Tutorial 9 The Discrete Fourier Transform (DFT) SIPC , Spring 2017 Technion, CS Department

Size: px
Start display at page:

Download "Tutorial 9 The Discrete Fourier Transform (DFT) SIPC , Spring 2017 Technion, CS Department"

Transcription

1 Tutorial 9 The Discrete Fourier Transform (DFT) SIPC , Spring 2017 Technion, CS Department

2 The DFT Matrix The DFT matrix of size M M is defined as DFT = 1 M W 0 0 W 0 W 0 W where W = e i2π M i = 1 and denotes complex conjugate The DFT matrix is symmetric and unitary, hence, its inverse is DFT = 1 M W W W 0 W i.e., DFT DFT = DFT DFT = I , CS Department, Technion

3 Representation of a Discrete Signal in the DFT Domain Uniform sampling of the continuous signal φ t provides us the discrete set of M 2N + 1 samples: φ N, φ N 1,, φ 0,, φ N 1, φ N that can be also arranged in a column vector as follows: φ = φ 0 φ 1 φ N φ N φ N 1 φ 1 Note the position of the negative-indexed samples , CS Department, Technion

4 Representation of a Discrete Signal in the DFT Domain The representation of the discrete signal φ is φ F = DFT φ or in a more explicit form: φ 0 F φ 1 F φ N F F φ N F φ N 1 F φ 1 = 1 M W W W 0 W φ 0 φ 1 φ N φ N φ N 1 φ 1 Note that the negative index k (for k = 1,, N) can be considered also as the positive index M k.

5 Representation of a Discrete Signal in the DFT Domain The DFT-domain representation is obtained via φ F = DFT φ Multiplying both sides of the equation by DFT, i.e., DFT φ F = DFT DFT φ and, as the DFT matrix is unitary, we get φ = DFT φ F which is the inverse DFT procedure: Given φ F it provides the signal-domain representation φ , CS Department, Technion

6 DFT Example #1: The Kronecker Delta Consider the following discrete signal of M samples: For n = 0,, M 1 : φ n = δ n,n0 1, for n = n 0 0, otherwise where n 0 0,, M 1 δ n,n0 is also known as the Kronecker delta, here shifted to n 0. The DFT of the above signal is φ F = 1 M W W W 0 W The n th entry = 1 M The n th column of the DFT matrix W 0 n 0 W 1 n 0 W n 0 = 1 M e i2π M 0 n 0 e i2π M 1 n 0 e i2π M n 0 Note the particular case of n 0 = 0.

7 DFT Example #2: Cosine Signal Consider the following discrete signal of M samples: For n = 0,, M 1 : φ n = cos 2πk 0 M n where k 0 0,, M 1 Recall that cos 2πk 0 M n = 1 2 ei2πk0 M n e i2πk 0 M n = 1 2 Wk 0n + W k 0n The k th component of the DFT-domain representation of the above signal is φ k F = 1 M W k n φ n = 1 M W k n 1 2 Wk 0n + W k 0n = = 1 M 1 2 W k n W k0n + 1 W k n W k 0n = 1 2 M 1 2 W k k 0 n W k+k 0 n

8 DFT Example #2: Cosine Signal Let us examine the expression W k k 0 n : For k = k 0 : W k k 0 n = W 0 n = 1 = M For k k 0 : W k k 0 n = W k k 0 n = W k k 0 M 1 W k k 0 1 Sum of a geometric series Recall that W = e i2π M [and that W 0, W 1,, W are the M roots (of order M) of unity]. Noting that W k k 0 M = W M k k 0 = e i2π M M k k 0 = e i2π k k0 = 1 implies For k k 0 : W k k 0 n = 0 W k k 0 n = M δ k,k0 M, for k = k 0 0, otherwise

9 DFT Example #2: Cosine Signal Using the last result W k k 0 n = M δ k,k0 M, for k = k 0 0, otherwise The following development justifies the correspondence between the negative index k 0 and the index M k 0 : W k+k 0 n = W k+k 0 M n = W k M k 0 n = M δ k,m k0 M, for k = M k 0 0, otherwise We develop the expression for the k th component of the DFT-domain representation of the cosine signal: φ k F = 1 M 1 2 W k k 0 n + 1 W k+k 0 n = 1 2 M 1 2 M δ k,k M δ k,m k 0 = = M 2 δ k,k 0 + M 2 δ k,m k 0

10 We are given a noisy image of size : I noisy r, n = I r, n + noise r, n The noise is harmonic and follows the formula: noise[ r, n] A cos 2 fn r r f = 1 8 pixels The amplitude, A, and the phase, φ, are random and independent for each line.

11 A rad

12

13 The Image-Domain Smoothing Alternative

14 Alternatives: Smoothing vs Median (8 pixels) No noise but image is blurred

15 DFT of the noise in line r 1 Recall that M 256 and f, hence 8 r 32 noise A cos 2 fn A cos 2 n r r r n r M Then, since the signal is a shifted cosine function, its DFT is DFT noise r k M A e 2 r i r, k 32, 224 0, else Here we would like to handle frequencies 32 and 224 (recall that 224 can also be considered as -32).

16 Noisy signal in DFT domain Filtered signal in DFT domain Notch Filter: Attenuate Specific Frequencies

17 The noise was significantly removed. Original image was not fully restored We cannot restore the attenuated frequencies

18 Notch filter Smoothing filter of 8 pixels

19 Implementation Filter in freq. domain: Filter=ones(1,256); Filter(32+1)=0; Filter(224+1)=0; Notch filter in the DFT domain Filtration: For k=1:size(i,1), Y=fft(I(k,:)).*Filter; I(k,:)=ifft(Y); end

Computer Vision. Filtering in the Frequency Domain

Computer Vision. Filtering in the Frequency Domain Computer Vision Filtering in the Frequency Domain Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 Introduction

More information

FILTERING IN THE FREQUENCY DOMAIN

FILTERING IN THE FREQUENCY DOMAIN 1 FILTERING IN THE FREQUENCY DOMAIN Lecture 4 Spatial Vs Frequency domain 2 Spatial Domain (I) Normal image space Changes in pixel positions correspond to changes in the scene Distances in I correspond

More information

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain 10/31/05 wk9-a-1 The spatial frequency domain Recall: plane wave propagation x path delay increases linearly with x λ z=0 θ E 0 x exp i2π sinθ + λ z i2π cosθ λ z plane of observation 10/31/05 wk9-a-2 Spatial

More information

Lecture 7 January 26, 2016

Lecture 7 January 26, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 26 Elements of Modern Signal Processing Lecture 7 January 26, 26 Prof Emmanuel Candes Scribe: Carlos A Sing-Long, Edited by E Bates Outline Agenda:

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Wiener Filter for Deterministic Blur Model

Wiener Filter for Deterministic Blur Model Wiener Filter for Deterministic Blur Model Based on Ch. 5 of Gonzalez & Woods, Digital Image Processing, nd Ed., Addison-Wesley, 00 One common application of the Wiener filter has been in the area of simultaneous

More information

FOURIER TRANSFORM METHODS David Sandwell, January, 2013

FOURIER TRANSFORM METHODS David Sandwell, January, 2013 1 FOURIER TRANSFORM METHODS David Sandwell, January, 2013 1. Fourier Transforms Fourier analysis is a fundamental tool used in all areas of science and engineering. The fast fourier transform (FFT) algorithm

More information

Vibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response

Vibration Testing. an excitation source a device to measure the response a digital signal processor to analyze the system response Vibration Testing For vibration testing, you need an excitation source a device to measure the response a digital signal processor to analyze the system response i) Excitation sources Typically either

More information

Discrete Math, Spring Solutions to Problems V

Discrete Math, Spring Solutions to Problems V Discrete Math, Spring 202 - Solutions to Problems V Suppose we have statements P, P 2, P 3,, one for each natural number In other words, we have the collection or set of statements {P n n N} a Suppose

More information

Discrete-Time Fourier Transform

Discrete-Time Fourier Transform Discrete-Time Fourier Transform Chapter Intended Learning Outcomes: (i) (ii) (iii) Represent discrete-time signals using discrete-time Fourier transform Understand the properties of discrete-time Fourier

More information

Discrete Fourier Transform

Discrete Fourier Transform Last lecture I introduced the idea that any function defined on x 0,..., N 1 could be written a sum of sines and cosines. There are two different reasons why this is useful. The first is a general one,

More information

Lecture 4 - Spectral Estimation

Lecture 4 - Spectral Estimation Lecture 4 - Spectral Estimation The Discrete Fourier Transform The Discrete Fourier Transform (DFT) is the equivalent of the continuous Fourier Transform for signals known only at N instants separated

More information

CS5540: Computational Techniques for Analyzing Clinical Data. Prof. Ramin Zabih (CS) Prof. Ashish Raj (Radiology)

CS5540: Computational Techniques for Analyzing Clinical Data. Prof. Ramin Zabih (CS) Prof. Ashish Raj (Radiology) CS5540: Computational Techniques for Analyzing Clinical Data Prof. Ramin Zabih (CS) Prof. Ashish Raj (Radiology) Administrivia We re going to try to end class by 2:25 Like the registrar believes Sign up

More information

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes Jim ambers ENERGY 28 Spring Quarter 27-8 ecture 5 Notes These notes are based on Rosalind Archer s PE28 lecture notes, with some revisions by Jim ambers. Fourier Series Recall that in ecture 2, when we

More information

10.6 Alternating Series, Absolute and Conditional Convergence

10.6 Alternating Series, Absolute and Conditional Convergence 10.6 Alternating Series, Absolute and Conditional Convergence The Theorem Theorem The series converges if: n=1 1 The u n s are all positive 2 u n u n+1 n N, N Z 3 u n 0 ( 1) k+1 u n = u 1 u 2 + u 3 First

More information

PART 1. Review of DSP. f (t)e iωt dt. F(ω) = f (t) = 1 2π. F(ω)e iωt dω. f (t) F (ω) The Fourier Transform. Fourier Transform.

PART 1. Review of DSP. f (t)e iωt dt. F(ω) = f (t) = 1 2π. F(ω)e iωt dω. f (t) F (ω) The Fourier Transform. Fourier Transform. PART 1 Review of DSP Mauricio Sacchi University of Alberta, Edmonton, AB, Canada The Fourier Transform F() = f (t) = 1 2π f (t)e it dt F()e it d Fourier Transform Inverse Transform f (t) F () Part 1 Review

More information

C241 Homework Assignment 7

C241 Homework Assignment 7 C24 Homework Assignment 7. Prove that for all whole numbers n, n i 2 = n(n + (2n + The proof is by induction on k with hypothesis H(k i 2 = k(k + (2k + base case: To prove H(, i 2 = = = 2 3 = ( + (2 +

More information

Digital Image Processing. Chapter 4: Image Enhancement in the Frequency Domain

Digital Image Processing. Chapter 4: Image Enhancement in the Frequency Domain Digital Image Processing Chapter 4: Image Enhancement in the Frequency Domain Image Enhancement in Frequency Domain Objective: To understand the Fourier Transform and frequency domain and how to apply

More information

4.3 The Discrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT)

4.3 The Discrete Fourier Transform (DFT) and the Fast Fourier Transform (FFT) CHAPTER. TIME-FREQUECY AALYSIS: FOURIER TRASFORMS AD WAVELETS.3 The Discrete Fourier Transform (DFT and the Fast Fourier Transform (FFT.3.1 Introduction In this section, we discuss some of the mathematics

More information

The spatial frequency domain

The spatial frequency domain The spatial frequenc /3/5 wk9-a- Recall: plane wave propagation λ z= θ path dela increases linearl with E ep i2π sinθ + λ z i2π cosθ λ z plane of observation /3/5 wk9-a-2 Spatial frequenc angle of propagation?

More information

Frequency Response and Continuous-time Fourier Series

Frequency Response and Continuous-time Fourier Series Frequency Response and Continuous-time Fourier Series Recall course objectives Main Course Objective: Fundamentals of systems/signals interaction (we d like to understand how systems transform or affect

More information

Contents. Signals as functions (1D, 2D)

Contents. Signals as functions (1D, 2D) Fourier Transform The idea A signal can be interpreted as en electromagnetic wave. This consists of lights of different color, or frequency, that can be split apart usign an optic prism. Each component

More information

SNR Calculation and Spectral Estimation [S&T Appendix A]

SNR Calculation and Spectral Estimation [S&T Appendix A] SR Calculation and Spectral Estimation [S&T Appendix A] or, How not to make a mess of an FFT Make sure the input is located in an FFT bin 1 Window the data! A Hann window works well. Compute the FFT 3

More information

Contents. Signals as functions (1D, 2D)

Contents. Signals as functions (1D, 2D) Fourier Transform The idea A signal can be interpreted as en electromagnetic wave. This consists of lights of different color, or frequency, that can be split apart usign an optic prism. Each component

More information

ESS Finite Impulse Response Filters and the Z-transform

ESS Finite Impulse Response Filters and the Z-transform 9. Finite Impulse Response Filters and the Z-transform We are going to have two lectures on filters you can find much more material in Bob Crosson s notes. In the first lecture we will focus on some of

More information

COMP344 Digital Image Processing Fall 2007 Final Examination

COMP344 Digital Image Processing Fall 2007 Final Examination COMP344 Digital Image Processing Fall 2007 Final Examination Time allowed: 2 hours Name Student ID Email Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Total With model answer HK University

More information

Tutorial 5 Clifford Algebra and so(n)

Tutorial 5 Clifford Algebra and so(n) Tutorial 5 Clifford Algebra and so(n) 1 Definition of Clifford Algebra A set of N Hermitian matrices γ 1, γ,..., γ N obeying the anti-commutator γ i, γ j } = δ ij I (1) is the basis for an algebra called

More information

Empirical Mean and Variance!

Empirical Mean and Variance! Global Image Properties! Global image properties refer to an image as a whole rather than components. Computation of global image properties is often required for image enhancement, preceding image analysis.!

More information

6.003: Signals and Systems Lecture 18 April 13, 2010

6.003: Signals and Systems Lecture 18 April 13, 2010 6.003: Signals and Systems Lecture 8 April 3, 200 6.003: Signals and Systems Discrete-Time Frequency Representations Signals and/or Systems Two perspectives: feedback and control (focus on systems) X +

More information

The Analysis of Data Sequences in the Time and Frequency Domains 1

The Analysis of Data Sequences in the Time and Frequency Domains 1 The Analysis of Data Sequences in the Time and Frequency Domains 1 D. E. Smylie 1 c D. E. Smylie, 2004. Contents 1 Time Domain Data Sequences 1 1.1 Discrete, Equispaced Data Sequences....... 1 1.2 Power

More information

Histogram Processing

Histogram Processing Histogram Processing The histogram of a digital image with gray levels in the range [0,L-] is a discrete function h ( r k ) = n k where r k n k = k th gray level = number of pixels in the image having

More information

Image Degradation Model (Linear/Additive)

Image Degradation Model (Linear/Additive) Image Degradation Model (Linear/Additive),,,,,,,, g x y f x y h x y x y G u v F u v H u v N u v 1 Source of noise Objects Impurities Image acquisition (digitization) Image transmission Spatial properties

More information

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d!

Summary of lecture 1. E x = E x =T. X T (e i!t ) which motivates us to define the energy spectrum Φ xx (!) = jx (i!)j 2 Z 1 Z =T. 2 d! Summary of lecture I Continuous time: FS X FS [n] for periodic signals, FT X (i!) for non-periodic signals. II Discrete time: DTFT X T (e i!t ) III Poisson s summation formula: describes the relationship

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:305:45 CBC C222 Lecture 8 Frequency Analysis 14/02/18 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Correlation, discrete Fourier transforms and the power spectral density

Correlation, discrete Fourier transforms and the power spectral density Correlation, discrete Fourier transforms and the power spectral density visuals to accompany lectures, notes and m-files by Tak Igusa tigusa@jhu.edu Department of Civil Engineering Johns Hopkins University

More information

6.003: Signals and Systems

6.003: Signals and Systems 6.003: Signals and Systems Discrete-Time Frequency Representations November 8, 2011 1 Mid-term Examination #3 Wednesday, November 16, 7:30-9:30pm, No recitations on the day of the exam. Coverage: Lectures

More information

Multidimensional Signal Processing

Multidimensional Signal Processing Multidimensional Signal Processing Mark Eisen, Alec Koppel, and Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/

More information

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform Cris Luengo TD396 fall 4 cris@cbuuse Today s lecture Local neighbourhood processing smoothing an image sharpening an image The convolution What is it? What is it useful for? How can I compute it? Removing

More information

Discrete Time Fourier Transform (DTFT)

Discrete Time Fourier Transform (DTFT) Discrete Time Fourier Transform (DTFT) 1 Discrete Time Fourier Transform (DTFT) The DTFT is the Fourier transform of choice for analyzing infinite-length signals and systems Useful for conceptual, pencil-and-paper

More information

Fast Fourier Transform

Fast Fourier Transform Fast Fourier Transform December 8, 2016 FFT JPEG RGB Y C B C R (luma (brightness), chroma 2 (color)) chroma resolution is reduced image is split in blocks 8 8 pixels JPEG RGB Y C B C R (luma (brightness),

More information

Fourier Series Representation of

Fourier Series Representation of Fourier Series Representation of Periodic Signals Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline The response of LIT system

More information

L6: Short-time Fourier analysis and synthesis

L6: Short-time Fourier analysis and synthesis L6: Short-time Fourier analysis and synthesis Overview Analysis: Fourier-transform view Analysis: filtering view Synthesis: filter bank summation (FBS) method Synthesis: overlap-add (OLA) method STFT magnitude

More information

Contents. Signals as functions (1D, 2D)

Contents. Signals as functions (1D, 2D) Fourier Transform The idea A signal can be interpreted as en electromagnetic wave. This consists of lights of different color, or frequency, that can be split apart usign an optic prism. Each component

More information

Discrete Fourier transform

Discrete Fourier transform Discrete Fourier transform Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/ January 2, 216 Signal

More information

Group representations

Group representations Group representations A representation of a group is specified by a set of hermitian matrices that obey: (the original set of NxN dimensional matrices for SU(N) or SO(N) corresponds to the fundamental

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Restoration and Reconstruction I Dr. D. J. Jackson Lecture 11-1 Image restoration Restoration is an objective process that attempts to recover an image

More information

Introduction to Linear Systems

Introduction to Linear Systems cfl David J Fleet, 998 Introduction to Linear Systems David Fleet For operator T, input I, and response R = T [I], T satisfies: ffl homogeniety: iff T [ai] = at[i] 8a 2 C ffl additivity: iff T [I + I 2

More information

Numerical Methods I Orthogonal Polynomials

Numerical Methods I Orthogonal Polynomials Numerical Methods I Orthogonal Polynomials Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course G63.2010.001 / G22.2420-001, Fall 2010 Nov. 4th and 11th, 2010 A. Donev (Courant Institute)

More information

Two-Dimensional Signal Processing and Image De-noising

Two-Dimensional Signal Processing and Image De-noising Two-Dimensional Signal Processing and Image De-noising Alec Koppel, Mark Eisen, Alejandro Ribeiro March 12, 2018 Until now, we considered (one-dimensional) discrete signals of the form x : [0, N 1] C of

More information

Evaluating Fourier Transforms with MATLAB

Evaluating Fourier Transforms with MATLAB ECE 460 Introduction to Communication Systems MATLAB Tutorial #2 Evaluating Fourier Transforms with MATLAB In class we study the analytic approach for determining the Fourier transform of a continuous

More information

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Today s lecture The Fourier transform What is it? What is it useful for? What are its properties? Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Jean Baptiste Joseph Fourier

More information

Preconditioning. Noisy, Ill-Conditioned Linear Systems

Preconditioning. Noisy, Ill-Conditioned Linear Systems Preconditioning Noisy, Ill-Conditioned Linear Systems James G. Nagy Emory University Atlanta, GA Outline 1. The Basic Problem 2. Regularization / Iterative Methods 3. Preconditioning 4. Example: Image

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Image Transforms Unitary Transforms and the 2D Discrete Fourier Transform DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON What is this

More information

Algorithms of Scientific Computing

Algorithms of Scientific Computing Algorithms of Scientific Computing Discrete Fourier Transform (DFT) Michael Bader Technical University of Munich Summer 2018 Fast Fourier Transform Outline Discrete Fourier transform Fast Fourier transform

More information

Preconditioning. Noisy, Ill-Conditioned Linear Systems

Preconditioning. Noisy, Ill-Conditioned Linear Systems Preconditioning Noisy, Ill-Conditioned Linear Systems James G. Nagy Emory University Atlanta, GA Outline 1. The Basic Problem 2. Regularization / Iterative Methods 3. Preconditioning 4. Example: Image

More information

Quality Improves with More Rays

Quality Improves with More Rays Recap Quality Improves with More Rays Area Area 1 shadow ray 16 shadow rays CS348b Lecture 8 Pat Hanrahan / Matt Pharr, Spring 2018 pixelsamples = 1 jaggies pixelsamples = 16 anti-aliased Sampling and

More information

Computational Methods CMSC/AMSC/MAPL 460. Fourier transform

Computational Methods CMSC/AMSC/MAPL 460. Fourier transform Computational Methods CMSC/AMSC/MAPL 460 Fourier transform Ramani Duraiswami, Dept. of Computer Science Several slides from Prof. Healy s course at UMD Fourier Methods Fourier analysis ( harmonic analysis

More information

Review of Linear System Theory

Review of Linear System Theory Review of Linear System Theory The following is a (very) brief review of linear system theory and Fourier analysis. I work primarily with discrete signals. I assume the reader is familiar with linear algebra

More information

Numerical Linear Algebra and. Image Restoration

Numerical Linear Algebra and. Image Restoration Numerical Linear Algebra and Image Restoration Maui High Performance Computing Center Wednesday, October 8, 2003 James G. Nagy Emory University Atlanta, GA Thanks to: AFOSR, Dave Tyler, Stuart Jefferies,

More information

Designing Information Devices and Systems I Spring 2016 Official Lecture Notes Note 21

Designing Information Devices and Systems I Spring 2016 Official Lecture Notes Note 21 EECS 6A Designing Information Devices and Systems I Spring 26 Official Lecture Notes Note 2 Introduction In this lecture note, we will introduce the last topics of this semester, change of basis and diagonalization.

More information

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang

System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang System Modeling and Identification CHBE 702 Korea University Prof. Dae Ryook Yang 1-1 Course Description Emphases Delivering concepts and Practice Programming Identification Methods using Matlab Class

More information

Nov : Lecture 18: The Fourier Transform and its Interpretations

Nov : Lecture 18: The Fourier Transform and its Interpretations 3 Nov. 04 2005: Lecture 8: The Fourier Transform and its Interpretations Reading: Kreyszig Sections: 0.5 (pp:547 49), 0.8 (pp:557 63), 0.9 (pp:564 68), 0.0 (pp:569 75) Fourier Transforms Expansion of a

More information

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2:

EEM 409. Random Signals. Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Problem 2: EEM 409 Random Signals Problem Set-2: (Power Spectral Density, LTI Systems with Random Inputs) Problem 1: Consider a random process of the form = + Problem 2: X(t) = b cos(2π t + ), where b is a constant,

More information

The Discrete Fourier Transform

The Discrete Fourier Transform The Discrete Fourier Transform / 23 The Fourier Transform Any discrete time series exponentials: can be built up of a sum of complex = X m e i2πmn/, n = 0,, m=0 = [ + + + + ]. X 0 X e i2πn (/) X 2 e i2πn

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

Lecture? Using the FFT for Computation

Lecture? Using the FFT for Computation Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu Lecture? Using the FFT for Computation EE 4386/5301 Computational Methods in EE Outline What is a Fourier

More information

lecture 7: Trigonometric Interpolation

lecture 7: Trigonometric Interpolation lecture : Trigonometric Interpolation 9 Trigonometric interpolation for periodic functions Thus far all our interpolation schemes have been based on polynomials However, if the function f is periodic,

More information

sinc function T=1 sec T=2 sec angle(f(w)) angle(f(w))

sinc function T=1 sec T=2 sec angle(f(w)) angle(f(w)) T=1 sec sinc function 3 angle(f(w)) T=2 sec angle(f(w)) 1 A quick script to plot mag & phase in MATLAB w=0:0.2:50; Real exponential func b=5; Fourier transform (filter) F=1.0./(b+j*w); subplot(211), plot(w,

More information

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington

Image Filtering. Slides, adapted from. Steve Seitz and Rick Szeliski, U.Washington Image Filtering Slides, adapted from Steve Seitz and Rick Szeliski, U.Washington The power of blur All is Vanity by Charles Allen Gillbert (1873-1929) Harmon LD & JuleszB (1973) The recognition of faces.

More information

Data Processing and Analysis

Data Processing and Analysis Data Processing and Analysis Rick Aster and Brian Borchers October 10, 2008 Sampled Time Series Commonly, scientific data consist of numerical series or matrices, i.e., sets of spatially or temporally

More information

Image Enhancement in the frequency domain. GZ Chapter 4

Image Enhancement in the frequency domain. GZ Chapter 4 Image Enhancement in the frequency domain GZ Chapter 4 Contents In this lecture we will look at image enhancement in the frequency domain The Fourier series & the Fourier transform Image Processing in

More information

Poles and Zeros in z-plane

Poles and Zeros in z-plane M58 Mixed Signal Processors page of 6 Poles and Zeros in z-plane z-plane Response of discrete-time system (i.e. digital filter at a particular frequency ω is determined by the distance between its poles

More information

Advanced Digital Signal Processing -Introduction

Advanced Digital Signal Processing -Introduction Advanced Digital Signal Processing -Introduction LECTURE-2 1 AP9211- ADVANCED DIGITAL SIGNAL PROCESSING UNIT I DISCRETE RANDOM SIGNAL PROCESSING Discrete Random Processes- Ensemble Averages, Stationary

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS) Image Processing 1 (IP1) Bildverarbeitung 1 Lecture 7 Spectral Image Processing and Convolution Winter Semester 2014/15 Slides: Prof. Bernd

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Virtually all practical signals have finite length (e.g., sensor data, audio records, digital images, stock values, etc). Rather than considering such signals to be zero-padded

More information

1. Calculation of the DFT

1. Calculation of the DFT ELE E4810: Digital Signal Processing Topic 10: The Fast Fourier Transform 1. Calculation of the DFT. The Fast Fourier Transform algorithm 3. Short-Time Fourier Transform 1 1. Calculation of the DFT! Filter

More information

It is common to think and write in time domain. creating the mathematical description of the. Continuous systems- using Laplace or s-

It is common to think and write in time domain. creating the mathematical description of the. Continuous systems- using Laplace or s- It is common to think and write in time domain quantities, but this is not the best thing to do in creating the mathematical description of the system we are dealing with. Continuous systems- using Laplace

More information

2D Discrete Fourier Transform (DFT)

2D Discrete Fourier Transform (DFT) 2D Discrete Fourier Transform (DFT) Outline Circular and linear convolutions 2D DFT 2D DCT Properties Other formulations Examples 2 2D Discrete Fourier Transform Fourier transform of a 2D signal defined

More information

Multiscale Image Transforms

Multiscale Image Transforms Multiscale Image Transforms Goal: Develop filter-based representations to decompose images into component parts, to extract features/structures of interest, and to attenuate noise. Motivation: extract

More information

Principal Components Analysis

Principal Components Analysis Principal Components Analysis Santiago Paternain, Aryan Mokhtari and Alejandro Ribeiro March 29, 2018 At this point we have already seen how the Discrete Fourier Transform and the Discrete Cosine Transform

More information

Physical Acoustics. Hearing is the result of a complex interaction of physics, physiology, perception and cognition.

Physical Acoustics. Hearing is the result of a complex interaction of physics, physiology, perception and cognition. Physical Acoustics Hearing, auditory perception, or audition is the ability to perceive sound by detecting vibrations, changes in the pressure of the surrounding medium through time, through an organ such

More information

chap5_fourier_series_lr_circuit.doc 1/18 Consider the rectangular pulse train of example 3.2 of the text as the input to the series LR circuit.

chap5_fourier_series_lr_circuit.doc 1/18 Consider the rectangular pulse train of example 3.2 of the text as the input to the series LR circuit. chap5_fourier_series_lr_circuit.doc /8 Consider the rectangular pulse train of eample 3.2 of the tet as the input to the series LR circuit. t () -3-2 - 2 3 Rectangular pulse train (t) input signal. t (sec)

More information

Chapter 1. Discrete Fourier Transform. 1.1 Fourier series

Chapter 1. Discrete Fourier Transform. 1.1 Fourier series Chapter Discrete Fourier Transform We usually think about processes around us as functions of time. However, it is often useful to think about them as functions of frequencies. We naturally do this without

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 02 DSP Fundamentals 14/01/21 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Images have structure at various scales

Images have structure at various scales Images have structure at various scales Frequency Frequency of a signal is how fast it changes Reflects scale of structure A combination of frequencies 0.1 X + 0.3 X + 0.5 X = Fourier transform Can we

More information

Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio

Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio Topic 7 Convolution, Filters, Correlation, Representation Short time Fourier Transform Break signal into windows Calculate DFT of each window The Spectrogram spectrogram(y,1024,512,1024,fs,'yaxis'); A

More information

5. Orthogonal matrices

5. Orthogonal matrices L Vandenberghe EE133A (Spring 2017) 5 Orthogonal matrices matrices with orthonormal columns orthogonal matrices tall matrices with orthonormal columns complex matrices with orthonormal columns 5-1 Orthonormal

More information

Wavelets. Lecture 28

Wavelets. Lecture 28 Wavelets. Lecture 28 Just like the FFT, the wavelet transform is an operation that can be performed in a fast way. Operating on an input vector representing a sampled signal, it can be viewed, just like

More information

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018

6.869 Advances in Computer Vision. Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 6.869 Advances in Computer Vision Bill Freeman, Antonio Torralba and Phillip Isola MIT Oct. 3, 2018 1 Sampling Sampling Pixels Continuous world 3 Sampling 4 Sampling 5 Continuous image f (x, y) Sampling

More information

IMAGE ENHANCEMENT II (CONVOLUTION)

IMAGE ENHANCEMENT II (CONVOLUTION) MOTIVATION Recorded images often exhibit problems such as: blurry noisy Image enhancement aims to improve visual quality Cosmetic processing Usually empirical techniques, with ad hoc parameters ( whatever

More information

EE 341 A Few Review Problems Fall 2018

EE 341 A Few Review Problems Fall 2018 EE 341 A Few Review Problems Fall 2018 1. A linear, time-invariant system with input, xx(tt), and output, yy(tt), has the unit-step response, cc(tt), shown below. a. Find, and accurately sketch, the system

More information

Image Analysis. 3. Fourier Transform

Image Analysis. 3. Fourier Transform Image Analysis Image Analysis 3. Fourier Transform Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems & Institute for Computer

More information

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

8.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 8. Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = Examples: 6. Find a formula for the general term a n of the sequence, assuming

More information

Mathematics of Information Spring semester 2018

Mathematics of Information Spring semester 2018 Communication Technology Laboratory Prof. Dr. H. Bölcskei Sternwartstrasse 7 CH-809 Zürich Mathematics of Information Spring semester 08 Solution to Homework Problem Overcomplete expansion in R a) Consider

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Vibration Testing. Typically either instrumented hammers or shakers are used.

Vibration Testing. Typically either instrumented hammers or shakers are used. Vibration Testing Vibration Testing Equipment For vibration testing, you need an excitation source a device to measure the response a digital signal processor to analyze the system response Excitation

More information

PSET 0 Due Today by 11:59pm Any issues with submissions, post on Piazza. Fall 2018: T-R: Lopata 101. Median Filter / Order Statistics

PSET 0 Due Today by 11:59pm Any issues with submissions, post on Piazza. Fall 2018: T-R: Lopata 101. Median Filter / Order Statistics CSE 559A: Computer Vision OFFICE HOURS This Friday (and this Friday only): Zhihao's Office Hours in Jolley 43 instead of 309. Monday Office Hours: 5:30-6:30pm, Collaboration Space @ Jolley 27. PSET 0 Due

More information

Wavelets on Z N. Milos Savic

Wavelets on Z N. Milos Savic Student-Faculty Seminar Wavelets on Z N Milos Savic Milos Savic graduated in May 004 with a major in Mathematics and minors in Computer Science and Business. He has played soccer and water polo during

More information

Dielectrics. Lecture 20: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay

Dielectrics. Lecture 20: Electromagnetic Theory. Professor D. K. Ghosh, Physics Department, I.I.T., Bombay What are dielectrics? Dielectrics Lecture 20: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay So far we have been discussing electrostatics in either vacuum or in a conductor.

More information

Convergence of Some Divergent Series!

Convergence of Some Divergent Series! Convergence of Some Divergent Series! T. Muthukumar tmk@iitk.ac.in 9 Jun 04 The topic of this article, the idea of attaching a finite value to divergent series, is no longer a purely mathematical exercise.

More information