Selamat Kembali Ke Parit Raja.. BDA30703 Kejuruteraan Kawalan Seksyen S5

Size: px
Start display at page:

Download "Selamat Kembali Ke Parit Raja.. BDA30703 Kejuruteraan Kawalan Seksyen S5"

Transcription

1 PROFESOR MADYA DR. ZAMRI BIN OMAR Timbalan Dekan (Hal Ehwal Pelajar & Alumni) Fakulti Kejuruteraan Mekanikal & Pembuatan Selamat Kembali Ke Parit Raja.. BDA30703 Kejuruteraan Kawalan Seksyen S5 zamri@uthm.edu.my Phone : Room: A41 st Floor Mobile : (text only) Assoc. Professor at Aeronautical Eng. Dept. B.Eng(MechAero), UTM M.Eng (Mech), UTM PhD (Aerospace), RMIT University Private Pilot License (DCA) Semester I 2015/2016 BDA ~ Control Engineering Section 5 Meeting: 3 hrs/week Venue: G3BKB 1 Day : Sunday (10am11am) Thursday (8am10am) 1

2 Important Reminder.. 1. Class participation 3. Communication 4. ELearning: Author 5. Some rules; punctuality, dress code, don'ts.. BDA Control Engineering Sem I 15/16 Chapter 1 Introduction & Block Diagram Chapter 2 Mathematical Modeling Chapter 3 Time Response Analysis Chapter 4 Stability & Root Locus Method Chapter 5 Frequency Response Analysis Chapter 6 Control System Design RPP; a. Syllabus b. Assesment c. References Total lecture weeks : 14 1st Part : 7 Weeks 2st Part : 7 Weeks MidSem Break : Study Week : Exam : 2

3 Chap 1 : Intro & Block Diagram How to control? Chap 1 : Intro & Block Diagram What is Control Engineering? deals with dailylife physical systems. dynamic systems, contain several variables need to be controlled control approach: develop math. model, time & frequency response analysis, stability. U3 Systems? an assemblage of interrelated components. governed by physical laws. also has diverse meaning. Engineering? Engineer?? 3

4 Slide 6 U3 stop here UTHM, 10/09/2015

5 C1 : Block Diagram Representation Systems Representation represented as block diagram disturbances, n(t) input, u(t) System components output, y(t) a block has input, output. arrow represents signal (arrow in is i/p, arrow out is o/p) Single input/output(siso), multiple input/output (MIMO) disturbance may occur. input; controlled signal output; dependent signal disturbance; uncontrolled i/p signal C1 : Block Diagram Example; Power Plant System Fuel rate, f Boiler Steam pressure, p Turbine Mechanical rotational power, T Electrical generator Electrical power, W disturbance disturbance disturbance input; fuel rate, f (m 3 /s) output; electrical power, W (KW) System components; represent by blocks output of a block = input to another block disturbance; system inefficiency, weather 4

6 C1 : Control System & Open Loop Knob setting Control System a device to control the power source to cause the output is a depenndent of the input it has objectives!! to design a startegy; the o/p is as desired. 2 control strategies; open loop, closed loop Open Loop Control o/p has no effect on the control action. contains one signal path Switch Controller 1.Low (27 o C ) 2. Med (20 o C ) 3. High (16 o C ) R 1 R 2 R3 Aircond system Process Room C1 : Open Loop Control Switch Controller Process Knob setting 1.Low (27 o C ) 2. Med (20 o C ) R 1 R 2 Room 3. High (16 o C ) R3 Open Loop Control room T is controlled by knob settings each setting causes a diferrent electrical current (power) syst. Performance; depends on the controller accuracy user can t control; ambient temperature, efficiency of cooling element if any disturbance occurred; a/s system connnot correct itself 5

7 C 1 : Open Loop Block Diagram The aircond system can be represented by the following block diagram Cooling level ( switch ) Controller Current Cooling element Cooling rate Room Room temperature components; controller, system a one way signals Might not get the desired room temperature; controller inefficiency ambient temperature C1 : Closed Loop Control Closed Loop Control the performance of a/c system can be improved by introducing; an operator (Ali) dedicated to control the knob settings a room temperature sensor desired T = medium, set knob to 2 a hot day, T 20 o C; change the knob setting to 3 after a while, T = 16 o C (too cold); change knob setting to 2 please!! the T can be regulated/set at 20 o C, but may be oscillated needs a large effort from the operator this system is known as a closed loop (feedback system); 6

8 C1 : Closed Loop Block Diagram Closed Loop Control extra components; actuator & sensor if the operator is replaced by a mechancial/electrical device; an automatic feedback system C1 : Block Diagram Elements Block Diaram Elements a block / blocks input signal, u System component output signal, v summing point V 1 V V 2 V = V 1 V 2 takeoff point V V V 7

9 C1 : Exercise; Block Diagram Exercise 1 a car driver uses a control system to maintain the speed of the car at a prescribed level. Sketch a block diagram to illustrate the feedback system. C1 : Exercise; Block Diagram Exercise 2 an operator is to maintain the liquid level in the reservoir. The operator compares the actual level with the desired level and opens and closes the valve, adjusting the fluid flow out to maintain the desired level. Sketch the block diagram for this system. 8

10 Block Diagram Examples Block Diagram Examples 9

11 C1 : Transfer Function Concept Transfer Function (TF) a ratio of output to input. Symbol/letter in the block represents TF, G ratio of Laplace transformation of o/p to Laplace transformation of i/p for an open loop system Input, X Transfer function, G Output, Y G ( s ) = Y( s ) X( s ) for a feedback system, C1 : Closed Loop Transfer Function the forward path TF, the feedback path TF, C( s ) G ( s ) = E( s ) F( s ) H ( s ) = C( s ) the open loop TF, the closed loop TF, F( s ) G ( s )H( s ) = R( s ) C( s ) G( s ) = R( s ) 1 G( s )H( s ) 10

12 C1 : Block Diagram Reduction To derive TF Transfer Function in Series consider a system with 2 blocks in series, θ 1 θ2 3 F 2 θ It can be reduced/simplified to, θ3 F 2 TF in series is, θ3 = F1( s )F2 ( s ) C1 : Blocks in Series TF Derivation θ 1 θ2 3 F 2 θ θ 1 and θ 1 can be written as, θ2 = F1 ( s ) θ2 = F1 ( s ) (1) θ3 = F2 ( s ) θ3 = F2 ( s ) θ2 (2) θ2 eliminate θ 2, θ 3 = F2 ( s ) θ2 = F2 ( s )F1 ( s ) θ 3 = F2 ( s )F1 ( s ) TF θ 1 in series proved! For blocks in series, multply all individuals TF to obtain total TF 11

13 C1 : Blocks in Series Example The TF for this power plant system is, W = G( s )M( s )R( s ) f C1 : Blocks in Parellel TF Derivation Transfer Function in Parellel parellel; arrows are in the same direction, not necessarily same signs consider a system with 2 blocks in parellel, θ 2 θ4 F 2 θ 3 It can be reduced/simplifed to, θ4 F 2 12

14 C1 : Blocks in Parellel TF Derivation θ 2 θ4 F 2 θ 3 Tf for each block can be written as, θ F ( s ) 2 θ 1 = θ2 = F1 ( s ) (1) F ( s ) 3 2 = θ3 = F2 ( s ) (2) at the summing point; θ4 = θ2 θ3 (3) thus the overall TF (θ 4 /θ 1 ) is, [ F ( s ) F ( s )] θ4 = θ2 θ3 = F1 ( s ) F2 ( s ) = 1 2 θ 4 = F1 ( s ) F2 ( s ) TF in parellel proved! θ 1 For blocks in parellel, add up all individuals TF to obtain total TF C1 : Blocks in Parellel Example θ 2 θ4 the TF is, θ4 = F1 ( s ) F2 ( s ) Prove it!! F 2 θ 3 C D F 2 F 3 the TF is, D( s ) C( s ) = F1 ( s ) F2 ( s ) F3 ( s ) F4 ( s ) F 4 13

15 C1 : Feedback System (Closed Loop); TF Derivation Transfer Function for Feedback feedback, positive feedback consider a feedback systems, θ 2 θ4 θ 3 F 2 It can be reduced/simplifed to, F θ F F 1 2 carefully examine!! C1 : FB Loop TF Derivation θ 2 θ4 θ 3 F 2 The overall TF (θ 4 /θ 1 ) we can write the following, θ θ 2 = θ3 (1) 4 = F1( s ) θ4 = F1 ( s ) θ2 (2) θ2 θ3 = F2 ( s ) θ4 (3) Eliminate θ 2 and θ 3 θ4 = F1 ( s ) [ θ θ ] [ θ F ( s θ ] θ4 = F1( s ) 1 2 ) 4 1 θ4 = F1 ( s ) θ4f1 ( s )F2 ( s ) 3 θ 1F1 ( s ) = θ4 θ4f1( s )F2 ( s ) [ 1 F ( s )F ( s )] F1( s ) = θ4 1 2 θ F ( s ) 4 = 1 θ 1 1 F1( s )F2 ( s ) 14

16 C1 : FB Loop TF Derivation θ 2 θ4 θ 3 F 2 The overall TF for a FB loop, Forward Blocks TF = 1 Forward Blocks X Feedback Blocks or, Forward Blocks TF = 1 OL Blocks C1 : Block Diagram (BD) Reduction Rules A summary of BD reduction rules is here. Assignment 1 is here. 15

17 C1 : Block Diagram Reduction Example 1 obtain the TF for the following system, R G 1 G 2 G 3 C H 1 H 2 C1 : Block Diagram Reduction Example 2 obtain the TF for the following system, X G 1 G 2 G 3 Y H 2 H 3 H 1 16

Selamat Kembali Ke Parit Raja.. BDA30703 Kejuruteraan Kawalan Seksyen S5

Selamat Kembali Ke Parit Raja.. BDA30703 Kejuruteraan Kawalan Seksyen S5 PROFESOR MADYA DR. ZAMRI BIN OMAR Timbalan Dekan (Hal Ehwal Pelajar & Alumni) Fakulti Kejuruteraan Mekanikal & Pembuatan Selamat Kembali Ke Parit Raja.. BDA30703 Kejuruteraan Kawalan Seksyen S5 Email :

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics.

What is flight dynamics? AE540: Flight Dynamics and Control I. What is flight control? Is the study of aircraft motion and its characteristics. KING FAHD UNIVERSITY Department of Aerospace Engineering AE540: Flight Dynamics and Control I Instructor Dr. Ayman Hamdy Kassem What is flight dynamics? Is the study of aircraft motion and its characteristics.

More information

Reglerteknik, TNG028. Lecture 1. Anna Lombardi

Reglerteknik, TNG028. Lecture 1. Anna Lombardi Reglerteknik, TNG028 Lecture 1 Anna Lombardi Today lecture We will try to answer the following questions: What is automatic control? Where can we nd automatic control? Why do we need automatic control?

More information

Analysis and Design of Control Systems in the Time Domain

Analysis and Design of Control Systems in the Time Domain Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

More information

MECHATRONICS CONTROL SYSTEM UNIT II

MECHATRONICS CONTROL SYSTEM UNIT II MECHATRONICS UNIT II CONTROL SYSTEM Prepared By Prof. Shinde Vishal Vasant Dept. of Mechanical Engg. NDMVP S Karmaveer Baburao Thakare College of Engg. Nashik Contact No- 8928461713 E mail:- nilvasant22@gmail.com

More information

Control System. Contents

Control System. Contents Contents Chapter Topic Page Chapter- Chapter- Chapter-3 Chapter-4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of

More information

Process Solutions. Process Dynamics. The Fundamental Principle of Process Control. APC Techniques Dynamics 2-1. Page 2-1

Process Solutions. Process Dynamics. The Fundamental Principle of Process Control. APC Techniques Dynamics 2-1. Page 2-1 Process Dynamics The Fundamental Principle of Process Control APC Techniques Dynamics 2-1 Page 2-1 Process Dynamics (1) All Processes are dynamic i.e. they change with time. If a plant were totally static

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

EG4321/EG7040. Nonlinear Control. Dr. Matt Turner

EG4321/EG7040. Nonlinear Control. Dr. Matt Turner EG4321/EG7040 Nonlinear Control Dr. Matt Turner EG4321/EG7040 [An introduction to] Nonlinear Control Dr. Matt Turner EG4321/EG7040 [An introduction to] Nonlinear [System Analysis] and Control Dr. Matt

More information

Copyright. SRS, U DuE, rof. Söffker. Course Control Theory WiSe 2014/15

Copyright. SRS, U DuE, rof. Söffker. Course Control Theory WiSe 2014/15 Course Theory WiSe 2014/15 Room: SG 135 Time: Fr 3.00 6.30 pm (lecture and exercise) Practical exercise: 2nd part of semester Assistants: Xi Nowak, M.Sc.; WEB: http://www.uni-due.de/srs Manuscript Note

More information

Chapter 5. Mass and Energy Analysis of Control Volumes

Chapter 5. Mass and Energy Analysis of Control Volumes Chapter 5 Mass and Energy Analysis of Control Volumes Conservation Principles for Control volumes The conservation of mass and the conservation of energy principles for open systems (or control volumes)

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #36 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, April 4, 2003 3. Cascade Control Next we turn to an

More information

Today. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics

Today. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics Today Announcements: HW#5 is due by 8:00 am Wed. Feb. 5th. Extra Credit Exam due by Tomorrow 8am. Work, Energy, Power loose ends Temperature Second Law of Thermodynamics ISP09s9 Lecture 11-1- Energy and

More information

THERMODYNAMICS (Date of document: 8 th March 2016)

THERMODYNAMICS (Date of document: 8 th March 2016) THERMODYNAMICS (Date of document: 8 th March 2016) Course Code : MEHD214 Course Status : Core Level : Diploma Semester Taught : 3 Credit : 4 Pre-requisites : None Assessments : Computerized homework 20

More information

Alireza Mousavi Brunel University

Alireza Mousavi Brunel University Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched

More information

DEPARTMENT OF CHEMICAL ENGINEERING WEST VIRGINIA UNIVERSITY

DEPARTMENT OF CHEMICAL ENGINEERING WEST VIRGINIA UNIVERSITY Fall 2013 DEPARTMENT OF CHEMICAL ENGINEERING WEST VIRGINIA UNIVERSITY Tuesday, Thursday 9:30-10:45 a.m. Room 401 ESB ChE 435 Chemical Process Control - Process Dynamics, Instrumentation & Control Instructor:

More information

Linear Control Systems General Informations. Guillaume Drion Academic year

Linear Control Systems General Informations. Guillaume Drion Academic year Linear Control Systems General Informations Guillaume Drion Academic year 2017-2018 1 SYST0003 - General informations Website: http://sites.google.com/site/gdrion25/teaching/syst0003 Contacts: Guillaume

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #24 Wednesday, March 10, 2004 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Remedies We next turn to the question

More information

ENT 254: Applied Thermodynamics

ENT 254: Applied Thermodynamics ENT 54: Applied Thermodynamics Mr. Azizul bin Mohamad Mechanical Engineering Program School of Mechatronic Engineering Universiti Malaysia Perlis (UniMAP) azizul@unimap.edu.my 019-4747351 04-9798679 Chapter

More information

AS 203 Principles of Astronomy 2 Introduction to Stellar and Galactic Astronomy Syllabus Spring 2012

AS 203 Principles of Astronomy 2 Introduction to Stellar and Galactic Astronomy Syllabus Spring 2012 AS 203 Principles of Astronomy 2 Introduction to Stellar and Galactic Astronomy Syllabus Spring 2012 Instructor Prof. Elizabeth Blanton Room: CAS 519 Email: eblanton@bu.edu Phone: 617-353-2633 Office hours:

More information

ME 132, Fall 2017, UC Berkeley, A. Packard 317. G 1 (s) = 3 s + 6, G 2(s) = s + 2

ME 132, Fall 2017, UC Berkeley, A. Packard 317. G 1 (s) = 3 s + 6, G 2(s) = s + 2 ME 132, Fall 2017, UC Berkeley, A. Packard 317 Be sure to check that all of your matrix manipulations have the correct dimensions, and that the concatenations have compatible dimensions (horizontal concatenations

More information

Chapter 3: Block Diagrams and Signal Flow Graphs

Chapter 3: Block Diagrams and Signal Flow Graphs Chapter 3: Block Diagrams and Signal Flow Graphs Farid Golnaraghi, Simon Fraser University Benjamin C. Kuo, University of Illinois ISBN: 978 0 470 04896 2 Introduction In this chapter, we discuss graphical

More information

GEOL 443 SYLLABUS. Igneous and Metamorphic Petrology, Spring 2013 Tuesday & Thursday 8:00 a.m. 9:15 a.m., PLS Date Subject Reading

GEOL 443 SYLLABUS. Igneous and Metamorphic Petrology, Spring 2013 Tuesday & Thursday 8:00 a.m. 9:15 a.m., PLS Date Subject Reading GEOL 443 SYLLABUS Igneous and Metamorphic Petrology, Spring 2013 Tuesday & Thursday 8:00 a.m. 9:15 a.m., PLS 1113 Date Subject Reading Jan 24 Introduction: Overview of petrology, rocks. Structure and Chapter

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

Lecture 25: Tue Nov 27, 2018

Lecture 25: Tue Nov 27, 2018 Lecture 25: Tue Nov 27, 2018 Reminder: Lab 3 moved to Tuesday Dec 4 Lecture: review time-domain characteristics of 2nd-order systems intro to control: feedback open-loop vs closed-loop control intro to

More information

wb Thermodynamics 2 Lecture 9 Energy Conversion Systems

wb Thermodynamics 2 Lecture 9 Energy Conversion Systems wb1224 - Thermodynamics 2 Lecture 9 Energy Conversion Systems Piero Colonna, Lecturer Prepared with the help of Teus van der Stelt 8-12-2010 Delft University of Technology Challenge the future Content

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

Advanced Aerospace Control. Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano

Advanced Aerospace Control. Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano Advanced Aerospace Control Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano ICT for control systems engineering School of Industrial and Information Engineering Aeronautical Engineering

More information

Task 1 (24%): PID-control, the SIMC method

Task 1 (24%): PID-control, the SIMC method Final Exam Course SCE1106 Control theory with implementation (theory part) Wednesday December 18, 2014 kl. 9.00-12.00 SKIP THIS PAGE AND REPLACE WITH STANDARD EXAM FRONT PAGE IN WORD FILE December 16,

More information

CHAPTER 13: FEEDBACK PERFORMANCE

CHAPTER 13: FEEDBACK PERFORMANCE When I complete this chapter, I want to be able to do the following. Apply two methods for evaluating control performance: simulation and frequency response Apply general guidelines for the effect of -

More information

Exercise 5 - Hydraulic Turbines and Electromagnetic Systems

Exercise 5 - Hydraulic Turbines and Electromagnetic Systems Exercise 5 - Hydraulic Turbines and Electromagnetic Systems 5.1 Hydraulic Turbines Whole courses are dedicated to the analysis of gas turbines. For the aim of modeling hydraulic systems, we analyze here

More information

Physics 273 (Fall 2013) (4 Credit Hours) Fundamentals of Physics II

Physics 273 (Fall 2013) (4 Credit Hours) Fundamentals of Physics II Physics 273 (Fall 2013) (4 Credit Hours) Fundamentals of Physics II Syllabus available on BlackBoard http://webcourses.niu.edu/ under Course information Name: Prof. Omar Chmaissem (sha- my- sim) Email:

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

Required Textbook. Grade Determined by

Required Textbook. Grade Determined by Physics 273 Honors (Spring 2015) (4 Credit Hours) Fundamentals of Physics II Syllabus available on BlackBoard http://webcourses.niu.edu/ under Course information Name: Prof. Omar Chmaissem (sha-my-sim)

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Massachusetts Institute of Technology.00 Modeling, Dynamics and Control III Spring 00 SOLUTIONS: Problem Set # Problem a b This problem is aimed at helping you picture

More information

Course: MECH-341 Thermodynamics II Semester: Fall 2006

Course: MECH-341 Thermodynamics II Semester: Fall 2006 FINAL EXAM Date: Thursday, December 21, 2006, 9 am 12 am Examiner: Prof. E. Timofeev Associate Examiner: Prof. D. Frost READ CAREFULLY BEFORE YOU PROCEED: Course: MECH-341 Thermodynamics II Semester: Fall

More information

How to please the rulers of NPL-213 the geese

How to please the rulers of NPL-213 the geese http://www.walkingmountains. org/2015/03/reintroduction-ofthe-canada-goose/ How to please the rulers of NPL-213 the geese (Entropy and the 2 nd Law of Thermodynamics) Physics 116 2017 Tues. 3/21, Thurs

More information

Overview of the Seminar Topic

Overview of the Seminar Topic Overview of the Seminar Topic Simo Särkkä Laboratory of Computational Engineering Helsinki University of Technology September 17, 2007 Contents 1 What is Control Theory? 2 History

More information

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES

CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Thermodynamics: An Engineering Approach 8th Edition in SI Units Yunus A. Çengel, Michael A. Boles McGraw-Hill, 2015 CHAPTER 5 MASS AND ENERGY ANALYSIS OF CONTROL VOLUMES Lecture slides by Dr. Fawzi Elfghi

More information

Lecture 35: Vapor power systems, Rankine cycle

Lecture 35: Vapor power systems, Rankine cycle ME 00 Thermodynamics I Spring 015 Lecture 35: Vapor power systems, Rankine cycle Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai, 0040, P. R.

More information

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11 sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

More information

ME 132, Dynamic Systems and Feedback. Class Notes. Spring Instructor: Prof. A Packard

ME 132, Dynamic Systems and Feedback. Class Notes. Spring Instructor: Prof. A Packard ME 132, Dynamic Systems and Feedback Class Notes by Andrew Packard, Kameshwar Poolla & Roberto Horowitz Spring 2005 Instructor: Prof. A Packard Department of Mechanical Engineering University of California

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #22 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, March 5, 24 More General Effects of Open Loop Poles

More information

Introduction to Systems Theory and Control Systems

Introduction to Systems Theory and Control Systems Introduction to Systems Theory and Control Systems Paula Raica Department of Automation Dorobantilor Str., room C21, tel: 0264-401267 Baritiu Str., room C14, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro

More information

Lecture 12. AO Control Theory

Lecture 12. AO Control Theory Lecture 12 AO Control Theory Claire Max with many thanks to Don Gavel and Don Wiberg UC Santa Cruz February 18, 2016 Page 1 What are control systems? Control is the process of making a system variable

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the

More information

CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS

CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS CHAPTER 6 THE SECOND LAW OF THERMODYNAMICS S. I. Abdel-Khalik (2014) 1 CHAPTER 6 -- The Second Law of Thermodynamics OUTCOME: Identify Valid (possible) Processes as those that satisfy both the first and

More information

Process Control and Instrumentation Prof. D. Sarkar Department of Chemical Engineering Indian Institute of Technology, Kharagpur

Process Control and Instrumentation Prof. D. Sarkar Department of Chemical Engineering Indian Institute of Technology, Kharagpur Process Control and Instrumentation Prof. D. Sarkar Department of Chemical Engineering Indian Institute of Technology, Kharagpur Lecture - 35 Instrumentation: General Principles of Measurement Systems

More information

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1 Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Constrained Optimal Control. Constrained Optimal Control II

Constrained Optimal Control. Constrained Optimal Control II Optimal Control, Guidance and Estimation Lecture 35 Constrained Optimal Control II Prof. Radhakant Padhi Dept. of Aerospace Engineering Indian Institute of Science - Bangalore opics: Constrained Optimal

More information

MAS156: Mathematics (Electrical and Aerospace)

MAS156: Mathematics (Electrical and Aerospace) MAS156: Mathematics (Electrical and Aerospace) Dr Sam Marsh mas-engineering@sheffield.ac.uk Tuesday 17th October 2017, 1pm Diamond LT4 Course matters Online tests Some people had problems in the early

More information

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions

ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION. Instructor: R. Culham. Name: Student ID Number: Instructions ME 354 THERMODYNAMICS 2 MIDTERM EXAMINATION February 14, 2011 5:30 pm - 7:30 pm Instructor: R. Culham Name: Student ID Number: Instructions 1. This is a 2 hour, closed-book examination. 2. Answer all questions

More information

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control

More information

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls Module 9 : Robot Dynamics & controls Lecture 32 : General procedure for dynamics equation forming and introduction to control Objectives In this course you will learn the following Lagrangian Formulation

More information

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 12 June 2006

ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER. 12 June 2006 ECE309 INTRODUCTION TO THERMODYNAMICS & HEAT TRANSFER 1 June 006 Midterm Examination R. Culham This is a hour, closed-book examination. You are permitted to use one 8.5 in. 11 in. crib sheet (one side

More information

Automatic Generation Control. Meth Bandara and Hassan Oukacha

Automatic Generation Control. Meth Bandara and Hassan Oukacha Automatic Generation Control Meth Bandara and Hassan Oukacha EE194 Advanced Controls Theory February 25, 2013 Outline Introduction System Modeling Single Generator AGC Going Forward Conclusion Introduction

More information

Control. CSC752: Autonomous Robotic Systems. Ubbo Visser. March 9, Department of Computer Science University of Miami

Control. CSC752: Autonomous Robotic Systems. Ubbo Visser. March 9, Department of Computer Science University of Miami Control CSC752: Autonomous Robotic Systems Ubbo Visser Department of Computer Science University of Miami March 9, 2017 Outline 1 Control system 2 Controller Images from http://en.wikipedia.org/wiki/feed-forward

More information

Lecture 21: Introducing the Second Law, Irreversibilities

Lecture 21: Introducing the Second Law, Irreversibilities ME 200 Thermodynamics I Spring 2016 Lecture 21: Introducing the Second Law, Irreversibilities Yong Li Shanghai Jiao Tong University Institute of Refrigeration and Cryogenics 800 Dong Chuan Road Shanghai,

More information

Process Control, 3P4 Assignment 6

Process Control, 3P4 Assignment 6 Process Control, 3P4 Assignment 6 Kevin Dunn, kevin.dunn@mcmaster.ca Due date: 28 March 204 This assignment gives you practice with cascade control and feedforward control. Question [0 = 6 + 4] The outlet

More information

Introduction to Controls

Introduction to Controls EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essay-type answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.

More information

ROBUSTNESS COMPARISON OF CONTROL SYSTEMS FOR A NUCLEAR POWER PLANT

ROBUSTNESS COMPARISON OF CONTROL SYSTEMS FOR A NUCLEAR POWER PLANT Control 004, University of Bath, UK, September 004 ROBUSTNESS COMPARISON OF CONTROL SYSTEMS FOR A NUCLEAR POWER PLANT L Ding*, A Bradshaw, C J Taylor Lancaster University, UK. * l.ding@email.com Fax: 0604

More information

Automatic Control (TSRT15): Lecture 1

Automatic Control (TSRT15): Lecture 1 Automatic Control (TSRT15): Lecture 1 Tianshi Chen* Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 * All lecture

More information

Modern Control Systems

Modern Control Systems Modern Control Systems Matthew M. Peet Arizona State University Lecture 1: Introduction MMAE 543: Modern Control Systems This course is on Modern Control Systems Techniques Developed in the Last 50 years

More information

Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Ali Karimpour Associate Professor Ferdowsi University of Mashhad CONTROL IN INSTRUMENTATION Ali Karimpour Associate Professor Ferdowsi University of Mashhad Reference: - Advanced PID Control by Karl j. Astrom and Tore Hagglund, ISA, 2006 مدلسازی و کنترل صنعتی تالیف

More information

Today s goals So far Today 2.004

Today s goals So far Today 2.004 Today s goals So far Feedback as a means for specifying the dynamic response of a system Root Locus: from the open-loop poles/zeros to the closed-loop poles Moving the closed-loop poles around Today Proportional

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #1 Monday, January 6, 2003 Instructor: Dr. Ian C. Bruce Room CRL-229, Ext. 26984 ibruce@mail.ece.mcmaster.ca Office Hours: TBA Teaching Assistants:

More information

Linear Algebra. Instructor: Justin Ryan

Linear Algebra. Instructor: Justin Ryan Linear Algebra Instructor: Justin Ryan ryan@math.wichita.edu Department of Mathematics, Statistics, and Physics Wichita State University Wichita, Kansas Summer 2014 DRAFT 3 June 2014 Preface These lecture

More information

Spring_#7. Thermodynamics. Youngsuk Nam.

Spring_#7. Thermodynamics. Youngsuk Nam. Spring_#7 Thermodynamics Youngsuk Nam ysnam1@khu.ac.kr You can t connect the dots looking forward; you can only connect them looking backwards. So you have to trust that the dots will somehow connect in

More information

Enhanced Single-Loop Control Strategies Chapter 16

Enhanced Single-Loop Control Strategies Chapter 16 Enhanced Single-Loop Control Strategies Chapter 16 1. Cascade control 2. Time-delay compensation 3. Inferential control 4. Selective and override control 5. Nonlinear control 6. Adaptive control 1 Chapter

More information

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Homework 5

Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Homework 5 EECS 16B Designing Information Devices and Systems II Spring 2018 J. Roychowdhury and M. Maharbiz Homework 5 This homework is due on Thursday, March 8, 2018, at 11:59AM (NOON). Self-grades are due on Monday,

More information

Controlo em Espaço de Estados

Controlo em Espaço de Estados 1 Controlo em Espaço de Estados 2016/2017 10 a) 8 6 4 2 x 2 0-2 -4-6 -8-10 -10-5 0 5 10 x 1 João Miranda Lemos Professor Catedrático 2 Docents João Miranda Lemos (Theoretical lectures, course coordinator)

More information

(in m^3) 4.A 1.62 B 2.35 C 3.41 D pt 5.A B C pt

(in m^3) 4.A 1.62 B 2.35 C 3.41 D pt 5.A B C pt Mark Reeves - Physics 21 Spring 2012 1 An automobile driver fills his 17.1-L steel gasoline tank in the cool of the morning when the temperature of the tank and the gasoline is 15.0 C and the pressure

More information

Subject: Introduction to Process Control. Week 01, Lectures 01 02, Spring Content

Subject: Introduction to Process Control. Week 01, Lectures 01 02, Spring Content v CHEG 461 : Process Dynamics and Control Subject: Introduction to Process Control Week 01, Lectures 01 02, Spring 2014 Dr. Costas Kiparissides Content 1. Introduction to Process Dynamics and Control 2.

More information

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn

Chapter 5. Mass and Energy Analysis of Control Volumes. by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Chapter 5 Mass and Energy Analysis of Control Volumes by Asst. Prof. Dr.Woranee Paengjuntuek and Asst. Prof. Dr.Worarattana Pattaraprakorn Reference: Cengel, Yunus A. and Michael A. Boles, Thermodynamics:

More information

2.004 Dynamics and Control II Spring 2008

2.004 Dynamics and Control II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.004 Dynamics and Control II Spring 2008 or information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 2 I C + 4 * Massachusetts

More information

Turbines and speed governors

Turbines and speed governors ELEC0047 - Power system dynamics, control and stability Turbines and speed governors Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct November 2017 1 / 31 2 / 31 Steam turbines Turbines

More information

Welcome to Physics 211! General Physics I

Welcome to Physics 211! General Physics I Welcome to Physics 211! General Physics I Physics 211 Fall 2015 Lecture 01-1 1 Physics 215 Honors & Majors Are you interested in becoming a physics major? Do you have a strong background in physics and

More information

(a) Find the transfer function of the amplifier. Ans.: G(s) =

(a) Find the transfer function of the amplifier. Ans.: G(s) = 126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

More information

Chapter: Heat and States

Chapter: Heat and States Table of Contents Chapter: Heat and States of Matter Section 1: Temperature and Thermal Energy Section 2: States of Matter Section 3: Transferring Thermal Energy Section 4: Using Thermal Energy 1 Temperature

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering 2.04A Systems and Controls Spring 2013 Problem Set #4 Posted: Thursday, Mar. 7, 13 Due: Thursday, Mar. 14, 13 1. Sketch the Root

More information

ORANGE COAST COLLEGE

ORANGE COAST COLLEGE ORANGE COAST COLLEGE Chemistry 185: General Chemistry Spring 2017 16 weeks: 01/30 05/28/2016 Section: 35652 (Lecture) 5 Units Lecture: M/W 12:45 pm 2:10 pm Room: CHEM 207 Labs: 30475: M/W 7:50 am 11:00

More information

Modern Control Systems

Modern Control Systems Modern Control Systems Matthew M. Peet Illinois Institute of Technology Lecture 1: Modern Control Systems MMAE 543: Modern Control Systems This course is on Modern Control Systems Techniques Developed

More information

ME 022: Thermodynamics

ME 022: Thermodynamics ME 022: Thermodynamics General Information: Term: 2019 Summer Session Instructor: Staff Language of Instruction: English Classroom: TBA Office Hours: TBA Class Sessions Per Week: 5 Total Weeks: 5 Total

More information

4 Arithmetic of Feedback Loops

4 Arithmetic of Feedback Loops ME 132, Spring 2005, UC Berkeley, A. Packard 18 4 Arithmetic of Feedback Loops Many important guiding principles of feedback control systems can be derived from the arithmetic relations, along with their

More information

MODELING OF CONTROL SYSTEMS

MODELING OF CONTROL SYSTEMS 1 MODELING OF CONTROL SYSTEMS Feb-15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace

More information

Syllabus. Physics 0847, How Things Work Section II Fall 2014

Syllabus. Physics 0847, How Things Work Section II Fall 2014 Syllabus Physics 0847, How Things Work Section II Fall 2014 Class Schedule: Tuesday, Thursday 11:00 a.m.-12:20 p.m. Location: Barton Hall BA130. Instructor: Dr. Zameer Hasan (215) 638 7219 Phone: Office:

More information

KOMAR UNIVERSITY OF SCIENCE AND TECHNOLOGY (KUST)

KOMAR UNIVERSITY OF SCIENCE AND TECHNOLOGY (KUST) Course Title Course Code General Chemistry I and Lab CHM1410C General Chemistry I No. of Credits Department All Departments College Science and Engineering Pre-requisites Course Code Course Coordinator(s)

More information

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang CBE507 LECTURE III Controller Design Using State-space Methods Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University Korea University III -1 Overview States What

More information

Number of extra papers used if any

Number of extra papers used if any Last Name: First Name: Thermo no. ME 200 Thermodynamics 1 Fall 2018 Exam Circle your structor s last name Division 1 (7:0): Naik Division (1:0): Wassgren Division 6 (11:0): Sojka Division 2 (9:0): Choi

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 1: Introduction to Control Systems What is this class about? Control is the study of how to make things do what you want. The

More information

Chemistry Physical Chemistry I Fall 2017

Chemistry Physical Chemistry I Fall 2017 Chemistry 309 - Physical Chemistry I Fall 2017 Instructor: Office Hours: Dr. Samuel A. Abrash C208 Gottwald Science Center Work: 289-8248 Home: 323-7363 Cell: 363-2597 sabrash@richmond.edu www.richmond.edu/~sabrash

More information

Introduction to Oceanography Cabrillo College, Spring Semester, 2018 Instructors: David Schwartz & Lauren Hanneman

Introduction to Oceanography Cabrillo College, Spring Semester, 2018 Instructors: David Schwartz & Lauren Hanneman Introduction to Oceanography Cabrillo College, Spring Semester, 2018 Instructors: David Schwartz & Lauren Hanneman http://www.cabrillo.edu/~dschwartz/ LECTURE TOPICS Text Assignments Dates 1. Introduction

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-14 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

Exercise 5: Digital Control

Exercise 5: Digital Control Gioele Zardini Control Systems II FS 017 Exercise 5: Digital Control 5.1 Digital Control 5.1.1 Signals and Systems A whole course is dedicated to this topic (see Signals and Systems of professor D Andrea).

More information

Controlo em Espaço de Estados

Controlo em Espaço de Estados 1 Controlo em Espaço de Estados 2017/2018 10 a) 8 6 4 2 x 2 0-2 -4-6 -8-10 -10-5 0 5 10 x 1 João Miranda Lemos Professor Catedrático 2 Docents João Miranda Lemos (Theoretical lectures, course coordinator)

More information

Physics 121, April 29, The Second Law of Thermodynamics.

Physics 121, April 29, The Second Law of Thermodynamics. Physics 121, April 29, 2008. The Second Law of Thermodynamics. http://www.horizons.uc.edu/masterjuly1998/oncampus.htm Physics 121. April 29, 2008. Course Information Topics to be discussed today: The Second

More information

AS 101: The Solar System (Spring 2017) Course Syllabus

AS 101: The Solar System (Spring 2017) Course Syllabus AS 101: The Solar System (Spring 2017) Course Syllabus Instructor: Professor Wen Li Office: CAS 501 Phone: 617-353-7439 Email: wenli77@bu.edu Office hours: Mondays 3:30 5:00 pm, Wednesdays 3:30 5:00 pm,

More information

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

More information

Name: Applied Physics II Exam 2 Winter Multiple Choice ( 8 Points Each ):

Name:   Applied Physics II Exam 2 Winter Multiple Choice ( 8 Points Each ): Name: e-mail: Applied Physics II Exam 2 Winter 2006-2007 Multiple Choice ( 8 Points Each ): 1. A cowboy fires a silver bullet ( specific heat c = 234 J / kg O C ) with a muzzle speed of 200 m/s into a

More information