EE C128 / ME C134 Feedback Control Systems


 Sherman Shelton
 1 years ago
 Views:
Transcription
1 EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of California Berkeley November 21, 2013 M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
2 Lecture abstract Topics covered in this presentation Constrained Optimal Control for Linear DiscreteTime Systems Basic Formulation of a Model Predictive Control Regulation Problem How to Ensure Feasibility and Stability Examples We will not have time to cover the following Theory of Convex Optimization Background on SetTheoretic Methods in Control Proofs (stability, feasibility) Details of RealTime Implementation Extensions (tracking problems, effect of uncertainties, etc.) M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
3 Chapter outline 1 Introduction to Model Predictive Control 1 Introduction 2 Discrete Time Constrained Optimal Control 3 The Basic MPC Formulation 4 Ensuring Feasibility and Stability 5 Example: Constrained Double Integrator 6 Extensions and Generalizations M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
4 1 Introduction 1 Introduction to Model Predictive Control 1 Introduction 2 Discrete Time Constrained Optimal Control 3 The Basic MPC Formulation 4 Ensuring Feasibility and Stability 5 Example: Constrained Double Integrator 6 Extensions and Generalizations M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
5 1 Introduction What is Model Predictive Control? Properties of Model Predictive Control (MPC) modelbased prediction of future system behavior builtin constraint satisfaction (hard constraints) general formulation for MIMO systems Applications of Model Predictive Control traditionally: process industry (since the 1980 s) highperformance control applications automotive industry building automation and control still dwarfed by PID in industry, but growing M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
6 1 Introduction PID vs. MPC Cartoon courtesy of OpenI: M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
7 1 Introduction Example: Audi Smart Engine Vehicle Desired Speed ACC Actual Speed Design of an MPC Controller regulating the desired speed (through an Automatic Cruise Control) in order to reach the destination in the most fuelefficient way Prediction: Max and Min Speed of traffic, Grade Constraints: Max and Min Speed (of traffic and of vehicle) Example courtesy of Prof. Borrelli M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
8 1 Introduction Receding Horizon Control M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
9 1 Introduction Receding Horizon Control Given x(t), optimize over finite horizon of length N at time t M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
10 1 Introduction Receding Horizon Control Given x(t), optimize over finite horizon of length N at time t Only apply the first optimal move u(t) of the predicted controls M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
11 1 Introduction Receding Horizon Control Given x(t), optimize over finite horizon of length N at time t Only apply the first optimal move u(t) of the predicted controls Shift the horizon by one M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
12 1 Introduction Receding Horizon Control Given x(t), optimize over finite horizon of length N at time t Only apply the first optimal move u(t) of the predicted controls Shift the horizon by one Repeat the whole optimization at time t + 1 M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
13 1 Introduction Receding Horizon Control Given x(t), optimize over finite horizon of length N at time t Only apply the first optimal move u(t) of the predicted controls Shift the horizon by one Repeat the whole optimization at time t + 1 Optimization using current measurements Feedback! M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
14 1 Introduction Important Issues in Model Predictive Control Feasibility: Optimization problem may become infeasible at some future time step Stability: Closedloop stability not guaranteed Performance: Effect of finite prediction horizon? t+n min l(x k, u k ) vs. min l(x k, u k ) k=t k=t repeatedly RealTime Implementation: Reliable fast computation needed Note: The above issues arise even when assuming a perfect system model and no disturbances. M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
15 2 Discrete Time Constrained Optimal Control 1 Introduction to Model Predictive Control 1 Introduction 2 Discrete Time Constrained Optimal Control 3 The Basic MPC Formulation 4 Ensuring Feasibility and Stability 5 Example: Constrained Double Integrator 6 Extensions and Generalizations M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
16 2 Discrete Time Constrained Optimal Control Discrete Time vs. Continuous Time Optimal Control Continuous time LQR J c = min u s.t. 0 x(t) T Qx(t) + u(t) T Ru(t) dt ẋ(t) = Ax(t) + Bu(t) Discrete time LQR J d = min u s.t. x T k Qx k + u T k Ru k k=0 x k+1 = A d x k + B d u k Why discrete time? software implementations of controllers are inherently discrete need to discretize sooner or later anyway M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
17 2 Discrete Time Constrained Optimal Control How to Deal With Constraints? In practice, more or less all systems are constrained input saturation (actuation limits) e.g. limited motor voltage of cart system in the lab state constraints (physical limits, safety limits) e.g. finite track length of the pendulum system Constraints u(t) U for all t, input constraint set U R p x(t) X for all t, state constraint set X R n Often assumed in MPC: U and X are polyhedra a makes x(t) X H x x(t) E x and u(t) U H u u(t) E u linear constraints a a finite intersection of halfspaces Issue: No systematic treatment by conventional methods (PID, LQR...) M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
18 2 Discrete Time Constrained Optimal Control The Naive Approach: Just Truncate! Stage problem at time t, given state x(t) N 1 min u 0,...,u N 1 k=0 x T k Qx k + u T k Ru k s.t. x k+1 = Ax k + Bu k, k = 0,..., N 1 u k U, x k+1 X, k = 0,..., N 1 x 0 = x(t) If X and U are polyhedra, this is a Quadratic Program can be solved fast, efficiently and reliably using modern solvers Basic MPC Algorithm: at time t, measure state x(t) and solve stage problem apply control u(t) = u 0 go to time t + 1 and repeat M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
19 2 Discrete Time Constrained Optimal Control The Naive Approach: Feasibility Issues Double Integrator Example [ ] [ ] A = B = Q = [ ] R = 10 X = {x R 2 : x i 5, i = 1, 2}, U = {u R : u 1} M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
20 2 Discrete Time Constrained Optimal Control The Naive Approach: Feasibility Issues Double Integrator Example [ ] [ ] A = B = Q = [ ] R = 10 X = {x R 2 : x i 5, i = 1, 2}, U = {u R : u 1} 3 State Trajectory 0.5 Control Input x 2 0 u LQR "naive" MPC, N = 3 "naive" MPC, N = 4 "naive" MPC, N = x 1 1 u min 1.5 LQR "naive" MPC, N = 3 "naive" MPC, N = 4 "naive" MPC, N = t M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
21 2 Discrete Time Constrained Optimal Control The Naive Approach: Feasibility Issues 3 2 State Trajectory Control Input x u Observations LQR "naive" MPC, N = 3 "naive" MPC, N = 4 "naive" MPC, N = x 1 LQR controller violates input constraints u min 1.5 LQR "naive" MPC, N = 3 "naive" MPC, N = 4 "naive" MPC, N = t naive MPC with prediction horizon N = 3 is infeasible at t = 2 naive MPC with prediction horizon N = 4 stays feasible throughout, but has poor performance controller needs to look ahead far enough for good performance M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
22 3 The Basic MPC Formulation 1 Introduction to Model Predictive Control 1 Introduction 2 Discrete Time Constrained Optimal Control 3 The Basic MPC Formulation 4 Ensuring Feasibility and Stability 5 Example: Constrained Double Integrator 6 Extensions and Generalizations M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
23 3 The Basic MPC Formulation The Basic MPC Formulation Stage problem at time t, given state x(t) N 1 min u 0,...,u N 1 k=0 x T k Qx k + u T k Ru k + x T NP x N s.t. x k+1 = Ax k + Bu k, k = 0,..., N 1 u k U, x k+1 X, k = 0,..., N 1 x N X f x 0 = x(t) terminal weighting matrix P used to achieve stability terminal constraint set X f used to achieve persistent feasibility M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
24 3 The Basic MPC Formulation Terminal cost and Terminal Constraints Obvious: If X f = {0} and a solution to the stage problem exists for initial state x(0), then the controller is both stable and persistently feasible. setting X f = {0} may drastically reduce the set states for which the stage optimization problem is feasible if a solution does exists it might be very costly M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
25 3 The Basic MPC Formulation Terminal cost and Terminal Constraints Obvious: If X f = {0} and a solution to the stage problem exists for initial state x(0), then the controller is both stable and persistently feasible. setting X f = {0} may drastically reduce the set states for which the stage optimization problem is feasible if a solution does exists it might be very costly Definition (Region of Attraction) Given a controller u k = f(x k ), its region of attraction X 0 is X 0 = { x 0 X : lim k x k = 0, x k X, f(x k ) U, k } where x j+1 = Ax j + Bf(x j ) for each j Goal: Find a tradeoff between control performance (minimize cost) size of the region of attraction (can control larger set of states) computational complexity (grows with the prediction horizon) M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
26 3 The Basic MPC Formulation Region of Attraction Recall: Double Integrator Example [ ] [ ] [ ] A = B = Q = R = 10 X = {x R 2 : x i 5, i = 1, 2}, U = {u R : u 1} M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
27 3 The Basic MPC Formulation Region of Attraction Recall: Double Integrator Example [ ] [ ] [ ] A = B = Q = R = 10 X = {x R 2 : x i 5, i = 1, 2}, U = {u R : u 1} M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
28 4 Ensuring Feasibility and Stability 1 Introduction to Model Predictive Control 1 Introduction 2 Discrete Time Constrained Optimal Control 3 The Basic MPC Formulation 4 Ensuring Feasibility and Stability 5 Example: Constrained Double Integrator 6 Extensions and Generalizations M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
29 4 Ensuring Feasibility and Stability Some SetTheoretic Notions Definition (Invariant Set) Given an autonomous system x k+1 = f(x k ), a set O X is (positively) invariant if x 0 O x k O for all k 0 M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
30 4 Ensuring Feasibility and Stability Some SetTheoretic Notions Definition (Invariant Set) Given an autonomous system x k+1 = f(x k ), a set O X is (positively) invariant if x 0 O x k O for all k 0 Definition (Maximal Invariant Set) The set O is the maximal invariant set if 0 O, O is invariant and O contains all invariant sets that contain the origin. M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
31 4 Ensuring Feasibility and Stability Some SetTheoretic Notions Definition (Invariant Set) Given an autonomous system x k+1 = f(x k ), a set O X is (positively) invariant if x 0 O x k O for all k 0 Definition (Maximal Invariant Set) The set O is the maximal invariant set if 0 O, O is invariant and O contains all invariant sets that contain the origin. Definition (Control Invariant Set) A set C X is said to be control invariant if x 0 C (u 0, u 1,... ) U s.t. x k C for all k 0 where x j+1 = Ax j + Bu j for all j M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
32 4 Ensuring Feasibility and Stability Ensuring Feasibility Task: We must make sure that, in each step, there exists a feasible control from the predicted state x N. can achieve this if X f = C for some control invariant set C idea: use the maximal invariant set of a particular controller M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
33 4 Ensuring Feasibility and Stability Ensuring Feasibility Task: We must make sure that, in each step, there exists a feasible control from the predicted state x N. can achieve this if X f = C for some control invariant set C idea: use the maximal invariant set of a particular controller Definition (Maximal LQR Invariant Set) The maximal LQR invariant set O LQR is the maximal invariant set of the system x k+1 = (A BK)x k subject to the constraint u k = Kx k U, where K is the LQR gain. Terminal Constraint: if X f = O LQR, then we are guaranteed to be persistently feasible (optimization can always choose LQR control, feasible by definition) determining O LQR is computationally feasible in some cases (but problematic in high dimensions with complicated constraint sets) M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
34 4 Ensuring Feasibility and Stability Ensuring Stability Basic Idea: Proof is based on a Lyapunov argument standard method in nonlinear control based on showing that a Lyapunov function, an energylike function of the state, is decreasing along closedloop system trajectories details outside the scope of this class (see EE222, ME237 for details) M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
35 4 Ensuring Feasibility and Stability Ensuring Stability Basic Idea: Proof is based on a Lyapunov argument standard method in nonlinear control based on showing that a Lyapunov function, an energylike function of the state, is decreasing along closedloop system trajectories details outside the scope of this class (see EE222, ME237 for details) How to ensure this: terminal weighting matrix P commonly chosen as the matrix solving the DiscreteTime Algebraic Riccati Equation: P = A T P A + Q A T P B(B T P B + R) 1 B T P A x T k P x k is the infinite horizon cost of regulating the system state to zero starting from x k, using the (unconstrained) LQR controller Note: x N O LQR starting from x N LQR is feasible (hence optimal) M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
36 4 Ensuring Feasibility and Stability Main Theoretical Result Theorem (Stability and Persistent Feasibility for Basic MPC) Suppose that 1. Q = Q T 0, R = R T 0 and P 0 2. X, X f and U are closed sets containing the origin in their interior 3. X f is control invariant, X f X 4. min u U,x + X f x T P x + x T Qx + u T Ru + (x + ) T P (x + ) 0 for all x X f, where x + = Ax + Bu Then 1. the state of the closedloop system converges to the origin, i.e. lim k x(k) = 0 2. the origin of the closedloop system is asymptotically stable with domain of attraction X 0 M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
37 5 Example: Constrained Double Integrator 1 Introduction to Model Predictive Control 1 Introduction 2 Discrete Time Constrained Optimal Control 3 The Basic MPC Formulation 4 Ensuring Feasibility and Stability 5 Example: Constrained Double Integrator 6 Extensions and Generalizations M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
38 5 Example: Constrained Double Integrator Example: Constrained Double Integrator Modified Double Integrator Example [ ] [ ] A = B = Q = [ ] R = 10 X = {x R 2 : x i 5, i = 1, 2} U = {u R : u 1} X f = O LQR P solves DARE M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
39 5 Example: Constrained Double Integrator Example: Constrained Double Integrator Simulation Results Observations controller with N = 3 is infeasible at t = 0 same performance for controllers with N = 5 and N = 10 M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
40 6 Extensions and Generalizations 1 Introduction to Model Predictive Control 1 Introduction 2 Discrete Time Constrained Optimal Control 3 The Basic MPC Formulation 4 Ensuring Feasibility and Stability 5 Example: Constrained Double Integrator 6 Extensions and Generalizations M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
41 6 Extensions and Generalizations Extensions and Generalizations The basic ideas of MPC can be extended to MPC for reference tracking Robust MPC (robustness w.r.t disturbances / model errors) Outputfeedback MPC (state only partially observed) Fast MPC for applications with fast dynamics fast solvers for online MPC explicit MPC via multiparametric programming MPC for nonlinear systems... M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
42 6 Extensions and Generalizations Example: Something of Everything Interpolated TubeBased Robust Output Feedback MPC for Tracking outputfeedback robust to bounded additive disturbances setpoint tracking interpolation between different terminal constraint sets allows to improve feasibility while maintaining high performance M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
43 6 Extensions and Generalizations Explicit Model Predictive Control Solving the Quadratic Program via Multiparametric Programming the stage quadratic program can be solved explicitly solution is a piecewise affine control law region of attraction partitioned into polyhedra LookupTable M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
44 6 Extensions and Generalizations Conclusion Model Predictive Control is a very active research area becoming a mature technology applicable to a wide range of control problems the only control methodology taking hard state and input constraints into account explicitly Model Predictive Control is not plug and play it requires specialized knowledge inherently better than other control techniques widely accepted in industry (yet) M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
45 6 Extensions and Generalizations Want to Learn More? Recommended Classes EE 127: Optimization Models in Engineering (El Ghaoui) ME 190M: Introduction to Model Predictive Control (Borrelli) Advanced Classes EE 221A: Linear System Theory EE 227B: Convex Optimization (El Ghaoui) ME 290J: Model Predictive Control for Linear and Hybrid Systems (Borrelli) M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
46 6 Extensions and Generalizations Bibliography Francesco Borelli. ME290J: Model Predictive Control for Linear and Hybrid Systems, M. Herceg et al. MultiParametric Toolbox 3.0, Maximilian Balandat. Interpolation in OutputFeedback TubeBased Robust MPC, 50th IEEE Conference on Decision and Control and European Control Conference, 2011 Maximilian Balandat. Constrained Robust Optimal Trajectory Tracking: Model Predictive Control Approaches, Diploma Thesis, Technische Universität Darmstadt, 2010 M. Balandat (EECS, UCB) Feedback Control Systems November 21, / 34
MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem
MATH4406 (Control Theory) Unit 6: The Linear Quadratic Regulator (LQR) and Model Predictive Control (MPC) Prepared by Yoni Nazarathy, Artem Pulemotov, September 12, 2012 Unit Outline Goal 1: Outline linear
More information4F3  Predictive Control
4F3 Predictive Control  Lecture 2 p 1/23 4F3  Predictive Control Lecture 2  Unconstrained Predictive Control Jan Maciejowski jmm@engcamacuk 4F3 Predictive Control  Lecture 2 p 2/23 References Predictive
More informationNonlinear Optimization for Optimal Control Part 2. Pieter Abbeel UC Berkeley EECS. From linear to nonlinear Modelpredictive control (MPC) POMDPs
Nonlinear Optimization for Optimal Control Part 2 Pieter Abbeel UC Berkeley EECS Outline From linear to nonlinear Modelpredictive control (MPC) POMDPs Page 1! From Linear to Nonlinear We know how to solve
More informationECE7850 Lecture 9. Model Predictive Control: Computational Aspects
ECE785 ECE785 Lecture 9 Model Predictive Control: Computational Aspects Model Predictive Control for Constrained Linear Systems Online Solution to Linear MPC Multiparametric Programming Explicit Linear
More informationNonlinear Reference Tracking with Model Predictive Control: An Intuitive Approach
onlinear Reference Tracking with Model Predictive Control: An Intuitive Approach Johannes Köhler, Matthias Müller, Frank Allgöwer Abstract In this paper, we study the system theoretic properties of a reference
More informationImproved MPC Design based on Saturating Control Laws
Improved MPC Design based on Saturating Control Laws D.Limon 1, J.M.Gomes da Silva Jr. 2, T.Alamo 1 and E.F.Camacho 1 1. Dpto. de Ingenieria de Sistemas y Automática. Universidad de Sevilla, Camino de
More informationOptimal Control. Lecture 18. HamiltonJacobiBellman Equation, Cont. John T. Wen. March 29, Ref: Bryson & Ho Chapter 4.
Optimal Control Lecture 18 HamiltonJacobiBellman Equation, Cont. John T. Wen Ref: Bryson & Ho Chapter 4. March 29, 2004 Outline HamiltonJacobiBellman (HJB) Equation Iterative solution of HJB Equation
More informationLecture 4 Continuous time linear quadratic regulator
EE363 Winter 200809 Lecture 4 Continuous time linear quadratic regulator continuoustime LQR problem dynamic programming solution Hamiltonian system and two point boundary value problem infinite horizon
More informationTopic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis
Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of
More informationOptimal Control. McGill COMP 765 Oct 3 rd, 2017
Optimal Control McGill COMP 765 Oct 3 rd, 2017 Classical Control Quiz Question 1: Can a PID controller be used to balance an inverted pendulum: A) That starts upright? B) That must be swungup (perhaps
More informationRobotics. Control Theory. Marc Toussaint U Stuttgart
Robotics Control Theory Topics in control theory, optimal control, HJB equation, infinite horizon case, LinearQuadratic optimal control, Riccati equations (differential, algebraic, discretetime), controllability,
More informationLinearQuadratic Optimal Control: FullState Feedback
Chapter 4 LinearQuadratic Optimal Control: FullState Feedback 1 Linear quadratic optimization is a basic method for designing controllers for linear (and often nonlinear) dynamical systems and is actually
More informationOptimal control of nonlinear systems with input constraints using linear time varying approximations
ISSN 13925113 Nonlinear Analysis: Modelling and Control, 216, Vol. 21, No. 3, 4 412 http://dx.doi.org/1.15388/na.216.3.7 Optimal control of nonlinear systems with input constraints using linear time varying
More informationCDS 110b: Lecture 21 Linear Quadratic Regulators
CDS 110b: Lecture 21 Linear Quadratic Regulators Richard M. Murray 11 January 2006 Goals: Derive the linear quadratic regulator and demonstrate its use Reading: Friedland, Chapter 9 (different derivation,
More informationAutomatic Control 2. Nonlinear systems. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Nonlinear systems Prof. Alberto Bemporad University of Trento Academic year 20102011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 20102011 1 / 18
More informationAutonomous Mobile Robot Design
Autonomous Mobile Robot Design Topic: Guidance and Control Introduction and PID Loops Dr. Kostas Alexis (CSE) Autonomous Robot Challenges How do I control where to go? Autonomous Mobile Robot Design Topic:
More informationMPC: Tracking, Soft Constraints, MoveBlocking
MPC: Tracking, Soft Constraints, MoveBlocking M. Morari, F. Borrelli, C. Jones, M. Zeilinger Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich UC Berkeley EPFL Spring
More informationOPTIMAL CONTROL. Sadegh Bolouki. Lecture slides for ECE 515. University of Illinois, UrbanaChampaign. Fall S. Bolouki (UIUC) 1 / 28
OPTIMAL CONTROL Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, UrbanaChampaign Fall 2016 S. Bolouki (UIUC) 1 / 28 (Example from Optimal Control Theory, Kirk) Objective: To get from
More informationCHAPTER 2: QUADRATIC PROGRAMMING
CHAPTER 2: QUADRATIC PROGRAMMING Overview Quadratic programming (QP) problems are characterized by objective functions that are quadratic in the design variables, and linear constraints. In this sense,
More informationGLOBAL ANALYSIS OF PIECEWISE LINEAR SYSTEMS USING IMPACT MAPS AND QUADRATIC SURFACE LYAPUNOV FUNCTIONS
GLOBAL ANALYSIS OF PIECEWISE LINEAR SYSTEMS USING IMPACT MAPS AND QUADRATIC SURFACE LYAPUNOV FUNCTIONS Jorge M. Gonçalves, Alexandre Megretski y, Munther A. Dahleh y California Institute of Technology
More informationAutonomous navigation of unicycle robots using MPC
Autonomous navigation of unicycle robots using MPC M. Farina marcello.farina@polimi.it Dipartimento di Elettronica e Informazione Politecnico di Milano 7 June 26 Outline Model and feedback linearization
More informationLyapunov Stability Theory
Lyapunov Stability Theory Peter Al Hokayem and Eduardo Gallestey March 16, 2015 1 Introduction In this lecture we consider the stability of equilibrium points of autonomous nonlinear systems, both in continuous
More informationFall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian. NTUEE Sep07 Jan08
Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) FengLi Lian NTUEE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.
More informationOptimal control and estimation
Automatic Control 2 Optimal control and estimation Prof. Alberto Bemporad University of Trento Academic year 20102011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 20102011
More informationCourse Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)
Amme 35 : System Dynamics Control State Space Design Course Outline Week Date Content Assignment Notes 1 1 Mar Introduction 2 8 Mar Frequency Domain Modelling 3 15 Mar Transient Performance and the splane
More informationRealTime Feasibility of Nonlinear Predictive Control for Semibatch Reactors
European Symposium on Computer Arded Aided Process Engineering 15 L. Puigjaner and A. Espuña (Editors) 2005 Elsevier Science B.V. All rights reserved. RealTime Feasibility of Nonlinear Predictive Control
More informationA SIMPLE TUBE CONTROLLER FOR EFFICIENT ROBUST MODEL PREDICTIVE CONTROL OF CONSTRAINED LINEAR DISCRETE TIME SYSTEMS SUBJECT TO BOUNDED DISTURBANCES
A SIMPLE TUBE CONTROLLER FOR EFFICIENT ROBUST MODEL PREDICTIVE CONTROL OF CONSTRAINED LINEAR DISCRETE TIME SYSTEMS SUBJECT TO BOUNDED DISTURBANCES S. V. Raković,1 D. Q. Mayne Imperial College London, London
More informationOn robustness of suboptimal minmax model predictive control *
Manuscript received June 5, 007; revised Sep., 007 On robustness of suboptimal minmax model predictive control * DEFENG HE, HAIBO JI, TAO ZHENG Department of Automation University of Science and Technology
More informationLinear Systems. Manfred Morari Melanie Zeilinger. Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich
Linear Systems Manfred Morari Melanie Zeilinger Institut für Automatik, ETH Zürich Institute for Dynamic Systems and Control, ETH Zürich Spring Semester 2016 Linear Systems M. Morari, M. Zeilinger  Spring
More informationPredictive Control of GyroscopicForce Actuators for Mechanical Vibration Damping
ARC Centre of Excellence for Complex Dynamic Systems and Control, pp 1 15 Predictive Control of GyroscopicForce Actuators for Mechanical Vibration Damping Tristan Perez 1, 2 Joris B Termaat 3 1 School
More informationESTIMATES ON THE PREDICTION HORIZON LENGTH IN MODEL PREDICTIVE CONTROL
ESTIMATES ON THE PREDICTION HORIZON LENGTH IN MODEL PREDICTIVE CONTROL K. WORTHMANN Abstract. We are concerned with model predictive control without stabilizing terminal constraints or costs. Here, our
More informationGraph and Controller Design for Disturbance Attenuation in Consensus Networks
203 3th International Conference on Control, Automation and Systems (ICCAS 203) Oct. 2023, 203 in Kimdaejung Convention Center, Gwangju, Korea Graph and Controller Design for Disturbance Attenuation in
More informationExplicit Robust Model Predictive Control
Explicit Robust Model Predictive Control Efstratios N. Pistikopoulos Nuno P. Faísca Konstantinos I. Kouramas Christos Panos Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial
More informationProblem Description The problem we consider is stabilization of a singleinput multiplestate system with simultaneous magnitude and rate saturations,
SEMIGLOBAL RESULTS ON STABILIZATION OF LINEAR SYSTEMS WITH INPUT RATE AND MAGNITUDE SATURATIONS Trygve Lauvdal and Thor I. Fossen y Norwegian University of Science and Technology, N7 Trondheim, NORWAY.
More informationOptimal Control Theory
Optimal Control Theory The theory Optimal control theory is a mature mathematical discipline which provides algorithms to solve various control problems The elaborate mathematical machinery behind optimal
More informationRobotics: Science & Systems [Topic 6: Control] Prof. Sethu Vijayakumar Course webpage:
Robotics: Science & Systems [Topic 6: Control] Prof. Sethu Vijayakumar Course webpage: http://wcms.inf.ed.ac.uk/ipab/rss Control Theory Concerns controlled systems of the form: and a controller of the
More informationComplexity Reduction in Explicit MPC through Model Reduction
Proceedings of the 17th World Congress The International Federation of Automatic Control Seoul, Korea, July 611, 28 Complexity Reduction in Explicit MPC through Model Reduction Svein Hovland Jan Tommy
More informationConstrained Linear Quadratic Optimal Control
5 Constrained Linear Quadratic Optimal Control 51 Overview Up to this point we have considered rather general nonlinear receding horizon optimal control problems Whilst we have been able to establish some
More informationMultiModal Control of Systems with Constraints
MultiModal Control of Systems with Constraints WeM123 T. John Koo Department of EECS University of California Berkeley, CA 9720 koo@eecs.berkeley.edu George J. Pappas Department of EE University of Pennsylvania
More informationOptimization Problems in Model Predictive Control
Optimization Problems in Model Predictive Control Stephen Wright Jim Rawlings, Matt Tenny, Gabriele Pannocchia University of WisconsinMadison FoCM 02 Minneapolis August 6, 2002 1 reminder! Send your new
More informationStability and Robustness Analysis of Nonlinear Systems via Contraction Metrics and SOS Programming
arxiv:math/0603313v1 [math.oc 13 Mar 2006 Stability and Robustness Analysis of Nonlinear Systems via Contraction Metrics and SOS Programming Erin M. Aylward 1 Pablo A. Parrilo 1 JeanJacques E. Slotine
More informationLyapunov Based Control
Lyapunov Based Control Control Lyapunov Functions Consider the system: x = f(x, u), x R n f(0,0) = 0 Idea: Construct a stabilizing controller in steps: 1. Choose a differentiable function V: R n R, such
More informationOn the stability of receding horizon control with a general terminal cost
On the stability of receding horizon control with a general terminal cost Ali Jadbabaie and John Hauser Abstract We study the stability and region of attraction properties of a family of receding horizon
More informationOutline. Linear regulation and state estimation (LQR and LQE) Linear differential equations. Discrete time linear difference equations
Outline Linear regulation and state estimation (LQR and LQE) James B. Rawlings Department of Chemical and Biological Engineering 1 Linear Quadratic Regulator Constraints The Infinite Horizon LQ Problem
More informationControl Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch Emilio Frazzoli
Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 23, Guzzella Ch. 23 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich September 29, 2017 E. Frazzoli
More informationLinearization problem. The simplest example
Linear Systems Lecture 3 1 problem Consider a nonlinear timeinvariant system of the form ( ẋ(t f x(t u(t y(t g ( x(t u(t (1 such that x R n u R m y R p and Slide 1 A: f(xu f(xu g(xu and g(xu exist and
More informationA Novel IntegralBased Event Triggering Control for Linear TimeInvariant Systems
53rd IEEE Conference on Decision and Control December 1517, 2014. Los Angeles, California, USA A Novel IntegralBased Event Triggering Control for Linear TimeInvariant Systems Seyed Hossein Mousavi 1,
More informationNonlinear Model Predictive Control Tools (NMPC Tools)
Nonlinear Model Predictive Control Tools (NMPC Tools) Rishi Amrit, James B. Rawlings April 5, 2008 1 Formulation We consider a control system composed of three parts([2]). Estimator Target calculator Regulator
More informationMOST control systems are designed under the assumption
2076 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 9, OCTOBER 2008 LyapunovBased Model Predictive Control of Nonlinear Systems Subject to Data Losses David Muñoz de la Peña and Panagiotis D. Christofides
More informationPrinciples of Optimal Control Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 6.33 Principles of Optimal Control Spring 8 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 6.33 Lecture 6 Model
More informationMethods and applications of distributed and decentralized Model Predictive Control
thesis_main 2014/1/26 15:56 page 1 #1 Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Doctoral Programme in Information Technology Methods and applications of distributed
More informationRobust Speed Controller Design for Permanent Magnet Synchronous Motor Drives Based on Sliding Mode Control
Available online at www.sciencedirect.com ScienceDirect Energy Procedia 88 (2016 ) 867 873 CUE2015Applied Energy Symposium and Summit 2015: ow carbon cities and urban energy systems Robust Speed Controller
More informationLinear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002
Linear Matrix Inequalities in Robust Control Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Objective A brief introduction to LMI techniques for Robust Control Emphasis on
More informationAny domain of attraction for a linear constrained system is a tracking domain of attraction
Any domain of attraction for a linear constrained system is a tracking domain of attraction Franco Blanchini, Stefano Miani, Dipartimento di Matematica ed Informatica Dipartimento di Ingegneria Elettrica,
More informationFuzzy modeling and control of rotary inverted pendulum system using LQR technique
IOP Conference Series: Materials Science and Engineering OPEN ACCESS Fuzzy modeling and control of rotary inverted pendulum system using LQR technique To cite this article: M A Fairus et al 13 IOP Conf.
More informationStability analysis of constrained MPC with CLF applied to discretetime nonlinear system
. RESEARCH PAPER. SCIENCE CHINA Information Sciences November 214, Vol. 57 11221:1 11221:9 doi: 1.17/s11432145111y Stability analysis of constrained MPC with CLF applied to discretetime nonlinear system
More informationRobust control of constrained sector bounded Lur e systems with applications to nonlinear model predictive control
C. Böhm a R. Findeisen b F. Allgöwer a Robust control of constrained sector bounded Lur e systems with applications to nonlinear model predictive control Stuttgart, March 21 a Institute of Systems Theory
More informationIntegral action in state feedback control
Automatic Control 1 in state feedback control Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 1 Academic year 21211 1 /
More informationRobust Observer for Uncertain T S model of a Synchronous Machine
Recent Advances in Circuits Communications Signal Processing Robust Observer for Uncertain T S model of a Synchronous Machine OUAALINE Najat ELALAMI Noureddine Laboratory of Automation Computer Engineering
More informationEconomic and Distributed Model Predictive Control: Recent Developments in OptimizationBased Control
SICE Journal of Control, Measurement, and System Integration, Vol. 10, No. 2, pp. 039 052, March 2017 Economic and Distributed Model Predictive Control: Recent Developments in OptimizationBased Control
More informationScenarioBased Approach to Stochastic Linear Predictive Control
ScenarioBased Approach to Stochastic Linear Predictive Control Jadranko Matuško and Francesco Borrelli Abstract In this paper we consider the problem of predictive control for linear systems subject to
More informationRobust AntiWindup Compensation for PID Controllers
Robust AntiWindup Compensation for PID Controllers ADDISON RIOSBOLIVAR Universidad de Los Andes Av. Tulio Febres, Mérida 511 VENEZUELA FRANCKLIN RIVASECHEVERRIA Universidad de Los Andes Av. Tulio Febres,
More informationModel Predictive Controller of Boost Converter with RLE Load
Model Predictive Controller of Boost Converter with RLE Load N. Murali K.V.Shriram S.Muthukumar Nizwa College of Vellore Institute of Nizwa College of Technology Technology University Technology Ministry
More informationExplicit constrained nonlinear MPC
Tor A. Johansen Norwegian University of Science and Technology, Trondheim, Norway Main topics ffl Approximate explicit nonlinear MPC based on orthogonal search trees ffl Approximate explicit nonlinear
More informationLecture 10 Linear Quadratic Stochastic Control with Partial State Observation
EE363 Winter 200809 Lecture 10 Linear Quadratic Stochastic Control with Partial State Observation partially observed linearquadratic stochastic control problem estimationcontrol separation principle
More informationNonlinear and robust MPC with applications in robotics
Nonlinear and robust MPC with applications in robotics Boris Houska, Mario Villanueva, Benoît Chachuat ShanghaiTech, Texas A&M, Imperial College London 1 Overview Introduction to Robust MPC MinMax Differential
More informationFeedback stabilisation with positive control of dissipative compartmental systems
Feedback stabilisation with positive control of dissipative compartmental systems G. Bastin and A. Provost Centre for Systems Engineering and Applied Mechanics (CESAME Université Catholique de Louvain
More informationContinuoustime linear MPC algorithms based on relaxed logarithmic barrier functions
Preprints of the 19th World Congress The International Federation of Automatic Control Continuoustime linear MPC algorithms based on relaxed logarithmic barrier functions Christian Feller Christian Ebenbauer
More informationStability and feasibility of stateconstrained linear MPC without stabilizing terminal constraints
Stability and feasibility of stateconstrained linear MPC without stabilizing terminal constraints Andrea Boccia 1, Lars Grüne 2, and Karl Worthmann 3 Abstract This paper is concerned with stability and
More information8 A First Glimpse on Design with LMIs
8 A First Glimpse on Design with LMIs 8.1 Conceptual Design Problem Given a linear time invariant system design a linear time invariant controller or filter so as to guarantee some closed loop indices
More informationLinear Quadratic Regulator (LQR) Design II
Lecture 8 Linear Quadratic Regulator LQR) Design II Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science  Bangalore Outline Stability and Robustness properties
More informationThe norms can also be characterized in terms of Riccati inequalities.
9 Analysis of stability and H norms Consider the causal, linear, timeinvariant system ẋ(t = Ax(t + Bu(t y(t = Cx(t Denote the transfer function G(s := C (si A 1 B. Theorem 85 The following statements
More informationNumerical Algorithms as Dynamical Systems
A Study on Numerical Algorithms as Dynamical Systems Moody Chu North Carolina State University What This Study Is About? To recast many numerical algorithms as special dynamical systems, whence to derive
More informationParis'09 ECCI Eduardo F. Camacho MPC Constraints 2. Paris'09 ECCI Eduardo F. Camacho MPC Constraints 4
Outline Constrained MPC Eduardo F. Camacho Univ. of Seville. Constraints in Process Control. Constraints and MPC 3. Formulation of Constrained MPC 4. Illustrative Examples 5. Feasibility. Constraint Management
More informationLecture 7: Kernels for Classification and Regression
Lecture 7: Kernels for Classification and Regression CS 19410, Fall 2011 Laurent El Ghaoui EECS Department UC Berkeley September 15, 2011 Outline Outline A linear regression problem Linear autoregressive
More informationI Laplace transform. I Transfer function. I Conversion between systems in time, frequencydomain, and transfer
EE C128 / ME C134 Feedback Control Systems Lecture Chapter 2 Modeling in the Frequency Domain Alexandre Bayen Department of Electrical Engineering & Computer Science University of California Berkeley Lecture
More informationRESEARCH SUMMARY ASHKAN JASOUR. February 2016
RESEARCH SUMMARY ASHKAN JASOUR February 2016 My background is in systems control engineering and I am interested in optimization, control and analysis of dynamical systems, robotics, machine learning,
More informationPfadverfolgung Von Normalformen zu prädiktiven Reglern
Pfadverfolgung Von Normalformen zu prädiktiven Reglern Timm Faulwasser Laboratoire d Automatique, Ecole Polytechnique Fédérale de Lausanne Institut für Angewandte Informatik, Karlsruher Institut für Technologie
More informationWEIGHTING MATRICES DETERMINATION USING POLE PLACEMENT FOR TRACKING MANEUVERS
U.P.B. Sci. Bull., Series D, Vol. 75, Iss. 2, 2013 ISSN 14542358 WEIGHTING MATRICES DETERMINATION USING POLE PLACEMENT FOR TRACKING MANEUVERS Raluca M. STEFANESCU 1, Claudiu L. PRIOROC 2, Adrian M. STOICA
More informationChapter 3 Numerical Methods
Chapter 3 Numerical Methods Part 3 3.4 Differential Algebraic Systems 3.5 Integration of Differential Equations 1 Outline 3.4 Differential Algebraic Systems 3.4.1 Constrained Dynamics 3.4.2 First and Second
More informationCDS Solutions to the Midterm Exam
CDS 22  Solutions to the Midterm Exam Instructor: Danielle C. Tarraf November 6, 27 Problem (a) Recall that the H norm of a transfer function is timedelay invariant. Hence: ( ) Ĝ(s) = s + a = sup /2
More informationExplicit Approximate Model Predictive Control of Constrained Nonlinear Systems with Quantized Input
Explicit Approximate Model Predictive Control of Constrained Nonlinear Systems with Quantized Input Alexandra Grancharova and Tor A. Johansen Institute of Control and System Research, Bulgarian Academy
More informationRobust Model Predictive Control through Adjustable Variables: an application to Path Planning
43rd IEEE Conference on Decision and Control December 47, 24 Atlantis, Paradise Island, Bahamas WeC62 Robust Model Predictive Control through Adjustable Variables: an application to Path Planning Alessandro
More informationCDS 101/110a: Lecture 102 Control Systems Implementation
CDS 101/110a: Lecture 102 Control Systems Implementation Richard M. Murray 5 December 2012 Goals Provide an overview of the key principles, concepts and tools from control theory  Classical control 
More informationPiecewise Linear Quadratic Optimal Control
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 4, APRIL 2000 629 Piecewise Linear Quadratic Optimal Control Anders Rantzer and Mikael Johansson Abstract The use of piecewise quadratic cost functions
More informationReverse Order Swingup Control of Serial Double Inverted Pendulums
Reverse Order Swingup Control of Serial Double Inverted Pendulums T.Henmi, M.Deng, A.Inoue, N.Ueki and Y.Hirashima Okayama University, 311, TsushimaNaka, Okayama, Japan inoue@suri.sys.okayamau.ac.jp
More informationMath 273a: Optimization Basic concepts
Math 273a: Optimization Basic concepts Instructor: Wotao Yin Department of Mathematics, UCLA Spring 2015 slides based on ChongZak, 4th Ed. Goals of this lecture The general form of optimization: minimize
More information7.1 Linear Systems Stability Consider the ContinuousTime (CT) Linear TimeInvariant (LTI) system
7 Stability 7.1 Linear Systems Stability Consider the ContinuousTime (CT) Linear TimeInvariant (LTI) system ẋ(t) = A x(t), x(0) = x 0, A R n n, x 0 R n. (14) The origin x = 0 is a globally asymptotically
More informationA StateSpace Approach to Control of Interconnected Systems
A StateSpace Approach to Control of Interconnected Systems Part II: General Interconnections Cédric Langbort Center for the Mathematics of Information CALIFORNIA INSTITUTE OF TECHNOLOGY clangbort@ist.caltech.edu
More informationSolution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark
Solution Methods Richard Lusby Department of Management Engineering Technical University of Denmark Lecture Overview (jg Unconstrained Several Variables Quadratic Programming Separable Programming SUMT
More informationNonlinear System Analysis
Nonlinear System Analysis Lyapunov Based Approach Lecture 4 Module 1 Dr. Laxmidhar Behera Department of Electrical Engineering, Indian Institute of Technology, Kanpur. January 4, 2003 Intelligent Control
More informationStability lectures. Stability of Linear Systems. Stability of Linear Systems. Stability of Continuous Systems. EECE 571M/491M, Spring 2008 Lecture 5
EECE 571M/491M, Spring 2008 Lecture 5 Stability of Continuous Systems http://courses.ece.ubc.ca/491m moishi@ece.ubc.ca Dr. Meeko Oishi Electrical and Computer Engineering University of British Columbia,
More informationEFFICIENT MODEL PREDICTIVE CONTROL WITH PREDICTION DYNAMICS
EFFICIENT MODEL PREDICTIVE CONTROL WITH PREDICTION DYNAMICS Stian Drageset, Lars Imsland and Bjarne A. Foss Dept. of Eng. Cybernetics, Norwegian Univ. of Science and Technology, 7491 Trondheim, Norway.
More informationLecture 6: Conic Optimization September 8
IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions
More informationFinal Exam Solutions
EE55: Linear Systems Final Exam SIST, ShanghaiTech Final Exam Solutions Course: Linear Systems Teacher: Prof. Boris Houska Duration: 85min YOUR NAME: (type in English letters) I Introduction This exam
More informationNumerical Methods for Model Predictive Control. Jing Yang
Numerical Methods for Model Predictive Control Jing Yang Kongens Lyngby February 26, 2008 Technical University of Denmark Informatics and Mathematical Modelling Building 321, DK2800 Kongens Lyngby, Denmark
More informationLinear Quadratic Regulator (LQR) I
Optimal Control, Guidance and Estimation Lecture Linear Quadratic Regulator (LQR) I Pro. Radhakant Padhi Dept. o Aerospace Engineering Indian Institute o Science  Bangalore Generic Optimal Control Problem
More informationMIT Algebraic techniques and semidefinite optimization February 14, Lecture 3
MI 6.97 Algebraic techniques and semidefinite optimization February 4, 6 Lecture 3 Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo In this lecture, we will discuss one of the most important applications
More informationTheoretical Justification for LQ problems: Sufficiency condition: LQ problem is the second order expansion of nonlinear optimal control problems.
ES22 Lecture Notes #11 Theoretical Justification for LQ problems: Sufficiency condition: LQ problem is the second order expansion of nonlinear optimal control problems. J = φ(x( ) + L(x,u,t)dt ; x= f(x,u,t)
More informationModel Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control
International Journal of Automation and Computing 04(2), April 2007, 195202 DOI: 10.1007/s1163300701950 Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control
More information