Control System. Contents


 Lenard Williams
 1 years ago
 Views:
Transcription
1 Contents Chapter Topic Page Chapter Chapter Chapter3 Chapter4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of No
2 India s No IES Academy Contents Chapter5 Chapter6 Chapter7 Chapter8 Chapter9 Frequency Analysis Stability Analysis of Control System Root Locus Technique Compensators Industrial Controllers Chapter0 Introduction to State Space Variable Page 5, st Floor, Jia Sarai, Near IIT. New Delhi6 Ph: ,
3 India s No IES Academy Chapter Contents for this chapter Introduction. Introduction. Open Loop System 3. Mathematical Model for Openloop 4. ClosedLoop 5. Mathematical Model for ClosedLoop System 6. Comparison of Open Loop and Closed Loop 7. Laplace Transform 8. Basic Laplace Transform Theorem 9. Summary. Introduction Theory at a Glance (For IES, GATE, PSU & JTO) Control system is a combination of elements arranged in a planned manner. Where each element causes an effect to produce a desire output. Example of control systems. System for the control of position.. System for the control of velocity.. Open Loop System. No feedback in open loop system is used.. Control system (openloop) depends only on the accuracy of input calibration. Example of openloop control system. Traffic signal light. Electric lift 3. Automatic washing machine 3. Mathematical Model for Openloop C G R Page 5, st Floor, Jia Sarai, Near IIT. New Delhi6 Ph: ,
4 India s No IES Academy Chapter Where, G gain of system C o/p of system R input Points:. Feedback system is not used for improving stability.. An openloop system may become unstable when we used negative feedback. 4. ClosedLoop In a closed loop control system the output has an effect on control action through a feedback. Example of closedloop system:. D.C. Motor speed control. Radar tracking system 3. Auto pilot system 5. Mathematical Model for ClosedLoop System C R G +GH * Here feedback is negative. This form is also called control canonical form From figure C(S) G(S) E(S) As a Forward path transfer function B(S) H(S) C(S) As a feedback transfer function The o/p of summing point E(S) [ R(S) B(S) ] ; C(S) R(S) B(S) ; G(S) C(S) R(S) C(S) H(S) ; G(S) C(S) R(S) G(S) G(S) C(S) H(S) ; C(S) [ +G(S) H(S) ] R(S) G(S) Page3 5, st Floor, Jia Sarai, Near IIT. New Delhi6 Ph: ,
5 India s No IES Academy Chapter C(S) G(S) R(S) +G(S) H(S) 6. Comparison of Open Loop and Closed Loop Open Loop System. The accuracy of an open loop system depends on the calibration of the i/p. Closed Loop System. As the error between the reference input and the output is continuously measuredthrough feedback.. The open loop system is more stable.. The closed loop system is less stable. 3. It is less accurate. 3. It is more accurate. 4. It is cheap and less complex. 4. It is expensive and more complex circuit. 5. Effect of Noise and disturbance is more in open loop control system. 7. Laplace Transform Laplace transformation is very great tool in control system. The mathematical expression for laplace transforms LF(t) st F(S) F(t) e dt 0 5. Effect of Noise and disturbance is less in closed loop control system. F(S) The term laplace transform of F(t) is used for the letter LF(t). 8. Basic Laplace Transform Theorem Basic theorems of laplace transform are given below Theorem : Multiplication by a constant Let k be a constant and F(S) be the laplace transform of F(t), then [ Kf(t) ] Theorem : Sum and difference KF(S) Let F(S) and F(S) be the laplace transform of f ( t ) f ( t) ( ) ( ) ±, then f t ± f t F(S)± F (S) Page4 5, st Floor, Jia Sarai, Near IIT. New Delhi6 Ph: ,
6 India s No IES Academy Chapter Theorem 3: Differentiation df(t) i. L SF(S)F(0) dt [ ] df(t) ii. L S F(S)F(0)f (0) dt df(0) where, F (0) dt In general, for higher order derivatives or F(t) n d F() t L sfs n s f O s f f dt n n n () ( n ) ( ) ( ) (0) (0) Where, F (0) denotes the i th order derivative of f(t) with respect to t, Theorem 4: Integration i. L F(t) + S F(S) F (0) ii. L F(t) + + S S S S F(S) F (0) F (0) Theorem 5: Shift in time The laplace transform of F(t) delayed by time T is equal to the laplace transform F(t) multiplied by e ST that is ST L [ F(t T)u s(t T) ] e F(S) Where US(t T) denotes the unit step function that is shifted in time to the right by T. Theorem 6: Complex shifting The laplace transform of F(t) multiplied by transform F(S), with S replaced by ( S ± α ) L e αt Theorem 7: Initialvalue theorem If the laplace transform of F(t) is F(S), then t 0 αt e, where α is a constant is equal to the laplace that is F(t) F(S±α) lim F( t) lim SF( S ) S Page5 5, st Floor, Jia Sarai, Near IIT. New Delhi6 Ph: ,
7 India s No IES Academy Chapter Theorem 8: Final value theorem lim F( t) lim SLF( t) t S 0 lim F( t) lim SF( S) t S 0 Point to be Remember If the denominator of SF(S) has any root having real part as zero or positive, then final value theorem is not valid. [GATE 007] USEFUL TRANSFORM (LAPLACE) PAIR F(t) F(S) LF(t) δ(t) unit impulse 3 U(t) S 4 U(t T) st e S 5 t S t S n t n s + at e at e at te at te 3 n s+ a s a ( s+ a) ( s a) 3 h αt n+ te n/ ( s+ a ) Page6 5, st Floor, Jia Sarai, Near IIT. New Delhi6 Ph: ,
8 India s No IES Academy Chapter ω 4 sinωt s +ω αt 5 e cosωt αt 6 e sinωt 7 sin hα t 8 cos hα t s + α ( ) s + α + ω ω ( ) s + α + ω α s α s s α 9. Summary. Open loop control system no feedback used.. In closed loop control system we used feedback. 3. Open loop system is more stable. 4. Closed loop system is more accurate. 5. Final value theorem can not used if denominators of SF(S) have real part as a zero or positive. Page7 5, st Floor, Jia Sarai, Near IIT. New Delhi6 Ph: ,
9 India s No IES Academy Chapter ASKED OBJECTIVE QUESTIONS (GATE, IES) Basic Laplace Transform Theorem GATE. If the Laplace Transform of a signal y(t) is Y() s, ss ( ) then its final value is: [GATE007] (a)  (b) 0 (c) 0 (d) Unbounded t GATE. The unit impulse response of a system is f () t e, t 0 [GATE006] For this system, the steadystate value of the output for unit step input is equal to (a)  (b) 0 (c) (d) ClosedLoop IES. When a human being tries to approach an object, his brain acts as (a) An error measuring device (b) A controller [IES999] (c) An actuator (d) An amplifier IES. Assertion (A): Feedback control systems offer more accurate control over openloop systems. [IES000] Reason (R): The feedback path establishes a link for input and output comparison and subsequent error correction. (a) Both A and R are true and R is the correct explanation of A (b) Both A and R are true but R is NOT the correct explanation of A (c) A is true but R is false (d) A is false but R is true IES3. Consider the following statements: [IES000]. The effect of feedback is to reduce the system error. Feedback increases the gain of the system in one frequency range but decreases in another 3. Feedback can cause a system that is originally stable to become unstable Which of these statements are correct? (a), and 3 (b) and (c) and 3 (d) and 3 IES4. Consider the following statements which respect to feedback control systems: [IES006] Page8 5, st Floor, Jia Sarai, Near IIT. New Delhi6 Ph: ,
10 India s No IES Academy Chapter. Accuracy cannot be obtained by adjusting loop gain.. Feedback decreases overall gain. 3. Introduction of noise due to sensor reduces overall accuracy. 4. Introduction of feedback may lead to the possibility of instability of closed loop system. Which of the statements given above are correct? (a),, 3 and 4 (b) Only, and 4 (c) Only and 3 (d) Only, 3 and 4 IES5. A negativefeedback closedloop system is supplied to an input of 5V. The system has a forward gain of and a feedback gain of a. What is the output voltage? [IES009] (a).0 V (b).5 V (c).0 V (d).5 V Basic Laplace Transform Theorem ω IES6. Consider the function F(s) where F(s) is the Laplace transform s + ω of f(t). What is the steadystate value of f(t)? [IES009] (a) Zero (b) One (c) Two (d) A value between  and + IES7. The transfer function of a lineartimeinvariant system is given as. What is the steadystate value of the unitimpulse response? ( s + ) [IES009] (a) Zero (b) One (c) Two (d) Infinite Page9 5, st Floor, Jia Sarai, Near IIT. New Delhi6 Ph: ,
11 India s No IES Academy Chapter Answers with Explanation (Objective) GATE. Ans. (d) Y() s SS ( + ) Final value of Y(s) LT ( Y( s)) LT LT + ( + ) SS S S Yt () e t ut () final value t GATE. Ans. (c) Unit impulse response of a system is f() t e t t 0 f() s S + O/P for unit step I/P S + S SS ( + ) ( Cs ( )) lim S t s 0 SS ( + ) IES. Ans. (b) IES. Ans. (a) IES3. Ans. (d) Feedback is applied to reduce the system error. Consider the example. Cs ( ) Gs ( ) Rs GsHs ( ) ( ) ( ) s + s s+ Thus, we see that the closed loop system is unstable while the open loop system is stable. IES4. Ans. (d) Page0 5, st Floor, Jia Sarai, Near IIT. New Delhi6 Ph: ,
12 India s No IES Academy Chapter IES5. Ans. (d) Output voltage Vin A AB 5x.5V + + ( xx ) IES6. Ans. (d) This is the Laplace transform of sin t. So, f(t) sin t Steadystate value of f(t) is undetermined because poles of F(s) are not in LHS of splane. Therefore, steadystate value will vary between  and +. IES7. Ans. (a) Steady state value lims 0 s 0 s+ ( ) Page 5, st Floor, Jia Sarai, Near IIT. New Delhi6 Ph: ,
Control Systems. EC / EE / IN. For
Control Systems For EC / EE / IN By www.thegateacademy.com Syllabus Syllabus for Control Systems Basic Control System Components; Block Diagrammatic Description, Reduction of Block Diagrams. Open Loop
More informationTime Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuoustime, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationRadar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.
Radar Dish ME 304 CONTROL SYSTEMS Mechanical Engineering Department, Middle East Technical University Armature controlled dc motor Outside θ D output Inside θ r input r θ m Gearbox Control Transmitter
More informationTest 2 SOLUTIONS. ENGI 5821: Control Systems I. March 15, 2010
Test 2 SOLUTIONS ENGI 5821: Control Systems I March 15, 2010 Total marks: 20 Name: Student #: Answer each question in the space provided or on the back of a page with an indication of where to find the
More informationECE : Linear Circuit Analysis II
Purdue University School of Electrical and Computer Engineering ECE 20200 : Linear Circuit Analysis II Summer 2014 Instructor: Aung Kyi San Instructions: Midterm Examination I July 2, 2014 1. Wait for
More informationENGIN 211, Engineering Math. Laplace Transforms
ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving
More informationLaplace Transforms and use in Automatic Control
Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral
More informationIntroduction & Laplace Transforms Lectures 1 & 2
Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationUnit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace
Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance
More informationMODELING OF CONTROL SYSTEMS
1 MODELING OF CONTROL SYSTEMS Feb15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace
More informationIdentification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability  26 March, 2014
Prof. Dr. Eleni Chatzi System Stability  26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can
More informationTime Response of Systems
Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) splane Time response p =0 s p =0,p 2 =0 s 2 t p =
More informationAlireza Mousavi Brunel University
Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 OpenLoop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched
More information(a) Find the transfer function of the amplifier. Ans.: G(s) =
126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closedloop system
More informationLinear Control Systems Solution to Assignment #1
Linear Control Systems Solution to Assignment # Instructor: H. Karimi Issued: Mehr 0, 389 Due: Mehr 8, 389 Solution to Exercise. a) Using the superposition property of linear systems we can compute the
More informationControl of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection
More informationBasic Procedures for Common Problems
Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available
More informationPerformance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steadystate Error and Type 0, Type
More informationSTABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse
SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.sigmedia.tv STABILITY Have looked at modeling dynamic systems using differential
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationD(s) G(s) A control system design definition
R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure
More informationIC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical
More information20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes
Transfer Functions 2.6 Introduction In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace transform model of a linear engineering system. (A linear engineering
More informationGATE EE Topic wise Questions SIGNALS & SYSTEMS
www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)
More informationAPPLICATIONS FOR ROBOTICS
Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table
More informationagree w/input bond => + sign disagree w/input bond =>  sign
1 ME 344 REVIEW FOR FINAL EXAM LOCATION: CPE 2.204 M. D. BRYANT DATE: Wednesday, May 7, 2008 9noon Finals week office hours: May 6, 47 pm Permitted at final exam: 1 sheet of formulas & calculator I.
More informationLTI Systems (Continuous & Discrete)  Basics
LTI Systems (Continuous & Discrete)  Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and timeinvariant (b) linear and timevarying
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationChapter 7. Digital Control Systems
Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steadystate error, and transient response for computercontrolled systems. Transfer functions,
More informationMATHEMATICAL MODELING OF CONTROL SYSTEMS
1 MATHEMATICAL MODELING OF CONTROL SYSTEMS Sep14 Dr. Mohammed Morsy Outline Introduction Transfer function and impulse response function Laplace Transform Review Automatic control systems Signal Flow
More informationLaplace Transforms Chapter 3
Laplace Transforms Important analytical method for solving linear ordinary differential equations.  Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important
More informationLecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.
ISS0031 Modeling and Identification Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design. Aleksei Tepljakov, Ph.D. September 30, 2015 Linear Dynamic Systems Definition
More informationControl of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #18 Basic Control Loop Analysis" April 15, 2004 Revisit Temperature Control Problem τ dy dt + y = u τ = time constant = gain y ss =
More informationECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27
1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system
More informationDr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response
.. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........
More informationCourse Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be).
ECE4520/5520: Multivariable Control Systems I. 1 1 Course Background 1.1: From time to frequency domain Loosely speaking, control is the process of getting something to do what you want it to do (or not
More informationGATE 20 Years. Contents. Chapters Topics Page No.
GATE 0 Years Contents Chapters Topics Page No. Chapter Chapter Chapter Chapter4 Chapter5 GATE Syllabus for this Chapter Topic elated to Syllabus Previous 0Years GATE Questions Previous 0Years GATE
More informationGEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)
GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 09Dec13 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page
More informationPart IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 5. An Introduction to Feedback Control Systems
Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Glenn Vinnicombe HANDOUT 5 An Introduction to Feedback Control Systems ē(s) ȳ(s) Σ K(s) G(s) z(s) H(s) z(s) = H(s)G(s)K(s) L(s) ē(s)=
More informationRaktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries
. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace
More informationf(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K.
4 Laplace transforms 4. Definition and basic properties The Laplace transform is a useful tool for solving differential equations, in particular initial value problems. It also provides an example of integral
More informationME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II
ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and
More informationDelhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Serial : 0. LS_D_ECIN_Control Systems_30078 Delhi Noida Bhopal Hyderabad Jaipur Lucnow Indore Pune Bhubaneswar Kolata Patna Web: Email: info@madeeasy.in Ph: 04546 CLASS TEST 089 ELECTRONICS ENGINEERING
More information06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.
Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of
More informationIntroduction to Root Locus. What is root locus?
Introduction to Root Locus What is root locus? A graphical representation of the closed loop poles as a system parameter (Gain K) is varied Method of analysis and design for stability and transient response
More informationEE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation
EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation Tim Davidson Ext. 27352 davidson@mcmaster.ca Objective To use the root locus technique to design a lead compensator for a marginallystable
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationBangladesh University of Engineering and Technology. EEE 402: Control System I Laboratory
Bangladesh University of Engineering and Technology Electrical and Electronic Engineering Department EEE 402: Control System I Laboratory Experiment No. 4 a) Effect of input waveform, loop gain, and system
More informationPID Control. Objectives
PID Control Objectives The objective of this lab is to study basic design issues for proportionalintegralderivative control laws. Emphasis is placed on transient responses and steadystate errors. The
More informationAn Introduction to Control Systems
An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a
More informationLecture 12. AO Control Theory
Lecture 12 AO Control Theory Claire Max with many thanks to Don Gavel and Don Wiberg UC Santa Cruz February 18, 2016 Page 1 What are control systems? Control is the process of making a system variable
More informationIdentification Methods for Structural Systems
Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from
More informationTransform Solutions to LTI Systems Part 3
Transform Solutions to LTI Systems Part 3 Example of second order system solution: Same example with increased damping: k=5 N/m, b=6 Ns/m, F=2 N, m=1 Kg Given x(0) = 0, x (0) = 0, find x(t). The revised
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationToday s goals So far Today 2.004
Today s goals So far Feedback as a means for specifying the dynamic response of a system Root Locus: from the openloop poles/zeros to the closedloop poles Moving the closedloop poles around Today Proportional
More informationEE/ME/AE324: Dynamical Systems. Chapter 7: Transform Solutions of Linear Models
EE/ME/AE324: Dynamical Systems Chapter 7: Transform Solutions of Linear Models The Laplace Transform Converts systems or signals from the real time domain, e.g., functions of the real variable t, to the
More information( ) ( = ) = ( ) ( ) ( )
( ) Vρ C st s T t 0 wc Ti s T s Q s (8) K T ( s) Q ( s) + Ti ( s) (0) τs+ τs+ V ρ K and τ wc w T (s)g (s)q (s) + G (s)t(s) i G and G are transfer functions and independent of the inputs, Q and T i. Note
More information9.5 The Transfer Function
Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the nth order linear, timeinvariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +
More informationMAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noisecancelling headphone system. 1a. Based on the lowpass filter given, design a highpass filter,
More informationProblem Weight Score Total 100
EE 350 EXAM IV 15 December 2010 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO Problem Weight Score 1 25 2 25 3 25 4 25 Total
More informationProfessional Portfolio Selection Techniques: From Markowitz to Innovative Engineering
Massachusetts Institute of Technology Sponsor: Electrical Engineering and Computer Science Cosponsor: Science Engineering and Business Club Professional Portfolio Selection Techniques: From Markowitz to
More informationKINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
More informationEE102 Homework 2, 3, and 4 Solutions
EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of
More informationDEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK SUBJECT CODE & NAME: CONTROL SYSTEMS YEAR / SEM: II / IV UNIT I SYSTEMS AND THEIR REPRESENTATION PARTA [2
More informatione st f (t) dt = e st tf(t) dt = L {t f(t)} s
Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More informationControl System (ECE411) Lectures 13 & 14
Control System (ECE411) Lectures 13 & 14, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 SteadyState Error Analysis Remark: For a unity feedback system
More informationExam. 135 minutes + 15 minutes reading time
Exam January 23, 27 Control Systems I (559L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages
More informationLast week: analysis of pinionrack w velocity feedback
Last week: analysis of pinionrack w velocity feedback Calculation of the steady state error Transfer function: V (s) V ref (s) = 0.362K s +2+0.362K Step input: V ref (s) = s Output: V (s) = s 0.362K s
More informationOutline. Classical Control. Lecture 2
Outline Outline Outline Review of Material from Lecture 2 New Stuff  Outline Review of Lecture System Performance Effect of Poles Review of Material from Lecture System Performance Effect of Poles 2 New
More informationEC Control Systems Question bank
MODULE I Topic Question mark Automatic control & modeling, Transfer function Write the merits and demerits of open loop and closed loop Month &Year May 12 Regula tion Compare open loop system with closed
More informationStep input, ramp input, parabolic input and impulse input signals. 2. What is the initial slope of a step response of a first order system?
IC6501 CONTROL SYSTEM UNITII TIME RESPONSE PARTA 1. What are the standard test signals employed for time domain studies?(or) List the standard test signals used in analysis of control systems? (April
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BANK
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad 500 043 ELECTRICAL AND ELECTRONICS ENGINEERING TUTORIAL QUESTION BAN : CONTROL SYSTEMS : A50 : III B. Tech
More informationProblem Set 3: Solution Due on Mon. 7 th Oct. in class. Fall 2013
EE 56: Digital Control Systems Problem Set 3: Solution Due on Mon 7 th Oct in class Fall 23 Problem For the causal LTI system described by the difference equation y k + 2 y k = x k, () (a) By first finding
More informationChapter 2 SDOF Vibration Control 2.1 Transfer Function
Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:
More information20.3. Further Laplace Transforms. Introduction. Prerequisites. Learning Outcomes
Further Laplace Transforms 2.3 Introduction In this Section we introduce the second shift theorem which simplifies the determination of Laplace and inverse Laplace transforms in some complicated cases.
More information26 Feedback Example: The Inverted Pendulum
6 Feedback Example: The Inverted Pendulum Solutions to Recommended Problems S6. Ld 0(t) (a) Ldz6(t) = g0(t) a(t) + Lx(t), Ld (t) dt  ga(t) = Lx(t) Taking the Laplace transform of both sides yields szlo(s)
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationECE382/ME482 Spring 2005 Homework 1 Solution February 10,
ECE382/ME482 Spring 25 Homework 1 Solution February 1, 25 1 Solution to HW1 P2.33 For the system shown in Figure P2.33 on p. 119 of the text, find T(s) = Y 2 (s)/r 1 (s). Determine a relationship that
More informationLinear Systems Theory
ME 3253 Linear Systems Theory Review Class Overview and Introduction 1. How to build dynamic system model for physical system? 2. How to analyze the dynamic system?  Time domain  Frequency domain (Laplace
More informationNADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur
VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationLaplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in BeaumontenAuge, Normandy, France Died: 5 March 1827 in Paris, France
Pierre Simon Laplace Born: 23 March 1749 in BeaumontenAuge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical
More informationVideo 5.1 Vijay Kumar and Ani Hsieh
Video 5.1 Vijay Kumar and Ani Hsieh Robo3x1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior
More informationCHAPTER 1 Basic Concepts of Control System. CHAPTER 6 Hydraulic Control System
CHAPTER 1 Basic Concepts of Control System 1. What is open loop control systems and closed loop control systems? Compare open loop control system with closed loop control system. Write down major advantages
More informationControl Systems I. Lecture 5: Transfer Functions. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 5: Transfer Functions Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 20, 2017 E. Frazzoli (ETH) Lecture 5: Control Systems I 20/10/2017
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationVALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationHere represents the impulse (or delta) function. is an diagonal matrix of intensities, and is an diagonal matrix of intensities.
19 KALMAN FILTER 19.1 Introduction In the previous section, we derived the linear quadratic regulator as an optimal solution for the fullstate feedback control problem. The inherent assumption was that
More informationLecture 25: Tue Nov 27, 2018
Lecture 25: Tue Nov 27, 2018 Reminder: Lab 3 moved to Tuesday Dec 4 Lecture: review timedomain characteristics of 2ndorder systems intro to control: feedback openloop vs closedloop control intro to
More informationControl Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control DMAVT ETH Zürich
Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017
More information