Lecture 12. AO Control Theory

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Lecture 12. AO Control Theory"

Transcription

1 Lecture 12 AO Control Theory Claire Max with many thanks to Don Gavel and Don Wiberg UC Santa Cruz February 18, 2016 Page 1

2 What are control systems? Control is the process of making a system variable adhere to a particular value, called the reference value. A system designed to follow a changing reference is called tracking control or servo. Page 2

3 Outline of topics What is control? - The concept of closed loop feedback control A basic tool: the Laplace transform - Using the Laplace transform to characterize the time and frequency domain behavior of a system - Manipulating Transfer functions to analyze systems How to predict performance of the controller Page 3

4 Adaptive Optics Control Aberrated wavefront phase surfaces! Telescope Aperture! Wavefront sensor! Corrected Wavefront! Computer! Wavefront corrector (Deformable Mirror)! Imaging dector! 3! Page 4

5 Differences between open-loop and closed-loop control systems Open-loop: control system uses no knowledge of the output Closed-loop: the control action is dependent on the output in some way Feedback is what distinguishes open from closed loop What other examples can you think of? OPEN CLOSED Page 5

6 More about open-loop systems Need to be carefully calibrated ahead of time: Example: for a deformable mirror, need to know exactly what shape the mirror will have if the n actuators are each driven with a voltage V n OPEN Question: how might you go about this calibration? Page 6

7 Some Characteristics of Closed- Loop Feedback Control Increased accuracy (gets to the desired final position more accurately because small errors will get corrected on subsequent measurement cycles) Less sensitivity to nonlinearities (e.g. hysteresis in the deformable mirror) because the system is always making small corrections to get to the right place Reduced sensitivity to noise in the input signal BUT: can be unstable under some circumstances (e.g. if gain is too high) Page 7

8 Historical control systems: float valve Credit: Franklin, Powell, Emami-Naeini As liquid level falls, so does float, allowing more liquid to flow into tank As liquid level rises, flow is reduced and, if needed, cut off entirely Sensor and actuator are both contained in the combination of the float and supply tube Page 8

9 Block Diagrams: Show Cause and Effect Credit: DiStefano et al Pictorial representation of cause and effect Interior of block shows how the input and output are related. Example b: output is the time derivative of the input Page 9

10 Summing Block Diagrams are circles X Credit: DiStefano et al Block becomes a circle or summing point Plus and minus signs indicate addition or subtraction (note that sum can include subtraction) Arrows show inputs and outputs as before Sometimes there is a cross in the circle Page 10

11 A home thermostat from a control theory point of view Credit: Franklin, Powell, Emami-Naeini Page 11

12 Block diagram for an automobile cruise control Credit: Franklin, Powell, Emami-Naeini Page 12

13 Example 1 Draw a block diagram for the equation Page 13

14 Example 1 Draw a block diagram for the equation Credit: DiStefano et al Page 14

15 Example 2 Draw a block diagram for how your eyes and brain help regulate the direction in which you are walking Page 15

16 Example 2 Draw a block diagram for how your eyes and brain help regulate the direction in which you are walking Credit: DiStefano et al Page 16

17 Summary so far Distinction between open loop and closed loop Advantages and disadvantages of each Block diagrams for control systems Inputs, outputs, operations Closed loop vs. open loop block diagrams Page 17

18 The Laplace Transform Pair" H ( s) = h( t) 0 e st dt h 1 2πi i ( t) = H( s) i e st ds Example: decaying exponential" Transform:" h ( t) = e σt H ( s+ σ ) ( s) = e 0 t dt 0" t" Im(s)" = = 1 e s + σ 1 ; s + σ ( s+ σ ) t 0 Re ( s) > σ x! -σ 18 Re(s)"

19 19 The Laplace Transform Pair" Inverse Transform:" ( ) t t t i i st e d i i e d i e i ds s e i t h σ π π σ π π σ θ π θ ρ ρ π σ π = = = + = Re(s)" Im(s)" x! -σ θ ρ ρ σ ρ σ θ θ θ d e i ds e s e s i i i = = + + = 1 1 ρ θ The above integration makes use of the Cauchy Principal Value Theorem:" If F(s) is analytic then" ( ) ( ) a if ds a s s F π 2 1 = Example (continued), decaying exponential"

20 Laplace Transform Pairs" unit step" 1" h(t)" 0" t" e σt ( ) e σt cos ωt e σt sin( ωt) (like lim sè0 e -st )! i H(s)" 1 s 1 s + σ s + σ iω s + σ + iω 1 1 s + σ iω s + σ + iω delayed step" e 0" T" t" s unit pulse" 1 0" T" t" s e st 20

21 Laplace Transform Properties (1)" { ( ) + βg( t) } = αh ( s) + βg( s) L αh t L { h( t + T) } = e st H ( s) L{ δ( t) } =1 t L h ( t )g( t t )d t = H s 0 t L h t 0 ( ) δ t t ( ) G( s) ( )d t = H s ( ) Linearity" Time-shift" Dirac delta function transform" ( sifting property)" Convolution" ( T 0) Impulse response" t 0 h( t t ) e iω t d t = H( iω ) e iωt Frequency response" 21

22 Laplace Transform Properties (2)" System Block Diagrams" x(t)! h(t)! y(t)! X(s)! H(s)! Y(s)! convolution of input x(t) with impulse response h(t)! t L h ( t )x ( t t )d t = H ( s )X s 0 Product of input spectrum X(s) with frequency response H(s)! H(s) in this role is called the transfer function! ( ) = Y ( s) Conservation of Power or Energy" [h( t)] 2 dt = 1 2πi 0 = 1 2π i i H ( s) 2 ds H ( iω ) 2 dω Parseval s Theorem " 22

23 Closed loop control (simple example, H(s)=1)" W(s)" disturbance" +" X(s)" residual" E(s)" -" Y(s)" correction" gc(s)" Where g gain" Our goal will be to suppress X(s) (residual) by high-gain feedback so that Y(s)~W(s)" E( s) = W ( s) gc( s)e( s) solving for E(s)," ( ) = W ( s ) 1+ gc( s) E s Note: for consistency around the loop, the units of the gain g must be the inverse of the units of C(s)." 23

24 Back Up: Control Loop Arithmetic W(s) input + - A(s) B(s) output Y(s) Y ( s) = A(s)W ( s) A( s) B( s)y ( s) Y ( s) = A ( s )W ( s) 1+ A( s) B( s) Unstable if any roots of 1+A(s)B(s) = 0 are in right-half of the s-plane: exponential growth exp(st) Page 24

25 Stable and unstable behavior Stable Stable Unstable Unstable Page 25

26 Block Diagram for Closed Loop Control!(t) disturbance! +! residual! e(t) -! " DM (t)! correction! gc(f)! H(f) where! g= loop gain! H(f) = Camera Exposure x DM Response x Computer Delay! C(f) = Controller Transfer Function! Our goal will be to find a C(f) that suppress e(t) (residual) so that! DM tracks!" e!f! (!)! =!!( f )! 1! +! gc! (! f! )! H! (! f! )! We can design a filter, C(f), into the feedback loop to:! 1! a) Stabilize the feedback (i.e. keep it from oscillating)! b) Optimize performance! 9! Page 26

27 The integrator, one choice for C(s)" A system whose impulse response is the unit step" 0" t" c 0 1 t < ( t) = C( s) acts as an integrator to the input signal:" t 0 0 = 1 s x(t)! c(t)! y(t)! y t ( t) c( t t ) x( t ) dt = x( t ) dt = 0 t 0 c(t-t )! x(t )! 0! t! t! that is, C(s) integrates the past history of inputs, x(t)" 27

28 The Integrator, continued" In Laplace terminology:" X(s)! C(s)! Y(s)! ( s) Y = X ( s) s An integrator has high gain at low frequencies, low gain at high frequencies." Write the input/output transfer function for an integrator in closed loop:" The closed loop transfer function with the integrator in the feedback loop is:" W(s)" +" -" Y(s)" gc(s)" X(s)" W(s)" H CL (s)" X(s)" C( s) = 1 s ( ) = W ( s) X s output (e.g. residual wavefront to science camera)" 1+ g s = s s + g W s ( ) = H CL s closed loop transfer function" ( )W s ( ) 28 input disturbance (e.g. atmospheric wavefront)"

29 The integrator in closed loop (1) H CL ( s) = s s + g H CL (s), viewed as a sinusoidal response filter: H CL ( s) 0 as s 0 DC response = 0 ( Type-0 behavior) H CL ( s) 1 as s High-pass behavior and the break frequency (transifon from low freq to high freq behavior) is around ~ 29

30 The integrator in closed loop (2) The break frequency is oken called the half-power frequency ( iγ ) 2 H CL (s) 2 H CL 1 1/2 (log-log scale) H CL s ( ) = s s + g Note that the gain,, is the bandwidth of the controller: Frequencies below are rejected, frequencies above are passed. By convenfon, is known as the gain-bandwidth product. 30

31 Disturbance Rejection Curve for Feedback Control With Compensation e( f )!!( f )! 1! =! 1! +! gc! (! f! )! H! (! f! )! C(f) = Integrator = e -st / (1 e -st ) Much better rejection! Increasing Gain (g) Starting to resonate! 19! Page 31

32 Assume that residual wavefront error is introduced by only two sources 1. Failure to completely cancel atmospheric phase distortion 2. Measurement noise in the wavefront sensor Optimize the controller for best overall performance by varying design parameters such as gain and sample rate Page 32

33 Atmospheric turbulence! Temporal power spectrum of atmospheric phase: S! (f) = (v/r 0 ) 5/3 f -8/ 3 Increasing wind"! Power spectrum of residual phase S e (f) = 1/(1 + g C(f) H(f)) 2 S! (f) Uncontrolled" Closed Loop Controlled" 22" Page 33

34 Noise! Measurement noise enters in at a different point in the loop than atmospheric disturbance!(t) disturbance" +" residual" e(t) -"! DM (t)" correction" gc(f)" H(f)! Closed loop transfer function for noise: n(t) noise" e"f" (")" gc( f )H( f )! =" n( f ) 1" +" gc" (" f" )" H" (" f" )" Noise feeds through" Noise averaged out" 23" Page 34

35 Residual from atmosphere + noise! Conditions! RMS uncorrected turbulence: 5400 nm! RMS measurement noise: 126 nm! gain = 0.4 Noise Dominates" Residual Turbulence Dominates"! Total Closed Loop Residual = 118 nm RMS 24" Page 35

36 Increased Measurement Noise! Conditions! RMS uncorrected turbulence: 5400 nm! RMS measurement noise: 397 nm! gain = 0.4 Noise Dominates" Residual Turbulence Dominates"! Total Closed Loop Residual = 290 nm RMS 25" Page 36

37 Reducing the gain in the higher noise case improves the residual! Conditions! RMS uncorrected turbulence: 5400 nm! RMS measurement noise: 397 nm! gain = 0.2 Noise Dominates" Residual Turbulence Dominates"! Total Closed Loop Residual = 186 nm RMS 26" Page 37

38 What we have learned Pros and cons of feedback control systems The use of the Laplace transform to help characterize closed loop behavior How to predict the performance of the adaptive optics under various conditions of atmospheric seeing and measurement signal-to-noise A bit about loop stability, compensators, and other good stuff Page 38

39 !"#"$"%&"' (")*+,")-"'&$./"-)#""-/+&0)&1%2$13)1%34)#1$)56)'4'2"7'8 91$)+%).%2$1-:&2.1%)21)&1%2$13)1#);"%"$+3)'4'2"7'<)'17");11-) 2"=2')+$">!"#$"#!%%&'()*#+"#,"#!-./0/*#.)&#1"#2"#+.34.&%*#5$%)6-%3 91$)#:$2*"$).%#1$7+2.1%)1%)&1%2$13)'4'2"7')$"'"+$&*).%)56< '"")2*")F#56)C"/'.2")G:/3.&+2.1%')+%-)2*".$)$"#"$"%&"'8 Page 39

Error Budgets, and Introduction to Class Projects. Lecture 6, ASTR 289

Error Budgets, and Introduction to Class Projects. Lecture 6, ASTR 289 Error Budgets, and Introduction to Class Projects Lecture 6, ASTR 89 Claire Max UC Santa Cruz January 8, 016 Page 1 What is residual wavefront error? Telescope AO System Science Instrument Very distorted

More information

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions Question 1. SIGNALS: Design of a noise-cancelling headphone system. 1a. Based on the low-pass filter given, design a high-pass filter,

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Dr. Ian R. Manchester

Dr. Ian R. Manchester Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus

More information

Control System. Contents

Control System. Contents Contents Chapter Topic Page Chapter- Chapter- Chapter-3 Chapter-4 Introduction Transfer Function, Block Diagrams and Signal Flow Graphs Mathematical Modeling Control System 35 Time Response Analysis of

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

Lecture 25: Tue Nov 27, 2018

Lecture 25: Tue Nov 27, 2018 Lecture 25: Tue Nov 27, 2018 Reminder: Lab 3 moved to Tuesday Dec 4 Lecture: review time-domain characteristics of 2nd-order systems intro to control: feedback open-loop vs closed-loop control intro to

More information

Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes

Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes Martin Glück, Jörg-Uwe Pott, Oliver Sawodny Reaching the Diffraction Limit of Large Telescopes using Adaptive

More information

Numerical atmospheric turbulence models and LQG control for adaptive optics system

Numerical atmospheric turbulence models and LQG control for adaptive optics system Numerical atmospheric turbulence models and LQG control for adaptive optics system Jean-Pierre FOLCHER, Marcel CARBILLET UMR6525 H. Fizeau, Université de Nice Sophia-Antipolis/CNRS/Observatoire de la Côte

More information

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08 Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

More information

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes Transfer Functions 2.6 Introduction In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace transform model of a linear engineering system. (A linear engineering

More information

Analysis and Design of Control Systems in the Time Domain

Analysis and Design of Control Systems in the Time Domain Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Topic # Feedback Control Systems

Topic # Feedback Control Systems Topic #1 16.31 Feedback Control Systems Motivation Basic Linear System Response Fall 2007 16.31 1 1 16.31: Introduction r(t) e(t) d(t) y(t) G c (s) G(s) u(t) Goal: Design a controller G c (s) so that the

More information

Laplace Transforms Chapter 3

Laplace Transforms Chapter 3 Laplace Transforms Important analytical method for solving linear ordinary differential equations. - Application to nonlinear ODEs? Must linearize first. Laplace transforms play a key role in important

More information

Control of the Keck and CELT Telescopes. Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology

Control of the Keck and CELT Telescopes. Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology Control of the Keck and CELT Telescopes Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology Telescope Control Problems Light from star Primary mirror active control system

More information

Process Control J.P. CORRIOU. Reaction and Process Engineering Laboratory University of Lorraine-CNRS, Nancy (France) Zhejiang University 2016

Process Control J.P. CORRIOU. Reaction and Process Engineering Laboratory University of Lorraine-CNRS, Nancy (France) Zhejiang University 2016 Process Control J.P. CORRIOU Reaction and Process Engineering Laboratory University of Lorraine-CNRS, Nancy (France) Zhejiang University 206 J.P. Corriou (LRGP) Process Control Zhejiang University 206

More information

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30 289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

Dr Ian R. Manchester

Dr Ian R. Manchester Week Content Notes 1 Introduction 2 Frequency Domain Modelling 3 Transient Performance and the s-plane 4 Block Diagrams 5 Feedback System Characteristics Assign 1 Due 6 Root Locus 7 Root Locus 2 Assign

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding LINEAR SYSTEMS Linear Systems 2 Neural coding and cognitive neuroscience in general concerns input-output relationships. Inputs Light intensity Pre-synaptic action potentials Number of items in display

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

4 Arithmetic of Feedback Loops

4 Arithmetic of Feedback Loops ME 132, Spring 2005, UC Berkeley, A. Packard 18 4 Arithmetic of Feedback Loops Many important guiding principles of feedback control systems can be derived from the arithmetic relations, along with their

More information

Chapter 7. Digital Control Systems

Chapter 7. Digital Control Systems Chapter 7 Digital Control Systems 1 1 Introduction In this chapter, we introduce analysis and design of stability, steady-state error, and transient response for computer-controlled systems. Transfer functions,

More information

ME 132, Dynamic Systems and Feedback. Class Notes. Spring Instructor: Prof. A Packard

ME 132, Dynamic Systems and Feedback. Class Notes. Spring Instructor: Prof. A Packard ME 132, Dynamic Systems and Feedback Class Notes by Andrew Packard, Kameshwar Poolla & Roberto Horowitz Spring 2005 Instructor: Prof. A Packard Department of Mechanical Engineering University of California

More information

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 5. 2. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

More information

MEM 355 Performance Enhancement of Dynamical Systems

MEM 355 Performance Enhancement of Dynamical Systems MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University 5/8/25 Outline Closed Loop Transfer Functions

More information

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

e st f (t) dt = e st tf(t) dt = L {t f(t)} s Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic

More information

Intro to Frequency Domain Design

Intro to Frequency Domain Design Intro to Frequency Domain Design MEM 355 Performance Enhancement of Dynamical Systems Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Closed Loop Transfer Functions

More information

An Introduction to Control Systems

An Introduction to Control Systems An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries . AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace

More information

Control of Manufacturing Processes

Control of Manufacturing Processes Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #18 Basic Control Loop Analysis" April 15, 2004 Revisit Temperature Control Problem τ dy dt + y = u τ = time constant = gain y ss =

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #36 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, April 4, 2003 3. Cascade Control Next we turn to an

More information

APPLICATIONS FOR ROBOTICS

APPLICATIONS FOR ROBOTICS Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1 Signals A signal is a pattern of variation of a physical quantity, often as a function of time (but also space, distance, position, etc). These quantities are usually the

More information

Discrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture

Discrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture Discrete Systems Mark Cannon Hilary Term 22 - Lecture 4 Step response and pole locations 4 - Review Definition of -transform: U() = Z{u k } = u k k k= Discrete transfer function: Y () U() = G() = Z{g k},

More information

Professional Portfolio Selection Techniques: From Markowitz to Innovative Engineering

Professional Portfolio Selection Techniques: From Markowitz to Innovative Engineering Massachusetts Institute of Technology Sponsor: Electrical Engineering and Computer Science Cosponsor: Science Engineering and Business Club Professional Portfolio Selection Techniques: From Markowitz to

More information

Simon Fraser University School of Engineering Science ENSC Linear Systems Spring Instructor Jim Cavers ASB

Simon Fraser University School of Engineering Science ENSC Linear Systems Spring Instructor Jim Cavers ASB Simon Fraser University School of Engineering Science ENSC 380-3 Linear Systems Spring 2000 This course covers the modeling and analysis of continuous and discrete signals and systems using linear techniques.

More information

Signal Processing and Linear Systems1 Lecture 4: Characterizing Systems

Signal Processing and Linear Systems1 Lecture 4: Characterizing Systems Signal Processing and Linear Systems Lecture : Characterizing Systems Nicholas Dwork www.stanford.edu/~ndwork Our goal will be to develop a way to learn how the system behaves. In general, this is a very

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 5: Calculating the Laplace Transform of a Signal Introduction In this Lecture, you will learn: Laplace Transform of Simple

More information

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France

Laplace Transforms. Chapter 3. Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Pierre Simon Laplace Born: 23 March 1749 in Beaumont-en-Auge, Normandy, France Died: 5 March 1827 in Paris, France Laplace Transforms Dr. M. A. A. Shoukat Choudhury 1 Laplace Transforms Important analytical

More information

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1 Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real

More information

Process Dynamics, Operations, and Control Lecture Notes 2

Process Dynamics, Operations, and Control Lecture Notes 2 Chapter. Dynamic system.45 Process Dynamics, Operations, and Control. Context In this chapter, we define the term 'system' and how it relates to 'process' and 'control'. We will also show how a simple

More information

Table of Laplacetransform

Table of Laplacetransform Appendix Table of Laplacetransform pairs 1(t) f(s) oct), unit impulse at t = 0 a, a constant or step of magnitude a at t = 0 a s t, a ramp function e- at, an exponential function s + a sin wt, a sine fun

More information

Course Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be).

Course Background. Loosely speaking, control is the process of getting something to do what you want it to do (or not do, as the case may be). ECE4520/5520: Multivariable Control Systems I. 1 1 Course Background 1.1: From time to frequency domain Loosely speaking, control is the process of getting something to do what you want it to do (or not

More information

(a) Find the transfer function of the amplifier. Ans.: G(s) =

(a) Find the transfer function of the amplifier. Ans.: G(s) = 126 INTRDUCTIN T CNTR ENGINEERING 10( s 1) (a) Find the transfer function of the amplifier. Ans.: (. 02s 1)(. 001s 1) (b) Find the expected percent overshoot for a step input for the closed-loop system

More information

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Control for Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e Motion Systems m F Introduction Timedomain tuning Frequency domain & stability Filters Feedforward Servo-oriented

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 09-Dec-13 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

Video 5.1 Vijay Kumar and Ani Hsieh

Video 5.1 Vijay Kumar and Ani Hsieh Video 5.1 Vijay Kumar and Ani Hsieh Robo3x-1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior

More information

Introduction & Laplace Transforms Lectures 1 & 2

Introduction & Laplace Transforms Lectures 1 & 2 Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively

More information

A system that is both linear and time-invariant is called linear time-invariant (LTI).

A system that is both linear and time-invariant is called linear time-invariant (LTI). The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Lecture Notes: Time, Frequency & Transform Domains February 28, 2012 Signals & Systems Signals are mapped

More information

CHAPTER 10: STABILITY &TUNING

CHAPTER 10: STABILITY &TUNING When I complete this chapter, I want to be able to do the following. Determine the stability of a process without control Determine the stability of a closed-loop feedback control system Use these approaches

More information

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc Advanced Analog Building Blocks Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc 1 Topics 1. S domain and Laplace Transform Zeros and Poles 2. Basic and Advanced current

More information

Goodwin, Graebe, Salgado, Prentice Hall Chapter 11. Chapter 11. Dealing with Constraints

Goodwin, Graebe, Salgado, Prentice Hall Chapter 11. Chapter 11. Dealing with Constraints Chapter 11 Dealing with Constraints Topics to be covered An ubiquitous problem in control is that all real actuators have limited authority. This implies that they are constrained in amplitude and/or rate

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 8: Response Characteristics Overview In this Lecture, you will learn: Characteristics of the Response Stability Real Poles

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

Subject: BT6008 Process Measurement and Control. The General Control System

Subject: BT6008 Process Measurement and Control. The General Control System WALJAT COLLEGES OF APPLIED SCIENCES In academic partnership with BIRLA INSTITUTE OF TECHNOLOGY Question Bank Course: Biotechnology Session: 005-006 Subject: BT6008 Process Measurement and Control Semester:

More information

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s) C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

More information

1 Closed Loop Systems

1 Closed Loop Systems Harvard University Division of Engineering and Applied Sciences ES 45 - Physiological Systems Analysis Fall 2009 Closed Loop Systems and Stability Closed Loop Systems Many natural and man-made systems

More information

agree w/input bond => + sign disagree w/input bond => - sign

agree w/input bond => + sign disagree w/input bond => - sign 1 ME 344 REVIEW FOR FINAL EXAM LOCATION: CPE 2.204 M. D. BRYANT DATE: Wednesday, May 7, 2008 9-noon Finals week office hours: May 6, 4-7 pm Permitted at final exam: 1 sheet of formulas & calculator I.

More information

Mechanical Systems Part A: State-Space Systems Lecture AL12

Mechanical Systems Part A: State-Space Systems Lecture AL12 AL: 436-433 Mechanical Systems Part A: State-Space Systems Lecture AL Case study Case study AL: Design of a satellite attitude control system see Franklin, Powell & Emami-Naeini, Ch. 9. Requirements: accurate

More information

Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 29. 8. 2 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid

More information

EEE 188: Digital Control Systems

EEE 188: Digital Control Systems EEE 88: Digital Control Systems Lecture summary # the controlled variable. Example: cruise control. In feedback control, sensors and measurements play an important role. In discrete time systems, the control

More information

( ) f (k) = FT (R(x)) = R(k)

( ) f (k) = FT (R(x)) = R(k) Solving ODEs using Fourier Transforms The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d 2 dx + q f (x) = R(x)

More information

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response.

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response. University of California at Berkeley Department of Electrical Engineering and Computer Sciences Professor J. M. Kahn, EECS 120, Fall 1998 Final Examination, Wednesday, December 16, 1998, 5-8 pm NAME: 1.

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo)

EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo) Contents EE 474 Lab Part 2: Open-Loop and Closed-Loop Control (Velocity Servo) 1 Introduction 1 1.1 Discovery learning in the Controls Teaching Laboratory.............. 1 1.2 A Laboratory Notebook...............................

More information

Control Systems. Laplace domain analysis

Control Systems. Laplace domain analysis Control Systems Laplace domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic equations define an Input/Output

More information

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 Any periodic function f(t) can be written as a Fourier Series a 0 2 + a n cos( nωt) + b n sin n

More information

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4

Continuous Time Signal Analysis: the Fourier Transform. Lathi Chapter 4 Continuous Time Signal Analysis: the Fourier Transform Lathi Chapter 4 Topics Aperiodic signal representation by the Fourier integral (CTFT) Continuous-time Fourier transform Transforms of some useful

More information

A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR. Ryszard Gessing

A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR. Ryszard Gessing A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44-101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl

More information

Control of Manufacturing Processes

Control of Manufacturing Processes Control of Manufacturing Processes Subject 2.830 Spring 2004 Lecture #19 Position Control and Root Locus Analysis" April 22, 2004 The Position Servo Problem, reference position NC Control Robots Injection

More information

ENGIN 211, Engineering Math. Laplace Transforms

ENGIN 211, Engineering Math. Laplace Transforms ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving

More information

Methods for analysis and control of. Lecture 6: Introduction to digital control

Methods for analysis and control of. Lecture 6: Introduction to digital control Methods for analysis and of Lecture 6: to digital O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename 6th May 2009 Outline Some interesting books:

More information

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

More information

Today s goals So far Today 2.004

Today s goals So far Today 2.004 Today s goals So far Feedback as a means for specifying the dynamic response of a system Root Locus: from the open-loop poles/zeros to the closed-loop poles Moving the closed-loop poles around Today Proportional

More information

Outline. Classical Control. Lecture 2

Outline. Classical Control. Lecture 2 Outline Outline Outline Review of Material from Lecture 2 New Stuff - Outline Review of Lecture System Performance Effect of Poles Review of Material from Lecture System Performance Effect of Poles 2 New

More information

MEM 355 Performance Enhancement of Dynamical Systems

MEM 355 Performance Enhancement of Dynamical Systems MEM 355 Performance Enhancement of Dynamical Systems Frequency Domain Design Intro Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /5/27 Outline Closed Loop Transfer

More information

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 Unit Outline Introduction to the course: Course goals, assessment, etc... What is Control Theory A bit of jargon,

More information

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 5. An Introduction to Feedback Control Systems

Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL. Glenn Vinnicombe HANDOUT 5. An Introduction to Feedback Control Systems Part IB Paper 6: Information Engineering LINEAR SYSTEMS AND CONTROL Glenn Vinnicombe HANDOUT 5 An Introduction to Feedback Control Systems ē(s) ȳ(s) Σ K(s) G(s) z(s) H(s) z(s) = H(s)G(s)K(s) L(s) ē(s)=

More information

EE Experiment 11 The Laplace Transform and Control System Characteristics

EE Experiment 11 The Laplace Transform and Control System Characteristics EE216:11 1 EE 216 - Experiment 11 The Laplace Transform and Control System Characteristics Objectives: To illustrate computer usage in determining inverse Laplace transforms. Also to determine useful signal

More information

Aspects of Continuous- and Discrete-Time Signals and Systems

Aspects of Continuous- and Discrete-Time Signals and Systems Aspects of Continuous- and Discrete-Time Signals and Systems C.S. Ramalingam Department of Electrical Engineering IIT Madras C.S. Ramalingam (EE Dept., IIT Madras) Networks and Systems 1 / 45 Scaling the

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

AN INTRODUCTION TO THE CONTROL THEORY

AN INTRODUCTION TO THE CONTROL THEORY Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

More information

Control Systems. EC / EE / IN. For

Control Systems.   EC / EE / IN. For Control Systems For EC / EE / IN By www.thegateacademy.com Syllabus Syllabus for Control Systems Basic Control System Components; Block Diagrammatic Description, Reduction of Block Diagrams. Open Loop

More information

RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing

RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44-101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

SAMPLE EXAMINATION PAPER (with numerical answers)

SAMPLE EXAMINATION PAPER (with numerical answers) CID No: IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination

More information

Class 27: Block Diagrams

Class 27: Block Diagrams Class 7: Block Diagrams Dynamic Behavior and Stability of Closed-Loop Control Systems We no ant to consider the dynamic behavior of processes that are operated using feedback control. The combination of

More information

Performance of Feedback Control Systems

Performance of Feedback Control Systems Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type

More information

School of Engineering Faculty of Built Environment, Engineering, Technology & Design

School of Engineering Faculty of Built Environment, Engineering, Technology & Design Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Co-ordinator/Tutor : Dr. Phang

More information

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d

The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d Solving ODEs using Fourier Transforms The formulas for derivatives are particularly useful because they reduce ODEs to algebraic expressions. Consider the following ODE d 2 dx + p d 2 dx + q f (x) R(x)

More information

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE)

ANALOG AND DIGITAL SIGNAL PROCESSING CHAPTER 3 : LINEAR SYSTEM RESPONSE (GENERAL CASE) 3. Linear System Response (general case) 3. INTRODUCTION In chapter 2, we determined that : a) If the system is linear (or operate in a linear domain) b) If the input signal can be assumed as periodic

More information