State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules"

Transcription

1 Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state space description Markus Kottmann, Date September 23, 29

2 Advanced Control, State Regulator MSE Preliminary Remarks The path to be followed in this and the next document is the following: The first point to be discussed concerns the design of regulators which make use of the state vector x to control a plant. It is assumed that the plant is controllable. The next point concerns the estimation of the state vector x in case that it is not completely measured. To design such estimators (observers) it is assumed that the plant is observable. The third theme concerns the cooperation between the regulator and the observer. Instead of using the true state-vector, the regulator then utilizes the estimated state-vector. Assumed that the two separate designs of regulator and observer met their specific requirements are these requirements still fulfilled if the regulator and the observer are used together? The assumptions about the plant to be controlled are as follows: Preferably, the plant is controllable and observable. If the plant lacks one or both of the above-mentioned properties (see the examples in Fig. 1), then the non-controllable or non-observable parts can be removed from the model our methods will work for the remaining model which is controllable and observable. a) b) U 1 s+1 2 s+1 c) U X 1 X 1 X 2 Y X 1 1 Y U + s+1 + X 2 s 2 s+1 1 s 2 1 s 2 X 2 Y Figure 1: Examples of systems that are not controllable If the removed parts are e.g. unstable or badly damped then the control system will not be very successful. In that case, additional actuators or sensors are needed. The plant is assumed to be a low-pass system with a feed-through matrix D =. The case D is not difficult it just produces larger equations and diagrams. In the sequel, the plant often is given as a SISO-system. Of course, that is not a restriction. In principle, it is easier to control a plant with more sensors and more actuators. 2 Büchi Roland, Markus Kottmann September 29, 29

3 MSE Advanced Control, State Regulator 1 Feedback of the Full State Vector Figure 2: Control structure with feedforward term and full state feedback In Fig. 2, the control system has two components: the feedback part K, and the feedforward part K vf. The state feedback K is used to determine the dynamics of the closed-loop system, while the prefilter K vf is used to guarantee the static gain (y = r ) 1. Note that the error signal e = r y which is used in classical output feedback does not appear in this control structure. In the feedback signal u R, the state variables x 1 (t), x 2 (t)... x n (t) are weighted by the coefficients k 1, k 2,..., k n. x 1 u R = k 1 x 1 + k 2 x k n x n = [ ] x 2 k 1 k 2... k n. = Kx x n The control signal u is The matrix equations are u = w u R = K vf r K x ẋ = A x + B (K vf r Kx) = A x BKx + BK vf r ẋ = (A BK) x + BK vf r and y = C x The whole system can be described by a new set of matrices A g, B b, C g A g = A BK, B g = BK vf, C g = C 1 The prefilter, as used here, is just a gain. More sophisticated prefilters might be used to shape the dynamics of Y (s)/r(s). September 29, 29 Büchi Roland, Markus Kottmann 3

4 Advanced Control, State Regulator MSE The I/O-description becomes G(s) = Y (s) R(s) = C g(si A g ) 1 B g = C(sI A + BK) 1 BK vf For the moment we assume that K is known. Then the static gain can be adjusted by setting G() = 1 or K vf = (C( A + BK) 1 B) 1, resp. This method is sensitive to parameter variations, so in section 4 we will discuss an alternative which includes integral action. Sections 2 and 3 deal with the question how to calculate K. 2 Pole Placement According to Definition B of controllability, the controllability of (A, B) ensures that the eigenvalues λ 1... λ n of A g = A BK can be placed arbitrarily by proper choice of K. The eigenvalues of A g are given by the roots of det(λi A + BK). To achieve some desired eigenvalues λ 1... λ n the following polynomials must coincide: det(λi A + BK) = (λ λ 1 )(λ λ 2 )... (λ λ n ). The question which arises is about the choice of good pole locations. Some considerations are: Obviously, the poles must be chosen in the left half plane for stability reasons. Transients of the signals should decay towards zero faster than some C e σ 1. The transients should be well damped, e.g. ζ > 1/ 2. Forcing transients to decay fast towards needs energy. Therefore, an upper bound σ 2 > σ is meaningful. ζ = 1/ (2) Im s Re ζ = 1/ (2) σ 2 σ 1 Figure 3: Qualitative sketch of region of good pole locations While the placement of poles is simple for low order systems, it gets somehow unsatisfying when handling systems of order e.g. 4 or higher. 4 Büchi Roland, Markus Kottmann September 29, 29

5 MSE Advanced Control, State Regulator 3 Optimal Control An alternative way to determine K makes use of the fundamental idea of optimality. Changing the value of K results in a different behavior of the control system. If the behavior of the control system is judged quantitatively, it is convenient to have a scalar performance index (or cost function) J = f(k). Normally, better performance corresponds to smaller values of J. The optimal value of K then can be found by minimizing J, e.g. by varying K systematically. In control theory, systems that are adjusted to provide a minimum performance index are called optimal control systems. The function f often is defined based on some intermediary variables such as the state vector x or the input u J = f(k) = t f g(x, u)dt where, of course, x and u depend on K. Since it is useless to look at the values of x and u at some specific time only, the index J is formulated as an integral over time. For theoretical considerations, it is convenient to set the final time t f to infinity. Quadratic terms for the function g are prevalent on one hand these are meaningful measures, and on the other hand they often yield nice analytical results. Figure 4: Regulator problem Consider the following regulator problem, see Fig. 4. The initial state of the system is x() = x. The intention is to take x towards zero as fast as possible by using state feedback. If the norm of x is taken, x = x x x 2 n = [ ] x 1 x 2... x n x 1 x 2. x n = xt x September 29, 29 Büchi Roland, Markus Kottmann 5

6 Advanced Control, State Regulator MSE and integrated over time we get the performance index J = t f x T x dt. In the following derivation the time horizon is set to infinity, and a more general weighting scheme for the state variables is used with a symmetric, positive semidefinite matrix Q: J = x T Qx dt (1) Note that the general form of the performance index incorporates a term containing u to weigh the control energy. This will be discussed in section 3.1. To obtain the minimum value of J, we follow [1] and postulate the existence of an exact differential with a constant symmetric matrix P such that d dt (xt P x) = x T Qx where P is to be determined. Applying the product rule for differentiation, d dt (xt P x) = ẋ T P x + x T and substituting ẋ = (A BK) x, we get }{{} H P }{{} x + x T P ẋ d dt (xt P x) = (Hx) T P x + x T P (Hx) = x T H T P x + x T P Hx = x T (H T P + P H) x = x T Qx }{{} Q which is the exact differential we are seeking. Substituting that expression in (1) results in the performance index J = d dt (xt P x)dt = x T P x = ( xt ()P x()) = x T ()P x() In the evaluation of the limit at t =, we have assumed that the system is stable and hence x( ) =, as desired. Therefore to minimize the performance index J, we consider the two equations: J = The design steps are then as follows: (x T Qx)dt = x T ()P x() and (H T P + P H) = Q 1. Determine the matrix P, where H and Q are known. 2. Minimize J = x T ()P x() by adjusting one ore more unspecified system parameters. 6 Büchi Roland, Markus Kottmann September 29, 29

7 MSE Advanced Control, State Regulator 3.1 Linear Quadratic Regulator (LQR) In a more general case, we also consider the control energy of u. A method suitable for computer calculation is stated without proof in the following. Consider the uncompensated MIMO system ẋ = Ax + Bu with feedback The performance index is u = Kx. J = (x T Qx + u T Ru)dt (2) With Q and R both positive definite, it can be shown that (2) is minimized if K = R 1 B T P To calculate the symmetric n n matrix P, an algebraic matrix Riccati (ARE) equation must be solved: A T P + P A P BR 1 B T P = Q. Since the ARE is a quadratic equation, it has multiple solutions. Equation (2) demands for the (only) solution P which is positive definite. The resulting optimal controller is called the linear quadratic regulator (MATLAB command: lqr). The condition about Q can be relaxed: if Q = C T C is positive semidefinite and if (A, C) is observable, then P and K can be calculated in the same way. The reason is that x must be observable through the virtual output y = Cx. 3.2 Performance of the Linear Quadratic Regulator If the control loop is opened at the input u of the plant (see Fig. 4) then the openloop transfer function is given by G (s) = K(sI A) 1 B. It can be shown, that G (jω) has at least a phase margin of ±6 and a gain margin of [.5... [ on each channel. This makes the LQ-regulator a considerably robust controller. 4 State Regulator Including Integral Part In this section we discuss the problem of designing a compensator that provides an asymptotic tracking of a constant reference input r(t) = r with zero steady-state error. From classical control it is known that this can be achieved if the open-loop is at least of type 1, i.e. if it has at least one open integrator. This idea is formalized here by introducing an internal model of the reference input in the compensator. September 29, 29 Büchi Roland, Markus Kottmann 7

8 Advanced Control, State Regulator MSE Figure 5: Block diagram of a regulator with integral part In Fig. 5 the tracking error e is defined as and its time derivative yields e = y r, ė = ẏ (note the sign!) {}}{ ṙ = ẏ = Cẋ Defining two intermediate variables, z and w, as a new system results: ˆx z = ẋ and w = u, Â [{}} ]{ [{}} ]{ [{}}{ ė C e = ż A z ˆx ] + ˆB {[ }}{ B ] û {}}{ w (3) If the system (Â, ˆB) is controllable, then some feedback gain ˆK which stabilizes (3) can be designed e.g. by pole placement or using the LQR method û = ˆK ˆx. Since the error e is a state variable it converges towards zero, i.e. the requirement of an asymptotic tracking with zero steady-state error is fulfilled. Splitting the feedback term yields [ ] û = w = ˆK e ˆx = [K 1 K 2 ] = K z 1 e K 2 z and by integration the final control law u(t) = K 1 t e(τ)dτ K 2 x(t) which is illustrated in Fig Büchi Roland, Markus Kottmann September 29, 29

9 Bibliography [1] Richard C. Dorf and Robert H. Bishop. Modern Control Systems. Pearson, 28. [2] William S. Levine, editor. The Control Handbook. The Electrical Engineering Handbook Series. CRC Press/IEEE Press, September 29, 29 Büchi Roland, Markus Kottmann 9

10 Advanced Control, State Regulator MSE Solved Exercises 1 Pole Placement Given is a system in state space description [ ] [ ] 1 A =, B = a K s, C = [ c 1 ], D = a = 4, K s = 8, c 1 = 6.4 For each of the following cases, find a controller u = k x + k vf u such that the closed loop system has a unitary static gain and the poles p 1 and p 2 : 1. p 1 = p 2 = p 1,2 = 15 ± 15j 3. p 1 = p 2 = 5 1 Büchi Roland, Markus Kottmann September 29, 29

11 MSE Advanced Control, State Regulator 2 Optimal Control 1 Consider the control system shown below. The state vector is x = [x 1 open-loop system is unstable, therefore state feedback is introduced. x 2 ] T. The Figure 6: Block diagram of a LQ regulator The performance index is J = (x T Qx)dt. Additional conditions are: Q = I and k 1 = k 2 = k and u < 1 at initial conditions x() = 1. Find the plant s matrices A, B, C and D. 2. Find the matrices H and P. 3. Find k by minimizing the performance index J. [ 1 ] September 29, 29 Büchi Roland, Markus Kottmann 11

12 Advanced Control, State Regulator MSE 3 Optimal Control 2 Given is a scalar system ẋ = ax + bu with a simplified algebraic Riccati equation: 2ap 1 r b2 p 2 + q = 1. Find a controller u = kx by minimizing the performance index J J = (qx 2 + ru 2 )dt, (q, r > ) 2. Find a controller u = kx, which stabilizes the system using minimal control energy (q = ). 12 Büchi Roland, Markus Kottmann September 29, 29

13 MSE Advanced Control, State Regulator 4 LQ-Regulator of an Inverted Pendulum Consider an inverted pendulum, where the input signal u(t) is a force, applied to the cart, and the output signal y(t) is the position of the cart. The state vector [x 1, x 2, x 3, x 4 ] T is assumed to be [y, ẏ, θ, θ] T. The parameters are given by M = 1kg, m =.1kg, g = 1m/s 2, l = 1m. Figure 7: inverted pendulum Thus, the following system description can be found: 1 A = , B = 1.11, C = [ 1 ], D = Compute some optimal control regulators using Matlab command lqr and plot step responses of the closed-loop systems at different weights of control energy r. Find also suitable prefilters K vf. 2. For the same weights r of the control energy, plot the Bode diagram of the closed-loop systems and discuss the results. 3. Discuss the robustness of the system. September 29, 29 Büchi Roland, Markus Kottmann 13

14 Advanced Control, State Regulator MSE Solutions 1 Solution Pole Placement 14 Büchi Roland, Markus Kottmann September 29, 29

15 MSE Advanced Control, State Regulator 2 Solution Optimal Control (1) September 29, 29 Büchi Roland, Markus Kottmann 15

16 Advanced Control, State Regulator MSE 3 Solution Optimal Control (2) 16 Büchi Roland, Markus Kottmann September 29, 29

17 MSE Advanced Control, State Regulator 4 Solution LQ-Regulator of an Inverted Pendulum September 29, 29 Büchi Roland, Markus Kottmann 17

18 Advanced Control, State Regulator MSE Step Response Amplitude r =.1 r = 1 r = Time (sec) Bode Diagram Magnitude (db) -5-1 r =.1 r = 1 r = Phase (deg) Frequency (rad/sec) 1 Nyquist Diagram Openloop r =.1 r = 1 r = Büchi Roland, Markus Kottmann September 29, 29

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 15, am. Closed book. Two pages of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Wed. Dec. 5, 2 8- am Closed book. Two pages of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 2 2 6 3 4 4 5 6 6 7 8 2 Total

More information

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10) Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the s-plane

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

Linear State Feedback Controller Design

Linear State Feedback Controller Design Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

More information

5. Observer-based Controller Design

5. Observer-based Controller Design EE635 - Control System Theory 5. Observer-based Controller Design Jitkomut Songsiri state feedback pole-placement design regulation and tracking state observer feedback observer design LQR and LQG 5-1

More information

EE C128 / ME C134 Final Exam Fall 2014

EE C128 / ME C134 Final Exam Fall 2014 EE C128 / ME C134 Final Exam Fall 2014 December 19, 2014 Your PRINTED FULL NAME Your STUDENT ID NUMBER Number of additional sheets 1. No computers, no tablets, no connected device (phone etc.) 2. Pocket

More information

Suppose that we have a specific single stage dynamic system governed by the following equation:

Suppose that we have a specific single stage dynamic system governed by the following equation: Dynamic Optimisation Discrete Dynamic Systems A single stage example Suppose that we have a specific single stage dynamic system governed by the following equation: x 1 = ax 0 + bu 0, x 0 = x i (1) where

More information

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1)

EL 625 Lecture 10. Pole Placement and Observer Design. ẋ = Ax (1) EL 625 Lecture 0 EL 625 Lecture 0 Pole Placement and Observer Design Pole Placement Consider the system ẋ Ax () The solution to this system is x(t) e At x(0) (2) If the eigenvalues of A all lie in the

More information

CONTROL DESIGN FOR SET POINT TRACKING

CONTROL DESIGN FOR SET POINT TRACKING Chapter 5 CONTROL DESIGN FOR SET POINT TRACKING In this chapter, we extend the pole placement, observer-based output feedback design to solve tracking problems. By tracking we mean that the output is commanded

More information

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback

Topic # Feedback Control. State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Topic #17 16.31 Feedback Control State-Space Systems Closed-loop control using estimators and regulators. Dynamics output feedback Back to reality Copyright 21 by Jonathan How. All Rights reserved 1 Fall

More information

MODERN CONTROL DESIGN

MODERN CONTROL DESIGN CHAPTER 8 MODERN CONTROL DESIGN The classical design techniques of Chapters 6 and 7 are based on the root-locus and frequency response that utilize only the plant output for feedback with a dynamic controller

More information

Topic # Feedback Control

Topic # Feedback Control Topic #5 6.3 Feedback Control State-Space Systems Full-state Feedback Control How do we change the poles of the state-space system? Or,evenifwecanchangethepolelocations. Where do we put the poles? Linear

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

Chapter 3. State Feedback - Pole Placement. Motivation

Chapter 3. State Feedback - Pole Placement. Motivation Chapter 3 State Feedback - Pole Placement Motivation Whereas classical control theory is based on output feedback, this course mainly deals with control system design by state feedback. This model-based

More information

1 (30 pts) Dominant Pole

1 (30 pts) Dominant Pole EECS C8/ME C34 Fall Problem Set 9 Solutions (3 pts) Dominant Pole For the following transfer function: Y (s) U(s) = (s + )(s + ) a) Give state space description of the system in parallel form (ẋ = Ax +

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #17 16.31 Feedback Control Systems Deterministic LQR Optimal control and the Riccati equation Weight Selection Fall 2007 16.31 17 1 Linear Quadratic Regulator (LQR) Have seen the solutions to the

More information

6 OUTPUT FEEDBACK DESIGN

6 OUTPUT FEEDBACK DESIGN 6 OUTPUT FEEDBACK DESIGN When the whole sate vector is not available for feedback, i.e, we can measure only y = Cx. 6.1 Review of observer design Recall from the first class in linear systems that a simple

More information

Control Systems. Design of State Feedback Control.

Control Systems. Design of State Feedback Control. Control Systems Design of State Feedback Control chibum@seoultech.ac.kr Outline Design of State feedback control Dominant pole design Symmetric root locus (linear quadratic regulation) 2 Selection of closed-loop

More information

Quadratic Stability of Dynamical Systems. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

Quadratic Stability of Dynamical Systems. Raktim Bhattacharya Aerospace Engineering, Texas A&M University .. Quadratic Stability of Dynamical Systems Raktim Bhattacharya Aerospace Engineering, Texas A&M University Quadratic Lyapunov Functions Quadratic Stability Dynamical system is quadratically stable if

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Zeros and zero dynamics

Zeros and zero dynamics CHAPTER 4 Zeros and zero dynamics 41 Zero dynamics for SISO systems Consider a linear system defined by a strictly proper scalar transfer function that does not have any common zero and pole: g(s) =α p(s)

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

EECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators.

EECS C128/ ME C134 Final Wed. Dec. 14, am. Closed book. One page, 2 sides of formula sheets. No calculators. Name: SID: EECS C128/ ME C134 Final Wed. Dec. 14, 211 81-11 am Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth 1 points total. Problem Points Score 1 16 2 12

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the

More information

Homework Solution # 3

Homework Solution # 3 ECSE 644 Optimal Control Feb, 4 Due: Feb 17, 4 (Tuesday) Homework Solution # 3 1 (5%) Consider the discrete nonlinear control system in Homework # For the optimal control and trajectory that you have found

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

Exam. 135 minutes, 15 minutes reading time

Exam. 135 minutes, 15 minutes reading time Exam August 6, 208 Control Systems II (5-0590-00) Dr. Jacopo Tani Exam Exam Duration: 35 minutes, 5 minutes reading time Number of Problems: 35 Number of Points: 47 Permitted aids: 0 pages (5 sheets) A4.

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 2 Homework 7: State Estimators (a) For the same system as discussed in previous slides, design another closed-loop state estimator,

More information

Pole placement control: state space and polynomial approaches Lecture 2

Pole placement control: state space and polynomial approaches Lecture 2 : state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

More information

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7) EEE582 Topical Outline A.A. Rodriguez Fall 2007 GWC 352, 965-3712 The following represents a detailed topical outline of the course. It attempts to highlight most of the key concepts to be covered and

More information

Problem Set 4 Solution 1

Problem Set 4 Solution 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 4 Solution Problem 4. For the SISO feedback

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:

More information

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators. Name: SID: EECS C28/ ME C34 Final Thu. May 4, 25 5-8 pm Closed book. One page, 2 sides of formula sheets. No calculators. There are 8 problems worth points total. Problem Points Score 4 2 4 3 6 4 8 5 3

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

EE221A Linear System Theory Final Exam

EE221A Linear System Theory Final Exam EE221A Linear System Theory Final Exam Professor C. Tomlin Department of Electrical Engineering and Computer Sciences, UC Berkeley Fall 2016 12/16/16, 8-11am Your answers must be supported by analysis,

More information

Chapter 8 Stabilization: State Feedback 8. Introduction: Stabilization One reason feedback control systems are designed is to stabilize systems that m

Chapter 8 Stabilization: State Feedback 8. Introduction: Stabilization One reason feedback control systems are designed is to stabilize systems that m Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of echnology c Chapter 8 Stabilization:

More information

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control Chapter 3 LQ, LQG and Control System H 2 Design Overview LQ optimization state feedback LQG optimization output feedback H 2 optimization non-stochastic version of LQG Application to feedback system design

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are

More information

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) = 1. Pole Placement Given the following open-loop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the state-variable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #19 16.31 Feedback Control Systems Stengel Chapter 6 Question: how well do the large gain and phase margins discussed for LQR map over to DOFB using LQR and LQE (called LQG)? Fall 2010 16.30/31 19

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid

More information

Extensions and applications of LQ

Extensions and applications of LQ Extensions and applications of LQ 1 Discrete time systems 2 Assigning closed loop pole location 3 Frequency shaping LQ Regulator for Discrete Time Systems Consider the discrete time system: x(k + 1) =

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.

Here represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities. 19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that

More information

Intro. Computer Control Systems: F9

Intro. Computer Control Systems: F9 Intro. Computer Control Systems: F9 State-feedback control and observers Dave Zachariah Dept. Information Technology, Div. Systems and Control 1 / 21 dave.zachariah@it.uu.se F8: Quiz! 2 / 21 dave.zachariah@it.uu.se

More information

Coordinated Tracking Control of Multiple Laboratory Helicopters: Centralized and De-Centralized Design Approaches

Coordinated Tracking Control of Multiple Laboratory Helicopters: Centralized and De-Centralized Design Approaches Coordinated Tracking Control of Multiple Laboratory Helicopters: Centralized and De-Centralized Design Approaches Hugh H. T. Liu University of Toronto, Toronto, Ontario, M3H 5T6, Canada Sebastian Nowotny

More information

1 Steady State Error (30 pts)

1 Steady State Error (30 pts) Professor Fearing EECS C28/ME C34 Problem Set Fall 2 Steady State Error (3 pts) Given the following continuous time (CT) system ] ẋ = A x + B u = x + 2 7 ] u(t), y = ] x () a) Given error e(t) = r(t) y(t)

More information

Intermediate Process Control CHE576 Lecture Notes # 2

Intermediate Process Control CHE576 Lecture Notes # 2 Intermediate Process Control CHE576 Lecture Notes # 2 B. Huang Department of Chemical & Materials Engineering University of Alberta, Edmonton, Alberta, Canada February 4, 2008 2 Chapter 2 Introduction

More information

Denis ARZELIER arzelier

Denis ARZELIER   arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.2 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS PERFORMANCE ANALYSIS and SYNTHESIS Denis ARZELIER www.laas.fr/ arzelier arzelier@laas.fr 15

More information

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31 Introduction Classical Control Robust Control u(t) y(t) G u(t) G + y(t) G : nominal model G = G + : plant uncertainty Uncertainty sources : Structured : parametric uncertainty, multimodel uncertainty Unstructured

More information

Robotics. Control Theory. Marc Toussaint U Stuttgart

Robotics. Control Theory. Marc Toussaint U Stuttgart Robotics Control Theory Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic optimal control, Riccati equations (differential, algebraic, discrete-time), controllability,

More information

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition

More information

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft

Control Systems Design, SC4026. SC4026 Fall 2010, dr. A. Abate, DCSC, TU Delft Control Systems Design, SC426 SC426 Fall 2, dr A Abate, DCSC, TU Delft Lecture 5 Controllable Canonical and Observable Canonical Forms Stabilization by State Feedback State Estimation, Observer Design

More information

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015

SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequency-domain analysis and control design (15 pt) Given is a

More information

Transfer function and linearization

Transfer function and linearization Transfer function and linearization Daniele Carnevale Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata Corso di Controlli Automatici, A.A. 24-25 Testo del corso:

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

Robust Control 5 Nominal Controller Design Continued

Robust Control 5 Nominal Controller Design Continued Robust Control 5 Nominal Controller Design Continued Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 4/14/2003 Outline he LQR Problem A Generalization to LQR Min-Max

More information

TRACKING AND DISTURBANCE REJECTION

TRACKING AND DISTURBANCE REJECTION TRACKING AND DISTURBANCE REJECTION Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 13 General objective: The output to track a reference

More information

EEE582 Homework Problems

EEE582 Homework Problems EEE582 Homework Problems HW. Write a state-space realization of the linearized model for the cruise control system around speeds v = 4 (Section.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use

More information

Lecture 4 Continuous time linear quadratic regulator

Lecture 4 Continuous time linear quadratic regulator EE363 Winter 2008-09 Lecture 4 Continuous time linear quadratic regulator continuous-time LQR problem dynamic programming solution Hamiltonian system and two point boundary value problem infinite horizon

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect

More information

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Observers,

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL 1. Optimal regulator with noisy measurement Consider the following system: ẋ = Ax + Bu + w, x(0) = x 0 where w(t) is white noise with Ew(t) = 0, and x 0 is a stochastic

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #20 16.31 Feedback Control Systems Closed-loop system analysis Bounded Gain Theorem Robust Stability Fall 2007 16.31 20 1 SISO Performance Objectives Basic setup: d i d o r u y G c (s) G(s) n control

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #14 16.31 Feedback Control Systems State-Space Systems Full-state Feedback Control How do we change the poles of the state-space system? Or, even if we can change the pole locations. Where do we

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 9. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19

POLE PLACEMENT. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 19 POLE PLACEMENT Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 19 Outline 1 State Feedback 2 Observer 3 Observer Feedback 4 Reduced Order

More information

SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER

SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER SYSTEMTEORI - ÖVNING 5: FEEDBACK, POLE ASSIGNMENT AND OBSERVER Exercise 54 Consider the system: ẍ aẋ bx u where u is the input and x the output signal (a): Determine a state space realization (b): Is the

More information

Australian Journal of Basic and Applied Sciences, 3(4): , 2009 ISSN Modern Control Design of Power System

Australian Journal of Basic and Applied Sciences, 3(4): , 2009 ISSN Modern Control Design of Power System Australian Journal of Basic and Applied Sciences, 3(4): 4267-4273, 29 ISSN 99-878 Modern Control Design of Power System Atef Saleh Othman Al-Mashakbeh Tafila Technical University, Electrical Engineering

More information

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

More information

Automatic Control II Computer exercise 3. LQG Design

Automatic Control II Computer exercise 3. LQG Design Uppsala University Information Technology Systems and Control HN,FS,KN 2000-10 Last revised by HR August 16, 2017 Automatic Control II Computer exercise 3 LQG Design Preparations: Read Chapters 5 and 9

More information

CDS 101: Lecture 5-1 Reachability and State Space Feedback

CDS 101: Lecture 5-1 Reachability and State Space Feedback CDS 11: Lecture 5-1 Reachability and State Space Feedback Richard M. Murray 23 October 26 Goals: Define reachability of a control system Give tests for reachability of linear systems and apply to examples

More information

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11 sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

More information

Introduction to Nonlinear Control Lecture # 4 Passivity

Introduction to Nonlinear Control Lecture # 4 Passivity p. 1/6 Introduction to Nonlinear Control Lecture # 4 Passivity È p. 2/6 Memoryless Functions ¹ y È Ý Ù È È È È u (b) µ power inflow = uy Resistor is passive if uy 0 p. 3/6 y y y u u u (a) (b) (c) Passive

More information

Lecture 2: Discrete-time Linear Quadratic Optimal Control

Lecture 2: Discrete-time Linear Quadratic Optimal Control ME 33, U Berkeley, Spring 04 Xu hen Lecture : Discrete-time Linear Quadratic Optimal ontrol Big picture Example onvergence of finite-time LQ solutions Big picture previously: dynamic programming and finite-horizon

More information

Classify a transfer function to see which order or ramp it can follow and with which expected error.

Classify a transfer function to see which order or ramp it can follow and with which expected error. Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

More information

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A.

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A. Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Q-Parameterization 1 This lecture introduces the so-called

More information

Return Difference Function and Closed-Loop Roots Single-Input/Single-Output Control Systems

Return Difference Function and Closed-Loop Roots Single-Input/Single-Output Control Systems Spectral Properties of Linear- Quadratic Regulators Robert Stengel Optimal Control and Estimation MAE 546 Princeton University, 2018! Stability margins of single-input/singleoutput (SISO) systems! Characterizations

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

Richiami di Controlli Automatici

Richiami di Controlli Automatici Richiami di Controlli Automatici Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Richiami di Controlli Automatici

More information

Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

More information

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin LQR, Kalman Filter, and LQG Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin May 2015 Linear Quadratic Regulator (LQR) Consider a linear system

More information

Control of Electromechanical Systems

Control of Electromechanical Systems Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance

More information

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10) Subject: Optimal Control Assignment- (Related to Lecture notes -). Design a oil mug, shown in fig., to hold as much oil possible. The height and radius of the mug should not be more than 6cm. The mug must

More information

ECEn 483 / ME 431 Case Studies. Randal W. Beard Brigham Young University

ECEn 483 / ME 431 Case Studies. Randal W. Beard Brigham Young University ECEn 483 / ME 431 Case Studies Randal W. Beard Brigham Young University Updated: December 2, 2014 ii Contents 1 Single Link Robot Arm 1 2 Pendulum on a Cart 9 3 Satellite Attitude Control 17 4 UUV Roll

More information

Optimal Polynomial Control for Discrete-Time Systems

Optimal Polynomial Control for Discrete-Time Systems 1 Optimal Polynomial Control for Discrete-Time Systems Prof Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning this paper should

More information

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 7: Feedback and the Root Locus method. Readings: Jacopo Tani. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 7: Feedback and the Root Locus method Readings: Jacopo Tani Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 2, 2018 J. Tani, E. Frazzoli (ETH) Lecture 7:

More information

5HC99 Embedded Vision Control. Feedback Control Systems. dr. Dip Goswami Flux Department of Electrical Engineering

5HC99 Embedded Vision Control. Feedback Control Systems. dr. Dip Goswami Flux Department of Electrical Engineering 5HC99 Embedded Vision Control Feedback Control Systems dr. Dip Goswami d.goswami@tue.nl Flux 04.135 Department of Electrical Engineering 1 Example Feedback control system: regulates the behavior of dynamical

More information

Design Methods for Control Systems

Design Methods for Control Systems Design Methods for Control Systems Maarten Steinbuch TU/e Gjerrit Meinsma UT Dutch Institute of Systems and Control Winter term 2002-2003 Schedule November 25 MSt December 2 MSt Homework # 1 December 9

More information

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol. III Controller Design - Boris Lohmann

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION Vol. III Controller Design - Boris Lohmann CONROL SYSEMS, ROBOICS, AND AUOMAION Vol. III Controller Design - Boris Lohmann CONROLLER DESIGN Boris Lohmann Institut für Automatisierungstechnik, Universität Bremen, Germany Keywords: State Feedback

More information

Outline. 1 Linear Quadratic Problem. 2 Constraints. 3 Dynamic Programming Solution. 4 The Infinite Horizon LQ Problem.

Outline. 1 Linear Quadratic Problem. 2 Constraints. 3 Dynamic Programming Solution. 4 The Infinite Horizon LQ Problem. Model Predictive Control Short Course Regulation James B. Rawlings Michael J. Risbeck Nishith R. Patel Department of Chemical and Biological Engineering Copyright c 217 by James B. Rawlings Outline 1 Linear

More information

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28

OPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, Urbana-Champaign. Fall S. Bolouki (UIUC) 1 / 28 OPTIMAL CONTROL Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 28 (Example from Optimal Control Theory, Kirk) Objective: To get from

More information

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1 Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Control of Single-Input Single-Output Systems

Control of Single-Input Single-Output Systems Control of Single-Input Single-Output Systems Dimitrios Hristu-Varsakelis 1 and William S. Levine 2 1 Department of Applied Informatics, University of Macedonia, Thessaloniki, 546, Greece dcv@uom.gr 2

More information

ECEEN 5448 Fall 2011 Homework #4 Solutions

ECEEN 5448 Fall 2011 Homework #4 Solutions ECEEN 5448 Fall 2 Homework #4 Solutions Professor David G. Meyer Novemeber 29, 2. The state-space realization is A = [ [ ; b = ; c = [ which describes, of course, a free mass (in normalized units) with

More information

ESC794: Special Topics: Model Predictive Control

ESC794: Special Topics: Model Predictive Control ESC794: Special Topics: Model Predictive Control Discrete-Time Systems Hanz Richter, Professor Mechanical Engineering Department Cleveland State University Discrete-Time vs. Sampled-Data Systems A continuous-time

More information