Chapter 2 SDOF Vibration Control 2.1 Transfer Function


 Marvin Berry
 1 years ago
 Views:
Transcription
1 Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number: s = α ± jβ = ζω ± jω n d 1
2 Complex splane of the Poles ω n ζω n jω n ω d Poles: the roots of the denominator of G(s): σ ms cs k + + = s = ζω ± jω 1 ζ 1, n 0 n
3 Block Diagram Representation X(s) U(s) = 1 ms + cs + k U(s) 1 ms + cs + k X(s) Input Plant or Structure Output SDOF General System 3
4 Frequency Response Function (FRF) 4
5 Bode Plots: Magnitude and Phase Fig 1.15, phase vs frequency for various damping ratios Fig 1.16, magnitude vs frequency for various damping rations 5
6 . Measurement and Testing Damping must be measured dynamically. Mass and stiffness can be measured in static experiments. Free decay allows the exponent to be measured, and hence the damping ratio. 6
7 Damping Measured by Time Response Definition of log decrement: δ = ln x( t) x( t + T ) d δ = ln e sin( ω t + φ) ζωnt d ζωn ( t+ Td ) e dt dtd sin( ω + ω + φ) ζωntd = ln( e ) = ζω T (1.46) n d δ = ζω n T d = πζ (1.47) 1ζ δ ζ = (1.48) 4π + δ 7
8 Frequency Domain Estimates of Mass, Damping and Stiffness log G( jω) ω ω ζω 1 = log log 1 log (1.49) + = k ωn ωn k 8
9 Damping Measured by Frequency Response Function (FRF) At the halfpower points ζ 1 ω ω 1 = ωd 9
10 .3 system Stability Stability is defined for the solution of free response case: Stable: x( t) < M, t > 0 Asymptotically Stable: lim x( t) = 0 t Unstable: if it is not stable or asymptotically stable 10
11 Stability x t sin t t y t e.. x t z t e 0.1 t r t z t. x t Stable 1 1 Asymptotically Stable x t y t t 1 Fig 1.19 t Fig z t r t t t Divergent instability Flutter instability 11
12 .4 Vibration Control Design refers to choosing m, c and k in order to produce a more desirable response (or ζ and ω n ). Often this involves working with the spring constants of various materials. If vibration suppression is the goal, then situations arise when adjusting m, c and k still does not produce the desired response, then control methods are used. 1
13 Shape the Response by m, c, and k Design a system so that its response as a desired settling time, overshoot and time to peak. Fig 1.10 OS == e t t p s = ω n 3. = ω ζ n ζπ 1 ζ π 1 ζ fixes ζ fixes ω n is determined 13
14 Vibration Control If m, c and k cannot be adjusted to suit design goals, then control is a possibility Control consists of adding hardware to affect the response in some way Passive control: a fixed device or permanent change in physical parameters (such as constrained layer damping) Active control: use of some external adjustable or active (electronic) device, called an actuator, to provide a means of shaping or controlling the response 14
15 Active Control Open Loop Control: the control force applied to the system is independent of any measurement. Closed Loop Control: the control force depends in some way on a measurement of the system (requires a sensor). 15
16 Open Loop Control U(s) K G(s) X(s) Choose K such that X(s) has a desired shape, called constant gain (K) control. X ( s) U ( s) = KG( s) = ms K + cs + k mx ɺɺ( t) + cxɺ ( t) + kx( t) = Ku( t) 16
17 Closed Loop Control F(s) +  K G(s) structure X(s) H(s) Control law X(s) F(s) = KG(s) 1+ KG(s)H(s) ( ) 17
18 State Feedback State feedback: X(s) F(s) = X(s) F(s) = KG(s) 1+ KG(s)H(s) ( ) H(s) = g 1 s + g K ms + ( Kg 1 + c)s + Kg + k 1 ( ) mx ɺɺ( t) + ( Kg + c) xɺ ( t) + ( Kg + k) x( t) = KF( t) Now we have two more parameters to adjust in order to meet the desired performance. 18
19 Feedforward Control disturbance system filter Error signal Mostly used in acoustics and high frequency applications. 19
20 An Inverted Pendulum (Example) kl θ ( ) θ ( ) ( ) ml ɺɺ t + mg t = F t Need to find bounded F(t) Choose F( t) = aθ ( t) b ɺ θ ( t), then kl ( ) + ( ) + + ( ) = 0 ml ɺɺ θ t bɺ θ t mgl a θ t AS and BIOB if b > 0, and kl mgl + a > 0 AS: asymptotic stable BIOB: bounded input and bounded output 0
21 .5Vibration of Nonlinear Systems ɺɺ x( t) + f ( x, xɺ ) = 0 k = 1000, b = 10 k 1000 b 10 g( x) = g x k. x f x k. x b. x 3 h x k. x b. x 3 3 f ( x) = k x kx bx h( x) = kx + bx f x Hardening Spring Softening Spring g x h x Linear Spring x 1
22 State Space Formulation x 1 and x are called state variables 0 ) ( by Define the equilibrium point ) ( ), ( 1 1 = = = = e e F x F x x f x x x x x x ɺ ɺ ɺ
23 A Nonlinear System of Soft Spring Compute the equilibrium for: ɺɺx x β x 3 + = 0 First order form: xɺ = x 1 xɺ = x ( β x 1) 1 1 3
24 Equilibrium points x = 0 x (β 1 x 1 1) = 0 = 0 1 x 0, e β, 0 1 β 0 4
25 Multiple Equilibrium Each equilibrium has a potentially different solution with a different stability behavior. One equilibrium may be stable another not. Depending on the initial conditions, the solution may favor the response of one equilibrium versus another so that the concept of stability must be associated with the equilibrium. 5
Homework 7  Solutions
Homework 7  Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
More informationIntroduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil
Introduction to Vibration Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Vibration Most vibrations are undesirable, but there are many instances where vibrations are useful Ultrasonic (very high
More informationسایت آموزش مهندسی مکانیک
http://www.drshokuhi.com سایت آموزش مهندسی مکانیک 1 Singledegreeoffreedom Systems 1.1 INTRODUCTION In this chapter the vibration of a singledegreeoffreedom system will be analyzed and reviewed. Analysis,
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real
More informationTransient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
More informationIntroduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationEE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions
EE C28 / ME C34 Fall 24 HW 6.2 Solutions. PI Controller For the system G = K (s+)(s+3)(s+8) HW 6.2 Solutions in negative feedback operating at a damping ratio of., we are going to design a PI controller
More informationEE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =
1. Pole Placement Given the following openloop plant, HW 9 Solutions G(s) = 1(s + 3) s(s + 2)(s + 5) design the statevariable feedback controller u = Kx + r, where K = [k 1 k 2 k 3 ] is the feedback
More informationME 375 EXAM #1 Friday, March 13, 2015 SOLUTION
ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION PROBLEM 1 A system is made up of a homogeneous disk (of mass m and outer radius R), particle A (of mass m) and particle B (of mass m). The disk is pinned
More informationSoftware Engineering 3DX3. Slides 8: Root Locus Techniques
Software Engineering 3DX3 Slides 8: Root Locus Techniques Dr. Ryan Leduc Department of Computing and Software McMaster University Material based on Control Systems Engineering by N. Nise. c 2006, 2007
More informationOutline. Classical Control. Lecture 1
Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction
More informationMAS107 Control Theory Exam Solutions 2008
MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve
More informationProfessor Fearing EE C128 / ME C134 Problem Set 2 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley
Professor Fearing EE C128 / ME C134 Problem Set 2 Solution Fall 21 Jansen Sheng and Wenjie Chen, UC Berkeley 1. (15 pts) Partial fraction expansion (review) Find the inverse Laplace transform of the following
More informationMAE143a: Signals & Systems (& Control) Final Exam (2011) solutions
MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noisecancelling headphone system. 1a. Based on the lowpass filter given, design a highpass filter,
More informationCollocated versus noncollocated control [H04Q7]
Collocated versus noncollocated control [H04Q7] Jan Swevers September 2008 00 Contents Some concepts of structural dynamics Collocated versus noncollocated control Summary This lecture is based on parts
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the splane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles
More informationDiscrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture
Discrete Systems Mark Cannon Hilary Term 22  Lecture 4 Step response and pole locations 4  Review Definition of transform: U() = Z{u k } = u k k k= Discrete transfer function: Y () U() = G() = Z{g k},
More information6.1 Sketch the zdomain root locus and find the critical gain for the following systems K., the closedloop characteristic equation is K + z 0.
6. Sketch the zdomain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)
More informationDr Ian R. Manchester
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationLaboratory notes. Torsional Vibration Absorber
Titurus, Marsico & Wagg Torsional Vibration Absorber UoB/111, v1. Laboratory notes Torsional Vibration Absorber Contents 1 Objectives... Apparatus... 3 Theory... 3 3.1 Background information... 3 3. Undamped
More informationNotes for ECE320. Winter by R. Throne
Notes for ECE3 Winter 45 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................
More informationME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering.4 Dynamics and Control II Fall 7 Problem Set #9 Solution Posted: Sunday, Dec., 7. The.4 Tower system. The system parameters are
More informationIntroduction to Root Locus. What is root locus?
Introduction to Root Locus What is root locus? A graphical representation of the closed loop poles as a system parameter (Gain K) is varied Method of analysis and design for stability and transient response
More information2.010 Fall 2000 Solution of Homework Assignment 7
. Fall Solution of Homework Assignment 7. Control of Hydraulic Servomechanism. We return to the Hydraulic Servomechanism of Problem in Homework Assignment 6 with additional data which permits quantitative
More informationCourse roadmap. Step response for 2ndorder system. Step response for 2ndorder system
ME45: Control Systems Lecture Time response of ndorder systems Prof. Clar Radcliffe and Prof. Jongeun Choi Department of Mechanical Engineering Michigan State University Modeling Laplace transform Transfer
More informationControl of Manufacturing Processes
Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection
More informationECE320: Linear Control Systems Homework 8. 1) For one of the rectilinear systems in lab, I found the following state variable representations:
ECE30: Linear Control Systems Homework 8 Due: Thursday May 6, 00 at the beginning of class ) For one of the rectilinear systems in lab, I found the following state variable representations: 0 0 q q+ 74.805.6469
More informationSystems Analysis and Control
Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 21: Stability Margins and Closing the Loop Overview In this Lecture, you will learn: Closing the Loop Effect on Bode Plot Effect
More informationEE C128 / ME C134 Fall 2014 HW 8  Solutions. HW 8  Solutions
EE C28 / ME C34 Fall 24 HW 8  Solutions HW 8  Solutions. Transient Response Design via Gain Adjustment For a transfer function G(s) = in negative feedback, find the gain to yield a 5% s(s+2)(s+85) overshoot
More informationModeling and Experimentation: MassSpringDamper System Dynamics
Modeling and Experimentation: MassSpringDamper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to
More informationIf you need more room, use the backs of the pages and indicate that you have done so.
EE 343 Exam II Ahmad F. Taha Spring 206 Your Name: Your Signature: Exam duration: hour and 30 minutes. This exam is closed book, closed notes, closed laptops, closed phones, closed tablets, closed pretty
More informationMASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering. Dynamics and Control II Fall 7 Problem Set #7 Solution Posted: Friday, Nov., 7. Nise problem 5 from chapter 8, page 76. Answer:
More informationHomework 11 Solution  AME 30315, Spring 2015
1 Homework 11 Solution  AME 30315, Spring 2015 Problem 1 [10/10 pts] R +  K G(s) Y Gpsq Θpsq{Ipsq and we are interested in the closedloop pole locations as the parameter k is varied. Θpsq Ipsq k ωn
More informationChapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech
Chapter 5 Design Acceptable vibration levels (ISO) Vibration isolation Vibration absorbers Effects of damping in absorbers Optimization Viscoelastic damping treatments Critical Speeds Design for vibration
More informationRoot Locus Techniques
4th Edition E I G H T Root Locus Techniques SOLUTIONS TO CASE STUDIES CHALLENGES Antenna Control: Transient Design via Gain a. From the Chapter 5 Case Study Challenge: 76.39K G(s) = s(s+50)(s+.32) Since
More informationCHAPTER 7 STEADYSTATE RESPONSE ANALYSES
CHAPTER 7 STEADYSTATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
More informationAMME3500: System Dynamics & Control
Stefan B. Williams May, 211 AMME35: System Dynamics & Control Assignment 4 Note: This assignment contributes 15% towards your final mark. This assignment is due at 4pm on Monday, May 3 th during Week 13
More informationLinear Control Systems Solution to Assignment #1
Linear Control Systems Solution to Assignment # Instructor: H. Karimi Issued: Mehr 0, 389 Due: Mehr 8, 389 Solution to Exercise. a) Using the superposition property of linear systems we can compute the
More informationSTABILITY. Have looked at modeling dynamic systems using differential equations. and used the Laplace transform to help find step and impulse
SIGNALS AND SYSTEMS: PAPER 3C1 HANDOUT 4. Dr David Corrigan 1. Electronic and Electrical Engineering Dept. corrigad@tcd.ie www.sigmedia.tv STABILITY Have looked at modeling dynamic systems using differential
More information100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =
1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot
More information8.1.6 Quadratic pole response: resonance
8.1.6 Quadratic pole response: resonance Example G(s)= v (s) v 1 (s) = 1 1+s L R + s LC L + Secondorder denominator, of the form 1+a 1 s + a s v 1 (s) + C R Twopole lowpass filter example v (s) with
More informationTopic # Feedback Control Systems
Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the
More informationControl Systems I Lecture 10: System Specifications
Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control DMAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture
More information(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
More informationDynamics of structures
Dynamics of structures 1.2 Viscous damping Luc StPierre October 30, 2017 1 / 22 Summary so far We analysed the springmass system and found that its motion is governed by: mẍ(t) + kx(t) = 0 k y m x x
More informationECSE 4962 Control Systems Design. A Brief Tutorial on Control Design
ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got
More informationTransform Solutions to LTI Systems Part 3
Transform Solutions to LTI Systems Part 3 Example of second order system solution: Same example with increased damping: k=5 N/m, b=6 Ns/m, F=2 N, m=1 Kg Given x(0) = 0, x (0) = 0, find x(t). The revised
More informationMEM 355 Performance Enhancement of Dynamical Systems
MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions
More informationINTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a lineartimeinvariant
More informationInverted Pendulum. Objectives
Inverted Pendulum Objectives The objective of this lab is to experiment with the stabilization of an unstable system. The inverted pendulum problem is taken as an example and the animation program gives
More informationLecture 25: Tue Nov 27, 2018
Lecture 25: Tue Nov 27, 2018 Reminder: Lab 3 moved to Tuesday Dec 4 Lecture: review timedomain characteristics of 2ndorder systems intro to control: feedback openloop vs closedloop control intro to
More informationDynamic System Response. Dynamic System Response K. Craig 1
Dynamic System Response Dynamic System Response K. Craig 1 Dynamic System Response LTI Behavior vs. NonLTI Behavior Solution of Linear, ConstantCoefficient, Ordinary Differential Equations Classical
More informationAnalysis and Design of Control Systems in the Time Domain
Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.
More informationRobust Control 3 The Closed Loop
Robust Control 3 The Closed Loop Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /2/2002 Outline Closed Loop Transfer Functions Traditional Performance Measures Time
More informationRaktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries
. AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace
More informationVibrations: Second Order Systems with One Degree of Freedom, Free Response
Single Degree of Freedom System 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 5//007 Lecture 0 Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single
More informationTransient Response of a SecondOrder System
Transient Response of a SecondOrder System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a wellbehaved closedloop
More information1 x(k +1)=(Φ LH) x(k) = T 1 x 2 (k) x1 (0) 1 T x 2(0) T x 1 (0) x 2 (0) x(1) = x(2) = x(3) =
567 This is often referred to as Þnite settling time or deadbeat design because the dynamics will settle in a Þnite number of sample periods. This estimator always drives the error to zero in time 2T or
More informationNPTEL Online Course: Control Engineering
NPTEL Online Course: Control Engineering Ramkrishna Pasumarthy Assignment11 : s 1. Consider a system described by state space model [ ] [ 0 1 1 x + u 5 1 2] y = [ 1 2 ] x What is the transfer function
More informationIntroduction to Vibration. Professor Mike Brennan
Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration
More informationAN INTRODUCTION TO THE CONTROL THEORY
OpenLoop controller An OpenLoop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, nonlinear dynamics and parameter
More informationROOT LOCUS. Consider the system. Root locus presents the poles of the closedloop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s)  H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closedloop system when the gain K changes from 0 to 1+ K G ( s)
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS
ENG0016 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS MODULE NO: BME6003 Date: Friday 19 January 2018
More informationControl for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e
Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servooriented
More informationControls Problems for Qualifying Exam  Spring 2014
Controls Problems for Qualifying Exam  Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function
More informationLinear Quadratic Regulator (LQR) I
Optimal Control, Guidance and Estimation Lecture Linear Quadratic Regulator (LQR) I Pro. Radhakant Padhi Dept. o Aerospace Engineering Indian Institute o Science  Bangalore Generic Optimal Control Problem
More informationCompensator Design to Improve Transient Performance Using Root Locus
1 Compensator Design to Improve Transient Performance Using Root Locus Prof. Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning
More informationTime Response Analysis (Part II)
Time Response Analysis (Part II). A critically damped, continuoustime, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary
More informationChapter 2. Classical Control System Design. Dutch Institute of Systems and Control
Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steadystate Steadystate errors errors Type Type k k systems systems Integral Integral
More informationControl System. Contents
Contents Chapter Topic Page Chapter Chapter Chapter3 Chapter4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of
More informationAutomatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21211 1 / 39 Feedback
More informationLaboratory handouts, ME 340
Laboratory handouts, ME 340 This document contains summary theory, solved exercises, prelab assignments, lab instructions, and report assignments for Lab 4. 20142016 Harry Dankowicz, unless otherwise
More informationDESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD
206 Spring Semester ELEC733 Digital Control System LECTURE 7: DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD For a unit ramp input Tz Ez ( ) 2 ( z ) D( z) G( z) Tz e( ) lim( z) z 2 ( z ) D( z)
More informationDue Wednesday, February 6th EE/MFS 599 HW #5
Due Wednesday, February 6th EE/MFS 599 HW #5 You may use Matlab/Simulink wherever applicable. Consider the standard, unityfeedback closed loop control system shown below where G(s) = /[s q (s+)(s+9)]
More informationSolutions to SkillAssessment Exercises
Solutions to SkillAssessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright 2004 by John Wiley & Sons, Inc. All rights reserved. No part
More informationIntro to Frequency Domain Design
Intro to Frequency Domain Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Closed Loop Transfer Functions
More informationagree w/input bond => + sign disagree w/input bond =>  sign
1 ME 344 REVIEW FOR FINAL EXAM LOCATION: CPE 2.204 M. D. BRYANT DATE: Wednesday, May 7, 2008 9noon Finals week office hours: May 6, 47 pm Permitted at final exam: 1 sheet of formulas & calculator I.
More informationControl Systems, Lecture04
Control Systems, Lecture04 İbrahim Beklan Küçükdemiral Yıldız Teknik Üniversitesi 2015 1 / 53 Transfer Functions The output response of a system is the sum of two responses: the forced response and the
More informationChapter 3. 1 st Order Sine Function Input. General Solution. Ce t. Measurement System Behavior Part 2
Chapter 3 Measurement System Behavior Part 2 1 st Order Sine Function Input Examples of Periodic: vibrating structure, vehicle suspension, reciprocating pumps, environmental conditions The frequency of
More informationIC6501 CONTROL SYSTEMS
DHANALAKSHMI COLLEGE OF ENGINEERING CHENNAI DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEMESTER: II/IV IC6501 CONTROL SYSTEMS UNIT I SYSTEMS AND THEIR REPRESENTATION 1. What is the mathematical
More informationDr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Root Locus
Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the splane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign
More informationChapter 7: Time Domain Analysis
Chapter 7: Time Domain Analysis Samantha Ramirez Preview Questions How do the system parameters affect the response? How are the parameters linked to the system poles or eigenvalues? How can Laplace transforms
More informationMechanical System. Seoul National Univ. School of Mechanical and Aerospace Engineering. Spring 2008
Mechanical Syste Newton s Laws 1)First law : conservation of oentu no external force no oentu change linear oentu : v Jω angular oentu : dv ) Second law : F = a= dt d T T = J α = J ω dt Three Basic Eleents
More informationUniversity of Alberta ENGM 541: Modeling and Simulation of Engineering Systems Laboratory #7. M.G. Lipsett & M. Mashkournia 2011
ENG M 54 Laboratory #7 University of Alberta ENGM 54: Modeling and Simulation of Engineering Systems Laboratory #7 M.G. Lipsett & M. Mashkournia 2 Mixed Systems Modeling with MATLAB & SIMULINK Mixed systems
More informationLecture 4 Stabilization
Lecture 4 Stabilization This lecture follows Chapter 5 of DoyleFrancisTannenbaum, with proofs and Section 5.3 omitted 17013 IOCUPC, Lecture 4, November 2nd 2005 p. 1/23 Stable plants (I) We assume that
More informationRaktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response
.. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........
More informationProfessional Portfolio Selection Techniques: From Markowitz to Innovative Engineering
Massachusetts Institute of Technology Sponsor: Electrical Engineering and Computer Science Cosponsor: Science Engineering and Business Club Professional Portfolio Selection Techniques: From Markowitz to
More informationCDS 101/110a: Lecture 2.1 Dynamic Behavior
CDS 11/11a: Lecture.1 Dynamic Behavior Richard M. Murray 6 October 8 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium
More informationTransfer function and linearization
Transfer function and linearization Daniele Carnevale Dipartimento di Ing. Civile ed Ing. Informatica (DICII), University of Rome Tor Vergata Corso di Controlli Automatici, A.A. 2425 Testo del corso:
More informationModule 3F2: Systems and Control EXAMPLES PAPER 2 ROOTLOCUS. Solutions
Cambridge University Engineering Dept. Third Year Module 3F: Systems and Control EXAMPLES PAPER ROOTLOCUS Solutions. (a) For the system L(s) = (s + a)(s + b) (a, b both real) show that the rootlocus
More informationActive Control? Contact : Website : Teaching
Active Control? Contact : bmokrani@ulb.ac.be Website : http://scmero.ulb.ac.be Teaching Active Control? Disturbances System Measurement Control Controler. Regulator.,,, Aims of an Active Control Disturbances
More informationState Regulator. Advanced Control. design of controllers using pole placement and LQ design rules
Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state
More informationDigital Control Systems State Feedback Control
Digital Control Systems State Feedback Control Illustrating the Effects of ClosedLoop Eigenvalue Location and Control Saturation for a Stable OpenLoop System ContinuousTime System Gs () Y() s 1 = =
More informationReview: transient and steadystate response; DC gain and the FVT Today s topic: systemmodeling diagrams; prototype 2ndorder system
Plan of the Lecture Review: transient and steadystate response; DC gain and the FVT Today s topic: systemmodeling diagrams; prototype 2ndorder system Plan of the Lecture Review: transient and steadystate
More informationProblem Value Score Total 100/105
RULES This is a closed book, closed notes test. You are, however, allowed one piece of paper (front side only) for notes and definitions, but no sample problems. The top half is the same as from the first
More informationCDS 101/110a: Lecture 2.1 Dynamic Behavior
CDS 11/11a: Lecture 2.1 Dynamic Behavior Richard M. Murray 6 October 28 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium
More informationControl Systems 2. Lecture 4: Sensitivity function limits. Roy Smith
Control Systems 2 Lecture 4: Sensitivity function limits Roy Smith 2017314 4.1 Inputoutput controllability Control design questions: 1. How well can the plant be controlled? 2. What control structure
More informationDigital Control: Summary # 7
Digital Control: Summary # 7 Proportional, integral and derivative control where K i is controller parameter (gain). It defines the ratio of the control change to the control error. Note that e(k) 0 u(k)
More information