Controlo em Espaço de Estados

Size: px
Start display at page:

Download "Controlo em Espaço de Estados"

Transcription

1 1 Controlo em Espaço de Estados 2016/ a) x x 1 João Miranda Lemos Professor Catedrático

2 2 Docents João Miranda Lemos (Theoretical lectures, course coordinator) , Office at INESC-ID Students: Send an or phone to decide an hour and day. José António Gaspar (Lab and Problems) , Office at ISR

3 3 Course organization Lectures: Theory (slides in 4 parts, see Fénix) Problems (see problems at Fénix) Lab (guide at Fénix) Self-study: Read and study the slides Self-study problems (Fénix) Bibliography (see Fénix) o Franklin, Powell, Emami-Naeini. Feedback Control of Dynamic Systems (chaps. 7, 9) Non-exhaustive!

4 4 Evaluation and grading Theory o 2 tests (strongly recomemded) or 1 exam o Not possible to repeat the tests Não há repescagem dos testes o Aproval: Theory grade (average of tests or exam) minimum of 9,3 o There is no minimum grade in each individual test. o If approved by tests, may improve the theory grade in the exam Laboratory o 1 work, report in groups of 3, grading individual by student Final grade (remark the constraint on the lab grade) o 0,7T+0.3min(L,T+6)

5 5 Laboratory Objective: Design and test a state feedback controller to equilibrate an inverted pendulum. Emphasis on the design of computer controlled systems with experimental verification Cyber Physical Systems 1. Design an optimal state feedback controller based on a given model. MATLAB 2. Test in simulation. Review the design. SIMULINK 3. Test on the real plant. Evaluate. Improve. SIMULINK MATLAB is increasingly popular in industry to develop initial versions of new ideas.

6 6 Why have you chosen this course? Mas afinal, esta é, ou não é, a reunião do Sindicato dos Padeiros? After all, is this, or is not, the meeting of the Baker s Union?

7 7 The state model u y Input/output model (differential equation or transfer function): Alternative: Two first-order differential equations (state model) d 2 dt y 2 u dx1 dt x1 ( t) y( t), x2( t) y ( t) dx dt 2 x 2 u

8 8 State of a system: A set of variables such that, you known at an instant, if we we know the set of external forces that act on the system, allow the computation of their values for all future time. The state variables satisfy a set of 1 st order differential equations known as the state model. Example in the linear case: dx dt = Ax + Bu (Model of dynamics and actuators) y = Cx (Sensor model) We will study the non-linear case as well.

9 9 Course objective Study of methods for analysis and design of control systems, based on the state model. Syllabus 1. Sate model analysis (model conversion, time response). 2. Controller design based on state variable feedback and state estimation with observers. 3. Stability and controller design for nonlinear systems. 4. Optimal Control design using Pontryagin s principle.

10 10 What are the main new things to learn in this course? A new model (state model, linear and nonlinear) A new technique to study stability (Lyapunov s direct method) New controller design methods o Pole placement by linear state feedback o Non-linear control o Optimal control o Multivariable control o Adaptive control (learn the model while the controller operates)

11 11 Major new ideas addressed Sate model and state feedback. Asymptotic observers. Kalman filter. Lyapunov s direct method Optimal control. Pontryagin s Principle.

12 12 Where did these ideas came from? Joseph-Louis Lagrange Analytical Mechanics Aleksandr Lyapunov Stability of nonlinear systems Rudolph Kalman Filtro. State model in Control

13 13 Johann Bernouilli ( ) and the brachistochrone What is the curve of fastest descent when sliding between (0,0) and the final point?

14 14 L. Euler Variational Calculus. Euler-Lagrange equation Lev Pontryagin Principle to solve optimal control problems

15 15 Example: Water delivery canal y 1 M1 u 1 u 2 u 3 u 4 M2 M3 M4 y 2 y 3 y 4 Q o Pool 1 G1 Pool 2 G2 Pool 3 G3 Pool 4 G4 Q 1 Q 2 Q 3 Q 4

16 J 3 [mm] J 2 [mm] J 1 [mm] Course presentation 16 Isolated PID s (no coordination) Gate Gate Gate

17 J 4 [mm] J 3 [mm] J 2 [mm] J 1 [mm] Course presentation 17 Canal optimal multivariable state feedback control J. M. Lemos and L. F. Pinto (2012). Distributed Linear-Quadratic Control of Serially Chained Systems -- Application to a Water Delivery Canal. IEEE Control Systems Mag., 32(6): Multivariable Controller u 1 u 2 u m y 1 y 2 y p Plant Gate Gate Gate Gate

18 18 State estimation: Localization using GPS dx f ( x) y h( x) dt Estimate x using the measures of y. Observers

19 19 Parabolic trough solar thermal fields y=temperatura u=caudal Espelho Keep the outlet temperature constant despite changes in solar radiation. An example of a nonlinear system to be tackled in the course.

20 20 Control for anesthesia J. M. Lemos et. al. (2014). Robust Control of Maintenance Phase Anesthesia. IEEE Control Systems, 34 (6): Available in Fénix

21 21

22 22 Optimal control for sea wave energy Source: Luis Gato, 2014 How to open and close the air valve to maximize the power transmitted from the wave train to the turbine? J. Henriques, L. Gato, J. M. Lemos, R. Gomes, A. Falcão (2016). Peak-power control of a grid-integrated oscillating water column wave energy converter. Energy, 109:

23 23 Put knowledge in action This is a course that addresses theoretical basis. However, many of them can be directly applied in a wide variety of fields with economical impact (Medicine, Niotechnology, Agriculture, Aerospace, Mechatronics, Robotics, Energy, Tellecommunications, Management ) There is nothing more practical than a good theory (Boltzman) Makers community (share knowledge to change the world):

Controlo em Espaço de Estados

Controlo em Espaço de Estados 1 Controlo em Espaço de Estados 2017/2018 10 a) 8 6 4 2 x 2 0-2 -4-6 -8-10 -10-5 0 5 10 x 1 João Miranda Lemos Professor Catedrático 2 Docents João Miranda Lemos (Theoretical lectures, course coordinator)

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Instructor: S. P. Bhattacharyya* (Dr. B.) 1/18

ECEN 420 LINEAR CONTROL SYSTEMS. Instructor: S. P. Bhattacharyya* (Dr. B.) 1/18 ECEN 420 LINEAR CONTROL SYSTEMS Instructor: S. P. Bhattacharyya* (Dr. B.) 1/18 Course information Course Duration: 14 weeks Divided into 7 units, each of two weeks duration, 5 lectures, 1 test Each unit

More information

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42

Contents. PART I METHODS AND CONCEPTS 2. Transfer Function Approach Frequency Domain Representations... 42 Contents Preface.............................................. xiii 1. Introduction......................................... 1 1.1 Continuous and Discrete Control Systems................. 4 1.2 Open-Loop

More information

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum

Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum ISSN (Online): 347-3878, Impact Factor (5): 3.79 Design and Comparison of Different Controllers to Stabilize a Rotary Inverted Pendulum Kambhampati Tejaswi, Alluri Amarendra, Ganta Ramesh 3 M.Tech, Department

More information

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004 MER42 Advanced Control Lecture 9 Introduction to Kalman Filtering Linear Quadratic Gaussian Control (LQG) G. Hovland 24 Announcement No tutorials on hursday mornings 8-9am I will be present in all practical

More information

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018

Linear System Theory. Wonhee Kim Lecture 1. March 7, 2018 Linear System Theory Wonhee Kim Lecture 1 March 7, 2018 1 / 22 Overview Course Information Prerequisites Course Outline What is Control Engineering? Examples of Control Systems Structure of Control Systems

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 2 Homework 7: State Estimators (a) For the same system as discussed in previous slides, design another closed-loop state estimator,

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

Lecture 9 Nonlinear Control Design

Lecture 9 Nonlinear Control Design Lecture 9 Nonlinear Control Design Exact-linearization Lyapunov-based design Lab 2 Adaptive control Sliding modes control Literature: [Khalil, ch.s 13, 14.1,14.2] and [Glad-Ljung,ch.17] Course Outline

More information

Overview of the Seminar Topic

Overview of the Seminar Topic Overview of the Seminar Topic Simo Särkkä Laboratory of Computational Engineering Helsinki University of Technology September 17, 2007 Contents 1 What is Control Theory? 2 History

More information

CDS 101/110a: Lecture 1.1 Introduction to Feedback & Control. CDS 101/110 Course Sequence

CDS 101/110a: Lecture 1.1 Introduction to Feedback & Control. CDS 101/110 Course Sequence CDS 101/110a: Lecture 1.1 Introduction to Feedback & Control Richard M. Murray 28 September 2015 Goals: Give an overview of CDS 101/110: course structure & administration Define feedback systems and learn

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol. III Controller Design - Boris Lohmann

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol. III Controller Design - Boris Lohmann CONROL SYSEMS, ROBOICS, AND AUOMAION Vol. III Controller Design - Boris Lohmann CONROLLER DESIGN Boris Lohmann Institut für Automatisierungstechnik, Universität Bremen, Germany Keywords: State Feedback

More information

Control Systems Theory and Applications for Linear Repetitive Processes

Control Systems Theory and Applications for Linear Repetitive Processes Eric Rogers, Krzysztof Galkowski, David H. Owens Control Systems Theory and Applications for Linear Repetitive Processes Springer Contents 1 Examples and Representations 1 1.1 Examples and Control Problems

More information

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 Unit Outline Introduction to the course: Course goals, assessment, etc... What is Control Theory A bit of jargon,

More information

Nonlinear Systems, Chaos and Control in Engineering

Nonlinear Systems, Chaos and Control in Engineering Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering 748 - FIS - Department of Physics BACHELOR'S

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture 2.1 Dynamic Behavior Richard M. Murray 6 October 28 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls

General procedure for formulation of robot dynamics STEP 1 STEP 3. Module 9 : Robot Dynamics & controls Module 9 : Robot Dynamics & controls Lecture 32 : General procedure for dynamics equation forming and introduction to control Objectives In this course you will learn the following Lagrangian Formulation

More information

Linear Control Systems General Informations. Guillaume Drion Academic year

Linear Control Systems General Informations. Guillaume Drion Academic year Linear Control Systems General Informations Guillaume Drion Academic year 2017-2018 1 SYST0003 - General informations Website: http://sites.google.com/site/gdrion25/teaching/syst0003 Contacts: Guillaume

More information

SE-5101: Foundations of Physical Systems Modeling

SE-5101: Foundations of Physical Systems Modeling SE-5101/5201 Foundations of Physical Systems Modeling Spring 2017 University of Connecticut Institute for Advanced Systems Engineering SE-5101: Foundations of Physical Systems Modeling Course Instructor:

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems ELEC4631 s Lecture 2: Dynamic Control Systems 7 March 2011 Overview of dynamic control systems Goals of Controller design Autonomous dynamic systems Linear Multi-input multi-output (MIMO) systems Bat flight

More information

Estimation, Detection, and Identification CMU 18752

Estimation, Detection, and Identification CMU 18752 Estimation, Detection, and Identification CMU 18752 Graduate Course on the CMU/Portugal ECE PhD Program Spring 2008/2009 Instructor: Prof. Paulo Jorge Oliveira pjcro @ isr.ist.utl.pt Phone: +351 21 8418053

More information

Exam. 135 minutes, 15 minutes reading time

Exam. 135 minutes, 15 minutes reading time Exam August 6, 208 Control Systems II (5-0590-00) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

SYLLABUS FOR [FALL/SPRING] SEMESTER, 20xx

SYLLABUS FOR [FALL/SPRING] SEMESTER, 20xx SYLLABUS FOR [FALL/SPRING] SEMESTER, 20xx Course Title: Calculus with Applications to Business and Finance Instructor: [Instructor Name] Credit Hours: 5 Office: [Office Location] Course Number: MATH 1730-00x

More information

EE C128 / ME C134 Feedback Control Systems

EE C128 / ME C134 Feedback Control Systems EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 6.2: Kalman Filter Jürgen Sturm Technische Universität München Motivation Bayes filter is a useful tool for state

More information

Use of Monte Carlo Techniques in Robustness Evaluation of Different Temperature Control Methods of Heated Plates. SC Solutions

Use of Monte Carlo Techniques in Robustness Evaluation of Different Temperature Control Methods of Heated Plates. SC Solutions Use of Monte Carlo Techniques in Robustness Evaluation of Different Temperature Control Methods of Heated Plates Dick de Roover, A. Emami-Naeini, J. L. Ebert, G.W. van der Linden, L. L. Porter and R. L.

More information

Enhancing Linear System Theory Curriculum with an Inverted Pendulum Robot

Enhancing Linear System Theory Curriculum with an Inverted Pendulum Robot 215 American Control Conference Palmer House Hilton July 1-3, 215. Chicago, IL, USA Enhancing Linear System Theory Curriculum with an Inverted Pendulum Robot Brian Howard, Member ASME and IEEE, and Linda

More information

Problem 1 Cost of an Infinite Horizon LQR

Problem 1 Cost of an Infinite Horizon LQR THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 5243 INTRODUCTION TO CYBER-PHYSICAL SYSTEMS H O M E W O R K # 5 Ahmad F. Taha October 12, 215 Homework Instructions: 1. Type your solutions in the LATEX homework

More information

Automatic Control (TSRT15): Lecture 1

Automatic Control (TSRT15): Lecture 1 Automatic Control (TSRT15): Lecture 1 Tianshi Chen* Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 * All lecture

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems Dynamics and control of mechanical systems Date Day 1 (03/05) - 05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid

More information

COURSE SYLLABUS Part I Course Title: MATH College Algebra Credit Hours: 4, (4 Lecture 0 Lab G) OTM-TMM001

COURSE SYLLABUS Part I Course Title: MATH College Algebra Credit Hours: 4, (4 Lecture 0 Lab G) OTM-TMM001 COURSE SYLLABUS Part I Course Title: MATH 1340 - College Algebra Credit Hours: 4, (4 Lecture 0 Lab G) OTM-TMM001 Course Description: College Algebra in conjunction with MATH 1350, Pre-Calculus, provides

More information

Stat 609: Mathematical Statistics I (Fall Semester, 2016) Introduction

Stat 609: Mathematical Statistics I (Fall Semester, 2016) Introduction Stat 609: Mathematical Statistics I (Fall Semester, 2016) Introduction Course information Instructor Professor Jun Shao TA Mr. Han Chen Office 1235A MSC 1335 MSC Phone 608-262-7938 608-263-5948 Email shao@stat.wisc.edu

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol. III Extended Control Structures - Boris Lohmann

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol. III Extended Control Structures - Boris Lohmann EXTENDED CONTROL STRUCTURES Boris Lohmann Institut für Automatisierungstechnik, Universität Bremen, Germany Keywords: State Space, Control Structures, State Feedback, State Observer, pole placement, model

More information

Advanced Aerospace Control. Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano

Advanced Aerospace Control. Marco Lovera Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano Advanced Aerospace Control Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano ICT for control systems engineering School of Industrial and Information Engineering Aeronautical Engineering

More information

RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing

RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44-101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl

More information

Identification and Control of Nonlinear Systems using Soft Computing Techniques

Identification and Control of Nonlinear Systems using Soft Computing Techniques International Journal of Modeling and Optimization, Vol. 1, No. 1, April 011 Identification and Control of Nonlinear Systems using Soft Computing Techniques Wahida Banu.R.S.D, ShakilaBanu.A and Manoj.D

More information

Exam in Systems Engineering/Process Control

Exam in Systems Engineering/Process Control Department of AUTOMATIC CONTROL Exam in Systems Engineering/Process Control 7-6- Points and grading All answers must include a clear motivation. Answers may be given in English or Swedish. The total number

More information

Mathematics 131 Final Exam 02 May 2013

Mathematics 131 Final Exam 02 May 2013 Mathematics 3 Final Exam 0 May 03 Directions: This exam should consist of twelve multiple choice questions and four handgraded questions. Multiple choice questions are worth five points apiece. The first

More information

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

CDS 101: Lecture 4.1 Linear Systems

CDS 101: Lecture 4.1 Linear Systems CDS : Lecture 4. Linear Systems Richard M. Murray 8 October 4 Goals: Describe linear system models: properties, eamples, and tools Characterize stability and performance of linear systems in terms of eigenvalues

More information

State Feedback MAE 433 Spring 2012 Lab 7

State Feedback MAE 433 Spring 2012 Lab 7 State Feedback MAE 433 Spring 1 Lab 7 Prof. C. Rowley and M. Littman AIs: Brandt Belson, onathan Tu Princeton University April 4-7, 1 1 Overview This lab addresses the control of an inverted pendulum balanced

More information

Curriculum: MechEng, UC Berkeley

Curriculum: MechEng, UC Berkeley Curriculum: MechEng, UC Berkele ME 132, 3-units, required, 2 nd or 3 rd ear students Prerequisites: Programming and Scientific computing (E7); Linear Algebra and ODEs (Math 54) Emphasis: mathematics of

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture.1 Dynamic Behavior Richard M. Murray 6 October 8 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08 Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

More information

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

More information

Optimal Control. McGill COMP 765 Oct 3 rd, 2017

Optimal Control. McGill COMP 765 Oct 3 rd, 2017 Optimal Control McGill COMP 765 Oct 3 rd, 2017 Classical Control Quiz Question 1: Can a PID controller be used to balance an inverted pendulum: A) That starts upright? B) That must be swung-up (perhaps

More information

Control of Thermoacoustic Instabilities: Actuator Placement

Control of Thermoacoustic Instabilities: Actuator Placement Control of Thermoacoustic Instabilities: Actuator Placement Pushkarini Agharkar, Priya Subramanian, Prof. R. I. Sujith Department of Aerospace Engineering Prof. Niket Kaisare Department of Chemical Engineering

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

Pierre Bigot 2 and Luiz C. G. de Souza 3

Pierre Bigot 2 and Luiz C. G. de Souza 3 INTERNATIONAL JOURNAL OF SYSTEMS APPLICATIONS, ENGINEERING & DEVELOPMENT Volume 8, 2014 Investigation of the State Dependent Riccati Equation (SDRE) adaptive control advantages for controlling non-linear

More information

ESC794: Special Topics: Model Predictive Control

ESC794: Special Topics: Model Predictive Control ESC794: Special Topics: Model Predictive Control Discrete-Time Systems Hanz Richter, Professor Mechanical Engineering Department Cleveland State University Discrete-Time vs. Sampled-Data Systems A continuous-time

More information

x(n + 1) = Ax(n) and y(n) = Cx(n) + 2v(n) and C = x(0) = ξ 1 ξ 2 Ex(0)x(0) = I

x(n + 1) = Ax(n) and y(n) = Cx(n) + 2v(n) and C = x(0) = ξ 1 ξ 2 Ex(0)x(0) = I A-AE 567 Final Homework Spring 213 You will need Matlab and Simulink. You work must be neat and easy to read. Clearly, identify your answers in a box. You will loose points for poorly written work. You

More information

= 0 otherwise. Eu(n) = 0 and Eu(n)u(m) = δ n m

= 0 otherwise. Eu(n) = 0 and Eu(n)u(m) = δ n m A-AE 567 Final Homework Spring 212 You will need Matlab and Simulink. You work must be neat and easy to read. Clearly, identify your answers in a box. You will loose points for poorly written work. You

More information

Advanced Placement Physics C Summer Assignment

Advanced Placement Physics C Summer Assignment Advanced Placement Physics C Summer Assignment Summer Assignment Checklist: 1. Book Problems. Selected problems from Fundamentals of Physics. (Due August 31 st ). Intro to Calculus Packet. (Attached) (Due

More information

Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum

Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum Stable Limit Cycle Generation for Underactuated Mechanical Systems, Application: Inertia Wheel Inverted Pendulum Sébastien Andary Ahmed Chemori Sébastien Krut LIRMM, Univ. Montpellier - CNRS, 6, rue Ada

More information

H-infinity Model Reference Controller Design for Magnetic Levitation System

H-infinity Model Reference Controller Design for Magnetic Levitation System H.I. Ali Control and Systems Engineering Department, University of Technology Baghdad, Iraq 6043@uotechnology.edu.iq H-infinity Model Reference Controller Design for Magnetic Levitation System Abstract-

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #36 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, April 4, 2003 3. Cascade Control Next we turn to an

More information

Lecture 9 Nonlinear Control Design. Course Outline. Exact linearization: example [one-link robot] Exact Feedback Linearization

Lecture 9 Nonlinear Control Design. Course Outline. Exact linearization: example [one-link robot] Exact Feedback Linearization Lecture 9 Nonlinear Control Design Course Outline Eact-linearization Lyapunov-based design Lab Adaptive control Sliding modes control Literature: [Khalil, ch.s 13, 14.1,14.] and [Glad-Ljung,ch.17] Lecture

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS 101 1. For each of the following linear systems, determine whether the origin is asymptotically stable and, if so, plot the step response and frequency response for the system. If there are multiple

More information

Pole placement control: state space and polynomial approaches Lecture 2

Pole placement control: state space and polynomial approaches Lecture 2 : state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

More information

ESE 601: Hybrid Systems. Instructor: Agung Julius Teaching assistant: Ali Ahmadzadeh

ESE 601: Hybrid Systems. Instructor: Agung Julius Teaching assistant: Ali Ahmadzadeh ESE 601: Hybrid Systems Instructor: Agung Julius Teaching assistant: Ali Ahmadzadeh Schedule Class schedule : Monday & Wednesday 1500 1630 Towne 305 Office hours : to be discussed (3 hrs/week) Emails:

More information

ASEPE - Analysis of Electrical Power Systems

ASEPE - Analysis of Electrical Power Systems Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 295 - EEBE - Barcelona East School of Engineering 709 - EE - Department of Electrical Engineering BACHELOR'S DEGREE IN ELECTRICAL

More information

Optimal Control. Lecture 1. Prof. Daniela Iacoviello

Optimal Control. Lecture 1. Prof. Daniela Iacoviello Optimal Control Lecture 1 Prof. Daniela Iacoviello Prof. Daniela Iacoviello Department of computer, control and management engineering Antonio Ruberti Office: A19 Via Ariosto 5 http://www.dis.uniroma1.it/~iacoviel

More information

A conjecture on sustained oscillations for a closed-loop heat equation

A conjecture on sustained oscillations for a closed-loop heat equation A conjecture on sustained oscillations for a closed-loop heat equation C.I. Byrnes, D.S. Gilliam Abstract The conjecture in this paper represents an initial step aimed toward understanding and shaping

More information

Education Council Proposal: Re-articulation and Prerequisite changes for Advanced Algebraic Mathematics (MATH 045)

Education Council Proposal: Re-articulation and Prerequisite changes for Advanced Algebraic Mathematics (MATH 045) Education Council Proposal: Re-articulation and Prerequisite changes for Advanced Algebraic Mathematics (MATH 045) Rationale: As mandated by the Provincial Articulation body, all adult upgrading courses

More information

Swinging-Up and Stabilization Control Based on Natural Frequency for Pendulum Systems

Swinging-Up and Stabilization Control Based on Natural Frequency for Pendulum Systems 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 FrC. Swinging-Up and Stabilization Control Based on Natural Frequency for Pendulum Systems Noriko Matsuda, Masaki Izutsu,

More information

AE 200 Engineering Analysis and Control of Aerospace Systems

AE 200 Engineering Analysis and Control of Aerospace Systems Instructor Info Credit Class Days / Time Office Location: ENG 272C Office Hours: Monday 4:00pm 6:30pm Email: kamran.turkoglu@sjsu.edu 3 units Tuesday, 6:00pm 8:45pm Classroom CL 222 Prerequisites TA: Contact

More information

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Torsion Disks. (ECP Systems-Model: 205)

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Torsion Disks. (ECP Systems-Model: 205) EE 4443/539 LAB 3: Control of Industrial Systems Simulation and Hardware Control (PID Design) The Torsion Disks (ECP Systems-Model: 05) Compiled by: Nitin Swamy Email: nswamy@lakeshore.uta.edu Email: okuljaca@lakeshore.uta.edu

More information

ECE: Special Topics in Systems and Control. Optimal Control: Theory and Applications

ECE: Special Topics in Systems and Control. Optimal Control: Theory and Applications ECE: Special Topics in Systems and Control Optimal Control: Theory and Applications Course #: 18879C/96840SV Semester: Fall 2012 Breadth Area: Artificial Intelligence, Robotics and Control Instructors:

More information

Fuzzy modeling and control of rotary inverted pendulum system using LQR technique

Fuzzy modeling and control of rotary inverted pendulum system using LQR technique IOP Conference Series: Materials Science and Engineering OPEN ACCESS Fuzzy modeling and control of rotary inverted pendulum system using LQR technique To cite this article: M A Fairus et al 13 IOP Conf.

More information

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT

CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT Journal of Computer Science and Cybernetics, V.31, N.3 (2015), 255 265 DOI: 10.15625/1813-9663/31/3/6127 CONTROL OF ROBOT CAMERA SYSTEM WITH ACTUATOR S DYNAMICS TO TRACK MOVING OBJECT NGUYEN TIEN KIEM

More information

Spis treści Contents List of Examples Preface to Third Edition 21

Spis treści Contents List of Examples Preface to Third Edition 21 An engineer's guide to MATLAB : with applications from mechanical, aerospace, electrical, civil, and biological systems engineering / Edward B. Magrab [et al.]. - 3rd ed. - Boston, cop. 2011 Spis treści

More information

SYLLABUS SEFS 540 / ESRM 490 B Optimization Techniques for Natural Resources Spring 2017

SYLLABUS SEFS 540 / ESRM 490 B Optimization Techniques for Natural Resources Spring 2017 SYLLABUS SEFS 540 / ESRM 490 B Optimization Techniques for Natural Resources Spring 2017 Lectures: Winkenwerder Hall 107, 4:50-5:50pm, MW Labs: Mary Gates Hall 030, 1:30-2:50pm, Th Course Web Site: http://faculty.washington.edu/toths/course.shtml

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 20: LMI/SOS Tools for the Study of Hybrid Systems Stability Concepts There are several classes of problems for

More information

TTC - Thermodynamics and Heat Transfer

TTC - Thermodynamics and Heat Transfer Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2017 295 - EEBE - Barcelona East School of Engineering 729 - MF - Department of Fluid Mechanics BACHELOR'S DEGREE IN ELECTRICAL ENGINEERING

More information

EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo)

EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo) Contents EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo) 1 Introduction 1 1.1 Discovery learning in the Controls Teaching Laboratory.............. 1 1.2 A Laboratory Notebook...............................

More information

Seminar Course 392N Spring2011. ee392n - Spring 2011 Stanford University. Intelligent Energy Systems 1

Seminar Course 392N Spring2011. ee392n - Spring 2011 Stanford University. Intelligent Energy Systems 1 Seminar Course 392N Spring211 Lecture 3 Intelligent Energy Systems: Control and Monitoring Basics Dimitry Gorinevsky Intelligent Energy Systems 1 Traditional Grid Worlds Largest Machine! 33 utilities 15,

More information

Selamat Kembali Ke Parit Raja.. BDA30703 Kejuruteraan Kawalan Seksyen S5

Selamat Kembali Ke Parit Raja.. BDA30703 Kejuruteraan Kawalan Seksyen S5 PROFESOR MADYA DR. ZAMRI BIN OMAR Timbalan Dekan (Hal Ehwal Pelajar & Alumni) Fakulti Kejuruteraan Mekanikal & Pembuatan Selamat Kembali Ke Parit Raja.. BDA30703 Kejuruteraan Kawalan Seksyen S5 Email :

More information

Optimeringslära för F (SF1811) / Optimization (SF1841)

Optimeringslära för F (SF1811) / Optimization (SF1841) Optimeringslära för F (SF1811) / Optimization (SF1841) 1. Information about the course 2. Examples of optimization problems 3. Introduction to linear programming Introduction - Per Enqvist 1 Linear programming

More information

A Normal Form for Energy Shaping: Application to the Furuta Pendulum

A Normal Form for Energy Shaping: Application to the Furuta Pendulum Proc 4st IEEE Conf Decision and Control, A Normal Form for Energy Shaping: Application to the Furuta Pendulum Sujit Nair and Naomi Ehrich Leonard Department of Mechanical and Aerospace Engineering Princeton

More information

Lab 4 Numerical simulation of a crane

Lab 4 Numerical simulation of a crane Lab 4 Numerical simulation of a crane Agenda Time 10 min Item Review agenda Introduce the crane problem 95 min Lab activity I ll try to give you a 5- minute warning before the end of the lab period to

More information

Identification and Control of Mechatronic Systems

Identification and Control of Mechatronic Systems Identification and Control of Mechatronic Systems Philadelphia University, Jordan NATO - ASI Advanced All-Terrain Autonomous Systems Workshop August 15 24, 2010 Cesme-Izmir, Turkey Overview Mechatronics

More information

Displacement Feedback for Active Vibration Control of Smart Cantilever Beam

Displacement Feedback for Active Vibration Control of Smart Cantilever Beam Displacement Feedback for Active Vibration Control of Smart Cantilever Beam Riessom W. Prasad Krishna K.V. Gangadharan Research Scholar Professor Professor Department of Mechanical Engineering National

More information

ECE 516: System Control Engineering

ECE 516: System Control Engineering ECE 516: System Control Engineering This course focuses on the analysis and design of systems control. This course will introduce time-domain systems dynamic control fundamentals and their design issues

More information

Using Neural Networks for Identification and Control of Systems

Using Neural Networks for Identification and Control of Systems Using Neural Networks for Identification and Control of Systems Jhonatam Cordeiro Department of Industrial and Systems Engineering North Carolina A&T State University, Greensboro, NC 27411 jcrodrig@aggies.ncat.edu

More information

The Generalized Nyquist Criterion and Robustness Margins with Applications

The Generalized Nyquist Criterion and Robustness Margins with Applications 51st IEEE Conference on Decision and Control December 10-13, 2012. Maui, Hawaii, USA The Generalized Nyquist Criterion and Robustness Margins with Applications Abbas Emami-Naeini and Robert L. Kosut Abstract

More information

Physics 121, Spring 2008 Mechanics. Physics 121, Spring What are we going to talk about today? Physics 121, Spring Goal of the course.

Physics 121, Spring 2008 Mechanics. Physics 121, Spring What are we going to talk about today? Physics 121, Spring Goal of the course. Physics 11, Spring 008 Mechanics Department of Physics and Astronomy University of Rochester Physics 11, Spring 008. What are we going to talk about today? Goals of the course Who am I? Who are you? Course

More information

Optimal Control. Lecture 18. Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen. March 29, Ref: Bryson & Ho Chapter 4.

Optimal Control. Lecture 18. Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen. March 29, Ref: Bryson & Ho Chapter 4. Optimal Control Lecture 18 Hamilton-Jacobi-Bellman Equation, Cont. John T. Wen Ref: Bryson & Ho Chapter 4. March 29, 2004 Outline Hamilton-Jacobi-Bellman (HJB) Equation Iterative solution of HJB Equation

More information

D-ADMM Based Distributed MPC with input-output models*

D-ADMM Based Distributed MPC with input-output models* 4 IEEE Conference on Control Applications (CCA) Part of 4 IEEE Multi-conference on Systems and Control October 8-, 4. Antibes, France D-ADMM Based Distributed MPC with input-output models* Rafael P. Costa,

More information

GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL

GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL GAIN SCHEDULING CONTROL WITH MULTI-LOOP PID FOR 2- DOF ARM ROBOT TRAJECTORY CONTROL 1 KHALED M. HELAL, 2 MOSTAFA R.A. ATIA, 3 MOHAMED I. ABU EL-SEBAH 1, 2 Mechanical Engineering Department ARAB ACADEMY

More information

Variational Methods and Optimal Control

Variational Methods and Optimal Control Variational Methods and Optimal Control A/Prof. Matthew Roughan July 26, 2010 lecture01 Introduction What is the point of this course? Revision Example 1: The money pit. Example 2: Catenary: shape of a

More information

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor Dr.-Ing. Sudchai Boonto Assistant Professor Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Quadratic Gaussian The state space

More information

Precalculus 1, 161. Spring 2018 CRN Section 009. Time: S, 12:30 p.m. - 3:35 p.m. Room BR-11

Precalculus 1, 161. Spring 2018 CRN Section 009. Time: S, 12:30 p.m. - 3:35 p.m. Room BR-11 Precalculus 1, 161 Spring 2018 CRN 11996 Section 009 Time: S, 12:30 p.m. - 3:35 p.m. Room BR-11 SYLLABUS Catalog description Functions and relations and their graphs, transformations and symmetries; composition

More information

EG4321/EG7040. Nonlinear Control. Dr. Matt Turner

EG4321/EG7040. Nonlinear Control. Dr. Matt Turner EG4321/EG7040 Nonlinear Control Dr. Matt Turner EG4321/EG7040 [An introduction to] Nonlinear Control Dr. Matt Turner EG4321/EG7040 [An introduction to] Nonlinear [System Analysis] and Control Dr. Matt

More information