncertainty

CMPSCI 240: Reasoning Under Uncertainty CMPSCI 240: Reasoning Under Uncertainty Lecture 2 Prof. Hanna Wallach wallach@cs.umass.edu January 26, 2012 Reminders Pick up a copy of B&T Check the course website: http://www.cs.umass.edu/ ~wallach/courses/s12/cmpsci240/

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 3 9/10/2008 CONDITIONING AND INDEPENDENCE Most of the material in this lecture is covered in [Bertsekas & Tsitsiklis] Sections 1.3-1.5

More information

Randomized Algorithms. Andreas Klappenecker

Randomized Algorithms. Andreas Klappenecker Randomized Algorithms Andreas Klappenecker Randomized Algorithms A randomized algorithm is an algorithm that makes random choices during its execution. A randomized algorithm uses values generated by a

More information

Review of Basic Probability

Review of Basic Probability Review of Basic Probability Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 01003 September 16, 2009 Abstract This document reviews basic discrete

More information

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability

Lecture Notes 1 Basic Probability. Elements of Probability. Conditional probability. Sequential Calculation of Probability Lecture Notes 1 Basic Probability Set Theory Elements of Probability Conditional probability Sequential Calculation of Probability Total Probability and Bayes Rule Independence Counting EE 178/278A: Basic

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information

HW MATH425/525 Lecture Notes 1

HW MATH425/525 Lecture Notes 1 HW MATH425/525 Lecture Notes 1 Definition 4.1 If an experiment can be repeated under the same condition, its outcome cannot be predicted with certainty, and the collection of its every possible outcome

More information

Lecture 2. Conditional Probability

Lecture 2. Conditional Probability Math 408 - Mathematical Statistics Lecture 2. Conditional Probability January 18, 2013 Konstantin Zuev (USC) Math 408, Lecture 2 January 18, 2013 1 / 9 Agenda Motivation and Definition Properties of Conditional

More information

{ p if x = 1 1 p if x = 0

{ p if x = 1 1 p if x = 0 Discrete random variables Probability mass function Given a discrete random variable X taking values in X = {v 1,..., v m }, its probability mass function P : X [0, 1] is defined as: P (v i ) = Pr[X =

More information

ECE 302: Chapter 02 Probability Model

ECE 302: Chapter 02 Probability Model ECE 302: Chapter 02 Probability Model Fall 2018 Prof Stanley Chan School of Electrical and Computer Engineering Purdue University 1 / 35 1. Probability Model 2 / 35 What is Probability? It is a number.

More information

Topic 5 Basics of Probability

Topic 5 Basics of Probability Topic 5 Basics of Probability Equally Likely Outcomes and the Axioms of Probability 1 / 13 Outline Equally Likely Outcomes Axioms of Probability Consequences of the Axioms 2 / 13 Introduction A probability

More information

AMS7: WEEK 2. CLASS 2

AMS7: WEEK 2. CLASS 2 AMS7: WEEK 2. CLASS 2 Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Friday April 10, 2015 Probability: Introduction Probability:

More information

Data Mining Techniques. Lecture 3: Probability

Data Mining Techniques. Lecture 3: Probability Data Mining Techniques CS 6220 - Section 3 - Fall 2016 Lecture 3: Probability Jan-Willem van de Meent (credit: Zhao, CS 229, Bishop) Project Vote 1. Freeform: Develop your own project proposals 30% of

More information

Probability Theory. Alea iacta est!

Probability Theory. Alea iacta est! Probability Theory Alea iacta est! "Scientific theories which involve the properties of large aggregates of individuals [...] are liable to misinterpretation as soon as the statistical nature of the argument

More information

Probability and statistics; Rehearsal for pattern recognition

Probability and statistics; Rehearsal for pattern recognition Probability and statistics; Rehearsal for pattern recognition Václav Hlaváč Czech Technical University in Prague Czech Institute of Informatics, Robotics and Cybernetics 166 36 Prague 6, Jugoslávských

More information

PERMUTATIONS, COMBINATIONS AND DISCRETE PROBABILITY

PERMUTATIONS, COMBINATIONS AND DISCRETE PROBABILITY Friends, we continue the discussion with fundamentals of discrete probability in the second session of third chapter of our course in Discrete Mathematics. The conditional probability and Baye s theorem

More information

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables ECE 6010 Lecture 1 Introduction; Review of Random Variables Readings from G&S: Chapter 1. Section 2.1, Section 2.3, Section 2.4, Section 3.1, Section 3.2, Section 3.5, Section 4.1, Section 4.2, Section

More information

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner

Fundamentals. CS 281A: Statistical Learning Theory. Yangqing Jia. August, Based on tutorial slides by Lester Mackey and Ariel Kleiner Fundamentals CS 281A: Statistical Learning Theory Yangqing Jia Based on tutorial slides by Lester Mackey and Ariel Kleiner August, 2011 Outline 1 Probability 2 Statistics 3 Linear Algebra 4 Optimization

More information

Axioms of Probability

Axioms of Probability Sample Space (denoted by S) The set of all possible outcomes of a random experiment is called the Sample Space of the experiment, and is denoted by S. Example 1.10 If the experiment consists of tossing

More information

the time it takes until a radioactive substance undergoes a decay

the time it takes until a radioactive substance undergoes a decay 1 Probabilities 1.1 Experiments with randomness Wewillusethetermexperimentinaverygeneralwaytorefertosomeprocess that produces a random outcome. Examples: (Ask class for some first) Here are some discrete

More information

Lecture 3 - Axioms of Probability

Lecture 3 - Axioms of Probability Lecture 3 - Axioms of Probability Sta102 / BME102 January 25, 2016 Colin Rundel Axioms of Probability What does it mean to say that: The probability of flipping a coin and getting heads is 1/2? 3 What

More information

Statistical Theory 1

Statistical Theory 1 Statistical Theory 1 Set Theory and Probability Paolo Bautista September 12, 2017 Set Theory We start by defining terms in Set Theory which will be used in the following sections. Definition 1 A set is

More information

Basic Measure and Integration Theory. Michael L. Carroll

Basic Measure and Integration Theory. Michael L. Carroll Basic Measure and Integration Theory Michael L. Carroll Sep 22, 2002 Measure Theory: Introduction What is measure theory? Why bother to learn measure theory? 1 What is measure theory? Measure theory is

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

Mathematics for Informatics 4a

Mathematics for Informatics 4a Mathematics for Informatics 4a José Figueroa-O Farrill Lecture 1 18 January 2012 José Figueroa-O Farrill mi4a (Probability) Lecture 1 1 / 23 Introduction Topic: Probability and random processes Lectures:

More information

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102

Mean, Median and Mode. Lecture 3 - Axioms of Probability. Where do they come from? Graphically. We start with a set of 21 numbers, Sta102 / BME102 Mean, Median and Mode Lecture 3 - Axioms of Probability Sta102 / BME102 Colin Rundel September 1, 2014 We start with a set of 21 numbers, ## [1] -2.2-1.6-1.0-0.5-0.4-0.3-0.2 0.1 0.1 0.2 0.4 ## [12] 0.4

More information

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics?

Lecture 1. Chapter 1. (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 ( ). 1. What is Statistics? Lecture 1 (Part I) Material Covered in This Lecture: Chapter 1, Chapter 2 (2.1 --- 2.6). Chapter 1 1. What is Statistics? 2. Two definitions. (1). Population (2). Sample 3. The objective of statistics.

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

STAT Chapter 3: Probability

STAT Chapter 3: Probability Basic Definitions STAT 515 --- Chapter 3: Probability Experiment: A process which leads to a single outcome (called a sample point) that cannot be predicted with certainty. Sample Space (of an experiment):

More information

Set Theory. Pattern Recognition III. Michal Haindl. Set Operations. Outline

Set Theory. Pattern Recognition III. Michal Haindl. Set Operations. Outline Set Theory A, B sets e.g. A = {ζ 1,...,ζ n } A = { c x y d} S space (universe) A,B S Outline Pattern Recognition III Michal Haindl Faculty of Information Technology, KTI Czech Technical University in Prague

More information

Introduction Probability. Math 141. Introduction to Probability and Statistics. Albyn Jones

Introduction Probability. Math 141. Introduction to Probability and Statistics. Albyn Jones Math 141 to and Statistics Albyn Jones Mathematics Department Library 304 jones@reed.edu www.people.reed.edu/ jones/courses/141 September 3, 2014 Motivation How likely is an eruption at Mount Rainier in

More information

LING 473: Day 3. START THE RECORDING Assignment 1 Review Probability. University of Washington Linguistics 473: Computational Linguistics Fundamentals

LING 473: Day 3. START THE RECORDING Assignment 1 Review Probability. University of Washington Linguistics 473: Computational Linguistics Fundamentals LING 473: Day 3 START THE RECORDING Assignment 1 Review Probability 1 Probability textbook: Resources Available Charles Grinstead and J. Laurie Snell Introduction to Probability - online on course website

More information

Introduction to Probability

Introduction to Probability Introduction to Probability Content Experiments, Counting Rules, and Assigning Probabilities Events and Their Probability Some Basic Relationships of Probability Conditional Probability Bayes Theorem 2

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Semantics for Probabilistic Programming

Semantics for Probabilistic Programming Semantics for Probabilistic Programming Chris Heunen 1 / 21 Bayes law P(A B) = P(B A) P(A) P(B) 2 / 21 Bayes law P(A B) = P(B A) P(A) P(B) Bayesian reasoning: predict future, based on model and prior evidence

More information

STT When trying to evaluate the likelihood of random events we are using following wording.

STT When trying to evaluate the likelihood of random events we are using following wording. Introduction to Chapter 2. Probability. When trying to evaluate the likelihood of random events we are using following wording. Provide your own corresponding examples. Subjective probability. An individual

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

MATH MW Elementary Probability Course Notes Part I: Models and Counting

MATH MW Elementary Probability Course Notes Part I: Models and Counting MATH 2030 3.00MW Elementary Probability Course Notes Part I: Models and Counting Tom Salisbury salt@yorku.ca York University Winter 2010 Introduction [Jan 5] Probability: the mathematics used for Statistics

More information

Chapter 1 (Basic Probability)

Chapter 1 (Basic Probability) Chapter 1 (Basic Probability) What is probability? Consider the following experiments: 1. Count the number of arrival requests to a web server in a day. 2. Determine the execution time of a program. 3.

More information

Statistical Inference

Statistical Inference Statistical Inference Lecture 1: Probability Theory MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 11, 2018 Outline Introduction Set Theory Basics of Probability Theory

More information

Machine Learning. Probability Theory. WS2013/2014 Dmitrij Schlesinger, Carsten Rother

Machine Learning. Probability Theory. WS2013/2014 Dmitrij Schlesinger, Carsten Rother Machine Learning Probability Theory WS2013/2014 Dmitrij Schlesinger, Carsten Rother Probability space is a three-tuple (Ω, σ, P) with: Ω the set of elementary events σ algebra P probability measure σ-algebra

More information

PROBABILITY VITTORIA SILVESTRI

PROBABILITY VITTORIA SILVESTRI PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8 4. Properties of Probability measures Preface These lecture notes are for the course

More information

Computational Genomics

Computational Genomics Computational Genomics http://www.cs.cmu.edu/~02710 Introduction to probability, statistics and algorithms (brief) intro to probability Basic notations Random variable - referring to an element / event

More information

Probability Theory for Machine Learning. Chris Cremer September 2015

Probability Theory for Machine Learning. Chris Cremer September 2015 Probability Theory for Machine Learning Chris Cremer September 2015 Outline Motivation Probability Definitions and Rules Probability Distributions MLE for Gaussian Parameter Estimation MLE and Least Squares

More information

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability

I - Probability. What is Probability? the chance of an event occuring. 1classical probability. 2empirical probability. 3subjective probability What is Probability? the chance of an event occuring eg 1classical probability 2empirical probability 3subjective probability Section 2 - Probability (1) Probability - Terminology random (probability)

More information

Statistical Methods in Particle Physics. Lecture 2

Statistical Methods in Particle Physics. Lecture 2 Statistical Methods in Particle Physics Lecture 2 October 17, 2011 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2011 / 12 Outline Probability Definition and interpretation Kolmogorov's

More information

Introductory Probability

Introductory Probability Introductory Probability Conditional Probability: Bayes Probabilities Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Computing Bayes Probabilities Conditional Probability and

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul

Generative Learning. INFO-4604, Applied Machine Learning University of Colorado Boulder. November 29, 2018 Prof. Michael Paul Generative Learning INFO-4604, Applied Machine Learning University of Colorado Boulder November 29, 2018 Prof. Michael Paul Generative vs Discriminative The classification algorithms we have seen so far

More information

Appendix A : Introduction to Probability and stochastic processes

Appendix A : Introduction to Probability and stochastic processes A-1 Mathematical methods in communication July 5th, 2009 Appendix A : Introduction to Probability and stochastic processes Lecturer: Haim Permuter Scribe: Shai Shapira and Uri Livnat The probability of

More information

From Bayes Theorem to Pattern Recognition via Bayes Rule

From Bayes Theorem to Pattern Recognition via Bayes Rule From Bayes Theorem to Pattern Recognition via Bayes Rule Slecture by Varun Vasudevan (partially based on Prof. Mireille Boutin s ECE 662 lecture) February 12, 2014 What will you learn from this slecture?

More information

Probability and Conditional Probability

Probability and Conditional Probability Probability and Conditional Probability Bret Hanlon and Bret Larget Department of Statistics University of Wisconsin Madison September 27 29, 2011 Probability 1 / 33 Parasitic Fish Case Study Example 9.3

More information

Bayes Rule. CS789: Machine Learning and Neural Network Bayesian learning. A Side Note on Probability. What will we learn in this lecture?

Bayes Rule. CS789: Machine Learning and Neural Network Bayesian learning. A Side Note on Probability. What will we learn in this lecture? Bayes Rule CS789: Machine Learning and Neural Network Bayesian learning P (Y X) = P (X Y )P (Y ) P (X) Jakramate Bootkrajang Department of Computer Science Chiang Mai University P (Y ): prior belief, prior

More information

Information Science 2

Information Science 2 Information Science 2 Probability Theory: An Overview Week 12 College of Information Science and Engineering Ritsumeikan University Agenda Terms and concepts from Week 11 Basic concepts of probability

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

7.1 What is it and why should we care?

7.1 What is it and why should we care? Chapter 7 Probability In this section, we go over some simple concepts from probability theory. We integrate these with ideas from formal language theory in the next chapter. 7.1 What is it and why should

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information

Probability theory basics

Probability theory basics Probability theory basics Michael Franke Basics of probability theory: axiomatic definition, interpretation, joint distributions, marginalization, conditional probability & Bayes rule. Random variables:

More information

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning 2 Probability Experiment An experiment or random variable is any activity whose outcome is unknown or random upfront: tossing a coin selecting a card from a deck measuring the commuting time on a particular

More information

Statistics 1 - Lecture Notes Chapter 1

Statistics 1 - Lecture Notes Chapter 1 Statistics 1 - Lecture Notes Chapter 1 Caio Ibsen Graduate School of Economics - Getulio Vargas Foundation April 28, 2009 We want to establish a formal mathematic theory to work with results of experiments

More information

Chapter 2 Classical Probability Theories

Chapter 2 Classical Probability Theories Chapter 2 Classical Probability Theories In principle, those who are not interested in mathematical foundations of probability theory might jump directly to Part II. One should just know that, besides

More information

Lecture notes for probability. Math 124

Lecture notes for probability. Math 124 Lecture notes for probability Math 124 What is probability? Probabilities are ratios, expressed as fractions, decimals, or percents, determined by considering results or outcomes of experiments whose result

More information

Probability Theory Review

Probability Theory Review Cogsci 118A: Natural Computation I Lecture 2 (01/07/10) Lecturer: Angela Yu Probability Theory Review Scribe: Joseph Schilz Lecture Summary 1. Set theory: terms and operators In this section, we provide

More information

Notes on Probability

Notes on Probability Notes on Probability Mark Schmidt January 7, 2017 1 Probabilites Consider an event A that may or may not happen. For example, if we roll a dice then we may or may not roll a 6. We use the notation p(a)

More information

Bayesian RL Seminar. Chris Mansley September 9, 2008

Bayesian RL Seminar. Chris Mansley September 9, 2008 Bayesian RL Seminar Chris Mansley September 9, 2008 Bayes Basic Probability One of the basic principles of probability theory, the chain rule, will allow us to derive most of the background material in

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

Naïve Bayes. Vibhav Gogate The University of Texas at Dallas

Naïve Bayes. Vibhav Gogate The University of Texas at Dallas Naïve Bayes Vibhav Gogate The University of Texas at Dallas Supervised Learning of Classifiers Find f Given: Training set {(x i, y i ) i = 1 n} Find: A good approximation to f : X Y Examples: what are

More information

Probability & Random Variables

Probability & Random Variables & Random Variables Probability Probability theory is the branch of math that deals with random events, processes, and variables What does randomness mean to you? How would you define probability in your

More information

Chapter 2. Probability. Math 371. University of Hawai i at Mānoa. Summer 2011

Chapter 2. Probability. Math 371. University of Hawai i at Mānoa. Summer 2011 Chapter 2 Probability Math 371 University of Hawai i at Mānoa Summer 2011 W. DeMeo (williamdemeo@gmail.com) Chapter 2: Probability math.hawaii.edu/ williamdemeo 1 / 8 Outline 1 Chapter 2 Examples Definition

More information

Lecture 4 : Conditional Probability and Bayes Theorem 0/ 26

Lecture 4 : Conditional Probability and Bayes Theorem 0/ 26 0/ 26 The conditional sample space Motivating examples 1. Roll a fair die once 1 2 3 S = 4 5 6 Let A = 6 appears B = an even number appears So P(A) = 1 6 P(B) = 1 2 1/ 26 Now what about P ( 6 appears given

More information

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. NPTEL National Programme on Technology Enhanced Learning. Probability Methods in Civil Engineering

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR. NPTEL National Programme on Technology Enhanced Learning. Probability Methods in Civil Engineering INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR NPTEL National Programme on Technology Enhanced Learning Probability Methods in Civil Engineering Prof. Rajib Maity Department of Civil Engineering IIT Kharagpur

More information

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio

4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio 4 Lecture 4 Notes: Introduction to Probability. Probability Rules. Independence and Conditional Probability. Bayes Theorem. Risk and Odds Ratio Wrong is right. Thelonious Monk 4.1 Three Definitions of

More information

Aarti Singh. Lecture 2, January 13, Reading: Bishop: Chap 1,2. Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell

Aarti Singh. Lecture 2, January 13, Reading: Bishop: Chap 1,2. Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell Machine Learning 0-70/5 70/5-78, 78, Spring 00 Probability 0 Aarti Singh Lecture, January 3, 00 f(x) µ x Reading: Bishop: Chap, Slides courtesy: Eric Xing, Andrew Moore, Tom Mitchell Announcements Homework

More information

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface

PROBABILITY. Contents Preface 1 1. Introduction 2 2. Combinatorial analysis 5 3. Stirling s formula 8. Preface PROBABILITY VITTORIA SILVESTRI Contents Preface. Introduction. Combinatorial analysis 5 3. Stirling s formula 8 Preface These lecture notes are for the course Probability IA, given in Lent 09 at the University

More information

1 Probability Theory. 1.1 Introduction

1 Probability Theory. 1.1 Introduction 1 Probability Theory Probability theory is used as a tool in statistics. It helps to evaluate the reliability of our conclusions about the population when we have only information about a sample. Probability

More information

Probability Review. Chao Lan

Probability Review. Chao Lan Probability Review Chao Lan Let s start with a single random variable Random Experiment A random experiment has three elements 1. sample space Ω: set of all possible outcomes e.g.,ω={1,2,3,4,5,6} 2. event

More information

CS491/691: Introduction to Aerial Robotics

CS491/691: Introduction to Aerial Robotics CS491/691: Introduction to Aerial Robotics Topic: State Estimation Dr. Kostas Alexis (CSE) World state (or system state) Belief state: Our belief/estimate of the world state World state: Real state of

More information

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed.

STAT 302 Introduction to Probability Learning Outcomes. Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. STAT 302 Introduction to Probability Learning Outcomes Textbook: A First Course in Probability by Sheldon Ross, 8 th ed. Chapter 1: Combinatorial Analysis Demonstrate the ability to solve combinatorial

More information

Probability the chance that an uncertain event will occur (always between 0 and 1)

Probability the chance that an uncertain event will occur (always between 0 and 1) Quantitative Methods 2013 1 Probability as a Numerical Measure of the Likelihood of Occurrence Probability the chance that an uncertain event will occur (always between 0 and 1) Increasing Likelihood of

More information

Advanced Herd Management Probabilities and distributions

Advanced Herd Management Probabilities and distributions Advanced Herd Management Probabilities and distributions Anders Ringgaard Kristensen Slide 1 Outline Probabilities Conditional probabilities Bayes theorem Distributions Discrete Continuous Distribution

More information

Lecture 1. ABC of Probability

Lecture 1. ABC of Probability Math 408 - Mathematical Statistics Lecture 1. ABC of Probability January 16, 2013 Konstantin Zuev (USC) Math 408, Lecture 1 January 16, 2013 1 / 9 Agenda Sample Spaces Realizations, Events Axioms of Probability

More information

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01

STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 STAT 499/962 Topics in Statistics Bayesian Inference and Decision Theory Jan 2018, Handout 01 Nasser Sadeghkhani a.sadeghkhani@queensu.ca There are two main schools to statistical inference: 1-frequentist

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Probability Review

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Probability Review STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Probability Review Some slides are taken (or modified) from Carlos Guestrin s 10-708 Probabilistic Graphical Models Fall 2008 at CMU

More information

Basics of Probability

Basics of Probability Basics of Probability Lecture 1 Doug Downey, Northwestern EECS 474 Events Event space E.g. for dice, = {1, 2, 3, 4, 5, 6} Set of measurable events S 2 E.g., = event we roll an even number = {2, 4, 6} S

More information

Edge Detection in Computer Vision Systems

Edge Detection in Computer Vision Systems 1 CS332 Visual Processing in Computer and Biological Vision Systems Edge Detection in Computer Vision Systems This handout summarizes much of the material on the detection and description of intensity

More information

Chapter 6: Probability The Study of Randomness

Chapter 6: Probability The Study of Randomness Chapter 6: Probability The Study of Randomness 6.1 The Idea of Probability 6.2 Probability Models 6.3 General Probability Rules 1 Simple Question: If tossing a coin, what is the probability of the coin

More information