IFUAP-BUAP Mini-curso en Nanoestructuras

Size: px
Start display at page:

Download "IFUAP-BUAP Mini-curso en Nanoestructuras"

Transcription

1 IFUAP-BUAP Mini-curso en Nanoestructuras Parte II. Sergio E. Ulloa Ohio University Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University, Athens, OH Supported by US DOE & NSF NIRT

2 Preguntas? Más info? nano.gov

3 Resumen/Outline Quantum dots confinement vs interactions How to make / study them Coulomb blockade & assorted IV characteristics Optical effects excitons: selection rules, field effects Transport in complex molecules: the case of DNA

4 Quantum Dots: L ~ λ good things come in small packages Confinement: KE~ k 2 ~ L -2 Interactions: PE ~ q 2 /L For L~100nm, PE ~ 1meV while KE ~ 0.5meV (in GaAs) Total energy E = KE + PE For L~5nm, PE ~ 20meV ; KE ~ 200meV

5 Lithographically Quantum dot fabrication Kouwenhoven et al, U Delft Weis et al, MPI Stuttgart Ensslin et al, ETH Zurich

6

7 Quantum dot fabrication Self-assembly Stranski Krastanow islands MBE in-plane densities ~ cm -2 size variations < 10% sharp photoluminescence features, frequency size

8 AlAs and GaAs antidots in InAs Tenne et al, PRB May 2000

9 Colloidal dots Quantum dot fabrication Chemical synthesis Quantum Dot Corp. CdSe, CdS, InP, etc Size ~ 5nm diameter Uses for biotags

10 soluble metal salt (AgNO 3 ) excess NaBH 4 colloidal METAL dots in dendrimers 0.6 -H 2 O Absorbance nm 481 nm Wavelength (nm) 800 Au or Ag ~3-5nm dots ph or hydration changes interdot separation aggregation changes interactions & color G. Van Patten, Ohio University

11 QD w/tunable size and e - number ~ artificial atoms I Electronic transport - Low bias: ground state Coulomb blockade High bias: excited states selection rules(!) Rings, phases & resonances ω ω Incident/outgoing photons - Visible/optical: exciton Far infrared: internal multi-electron excitations Raman: excitons/confined phonons B Capacitance - Ground state vs B-field Combination w/optics & in-plane transport

12 Resumen/Outline Quantum dots confinement vs interactions How to make / study them Coulomb blockade & assorted IV characteristics Optical effects excitons: selection rules, field effects Transport in complex molecules: the case of DNA

13 Coulomb blockade I

14 B field effects

15

16

17 Ramirez et al, PRB 1999 QD molecules Blick et al Science 2002 in series in parallel future? multidots for quantum computing

18 Kondo effect Goldhaber-Gordon et al Nature 1998

19 Kondo primer zero-bias feature Kouwenhoven & Glazman, Phys World 2001

20 Aharonov-Bohm effect B 2 p 1 e H = p A 2m 2m c 2 Φ ρ B= A; A= Bρϕˆ

21 Phases, dots, rings and resonances 1. Phase in experiments AB interferometer 2. Phase of a resonance (single particle) 3. CB in QD ~ SP resonance? 4. What s the Fano effect / lineshape? 5. Fano as probe of coherence in QD? 6. QD in Kondo regime phases in expts? 7. Fano+Kondo to probe coherence in QDK?

22 Phase in experiments AB interferometer Schuster et al, Nature 1997 ~ CB peaks AB oscill s t QD e iθ Yacoby/Heiblum PRL 1995

23 Nature 1998 weaker AB signal when QPC is on

24 AB interferometer: phase measurer QD G~ t = t + e t 2 i ϕ 2 CE QD dir ϕ = 2π Φ/ Φ 0 G~ t + t + 2 t t cos( θ θ 2 2 QD dir QD dir QD dir e - dir ϕ) If θ dir is indep of V gate θ QD can be measured A pure resonance has the Breit-Wigner form: i Γ /2 tqd = C = t QD e E E + i Γ/2 θ QD = θ + C n tan 2(E E ) Γ 1 n iθ QD θ QD /π

25 BW SP resonances OK. coherent propagation through QD CB charging ~ not important but. sequence of BW resonances would be expected to accumulate while phase resets to 0 as t QD ~ 0!!? overlapping resonances BW?? e-e interactions? Why? N theory papers nice disc: Aharony et al cond-mat/ G(B)=G(-B) not valid here (open device θ 0,π)

26 Fano effect / lineshape interference of discrete autoionized state with a continuum asymmetric peaks in atomic excitation spectra Ugo Fano, PR 1961 In QD; expt: Göres PRB 2000 th: Clerk PRL 2001 In AB interf + QD; expt: Kobayashi PRL 2002

27 Fano ϕ & {ψ E } mix V E Ψ E = aϕ + E' b E' ψ E' 1 a = sin ( E) π V E 2 1 E (E) = tan E E ϕ F(E E' ; be' = cos (E) δ (E E') π VE E E' π V V sin (E) ; F(E ) 2 E' ) = = shift of resonance due to continuum E' V E E' excitation of Ψ E via an operator T from an initial state I yields: sin Ψ E T I = Φ T I ψ E T I cos π V E' E' Φ= + ϕ E' * E V ψ E E' modified state due to mix

28 Fano lineshape Φ T I E Eϕ F 2 q = ; ε = cot = ; Γ= 2 π V * E πv ψ T I Γ /2 E E E ΨE T I (q + ε ) = 2 2 ψ T I 1+ ε 2 2 = transition prob via "autoionized" state Is G ~ t QD + t dir 2 a Fano line? iβ z tdir = e G d ; tqd = ε + i with G = G ε + q ε + 1 d 2 z q = i+ e G d iβ 2 Notice prob can vanish due to interference Clerk PRL 2001

29 Fano as probe (proof?) of coherence in QD (CB) Kobayashi PRL 2002 direct paths through QD? how is QD intrinsic width affected by ring? decoherence? 1 vs N passes?

30 QD in Kondo regime phases in expts? peaks deform AB osc s clear Ji, Heiblum, Science 2000 phase lapses in CB but plateaus in K valley ~ π

31 phases in Kondo regime phase evolves from plateaus ~ π to lapses to 0 as Γ decreases th: Gerland PRL 2000 K res phase shift ~ π/2 (NRG)

32 phases in Kondo regime w/temperature w/dc bias

33 Fano+Kondo to probe coherence in QDK? direct ~ W Hofstetter PRL 2001 (~Bulka PRL 2001) r 1 dot and for e= 2[ ε +RΣ(0)]/ Γ 2 2 (e + q) sin b α 2 2 e + 1 e 2 4 R L/ ; q (1 G( ω) = [ ω ε Σ( ω)] b dot b AB phase/flux ϕ g = T + "generalized Fano form" + 1 α = Γ Γ Γ = α T)/T cosϕ

34 references on phases/kondo/resonances Yacoby, PRL 74, 4047 (1995) Schuster, Nature 385, 417 (1997) Aharony, cond-mat/ Fano, PR 124, 1866 (1961) Clerk, PRL 86, 4636 (2001) Kobayashi, PRL 88, (2002) Ji, Science 290, 779 (2000) Gerland, PRL 84, 3710 (2000) Bulka, PRL 86, 5128 (2001) Hofstetter, PRL 87, (2001)

35 IFUAP BUAP Minicurso en Nanoestructuras Tarea # 1 Entrega: 22 Julio [40pts] (a) Calcule el espectro para una partícula de masa m confinada en una caja rectangular en 3D y 2D de radio R. Suponga que la caja tiene paredes infinitamente duras. (b) Describa como varía la energía de confinamiento con respecto a R. (c) Escriba la forma completa de los eigenstados en 3D/2D. (d) Cuál es el valor de la energía (en ev) para los dos primeros estados en 2/3D si la masa de la partícula es 0.067m 0 (con m 0 la masa del electrón libre), y el radio es R = 5, 50, 100nm? Hint: funciones de Bessel. 2. [60pts] (a) Estime el efecto de la interacción de Coulomb entre electrones en un punto cuántico de radio R, utilizando U = e 2 /Rɛ, donde ɛ es la constante dieléctrica del material ( 12 para materials típicos), si el radio del punto es 5 o 100nm. Compare esta estimación con la diferencia entre los dos primeros niveles en un punto como se modeló en 1 arriba, = E 2 E 1. Para qué radio R son estas dos cantidades iguales (U = )? Haga la estimación tanto en 2D como en 3D. (b) Use teoría de perturbaciones para hacer la estimación más confiable: Ψ n (1)Ψ m (2) V (1 2) Ψ k (1)Ψ l (2), en donde V (1 2) = e 2 /ɛ r 1 r 2 es la interacción de Coulomb entre dos partículas, y las varias Ψ j son las funciones de onda (modeladas/escritas en 1(c) arriba). Use cualquier método de integración, numérica incluso, para evaluar (o al menos estimar) la integral en el caso que los dos electrónes están en el estado base (y diferente spin, por supuesto) en un punto en 3D. Compare con (a) y comente. Hint (aunque no esencial): 1 r = 4π q 2 e iq r d 3 q

36 IFUAP-BUAP Mini-curso en Nanoestructuras Parte II. Toma 2 Sergio E. Ulloa Ohio University Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University, Athens, OH Supported by US DOE & NSF NIRT

37 Resumen/Outline Quantum dots confinement vs interactions How to make / study them Coulomb blockade & assorted IV characteristics Optical effects excitons: selection rules, field effects Transport in complex molecules: the case of DNA

38 Quantum dot fabrication Self-assembly Stranski Krastanow islands MBE in-plane densities ~ cm -2 size variations < 10% sharp photoluminescence features, frequency size

39 Photoluminescence in SINGLE QD Excitons Excited excitons (s- and p-shell) Biexcitons, X -, X --, etc. laser power Findeis et al, Sol. State Comm, 2000

40 Excitons and dot shapes Dot asymmetries reflected in exciton properties: Binding energy vs dot size Oscillator strength / optical response Influence of magnetic field Raman differential cross section and intensity --- experiments and phonon mode confinement: Selection rules Carrier masses Scanning experiments see part I Trallero & Ulloa PRB 1999 Quantum rings: excitonic Aharonov-Bohm effect for neutral/polarizable entity

41 Simple geometry: Parabolic confinement V(x,y) w y x B L y w x L x y V ez L z z E g H = HCOM + Hrel + Hc V hz H = H + H + H e h eh 2 1 e H j = p j ± A j + mj( ωxxj + ωyy j) + V( zj) 2m c 2 H eh j 2 e = ε r r Harmonic Oscillator in 2D e h Song& SU; Pereyra & SU PRB 2000 effective confinement increases with B field

42 off-diagonal Coulomb interaction exact expression: Song & SU PRB 1995 off-diagonal one-particle elements η = ω ω η = ω ω B= 0 x / y x / y B>> 1 η 1 (circular limit)

43 Coulomb interactions in harmonic oscillator basis

44 binding energy binding energy = E exc E 0 = E b E b ~ 1/L L x /L y = 1:1 2:1 + 3:1 saturates to 2D value for L>>a B & all shapes exciton size exciton shrinks as L 0, r S L but r s a B as L>> a B

45 χ = linear optical susceptibility ~ PLE signal ~ optical response COM gnd state & replicas excited states of internal degrees of freedom area of dots = 5x5 nm 2

46 Magnetic field effects diamagnetic shift orbital Zeeman splitting

47 binding energy exciton size η=1 η=1.25 suppression of Zeeman orbital splitting asymmetry of structure

48 SAQD RINGS!! smallest COHERENT ring potential for electrons and/or holes 80nm Lorke et al PRL 1999

49 J Garcia 1999

50 Is there AB effect for excitons? flux lines e e φ = Ad l = Φ c c v v 0 AB is the nonadiabatic version of Berry phase in a flux exciton charge = ZERO no ABE? M. Berry, Proc. R. Soc. Lond. A 392, 45 (1984) BUT... Ground state of 1D excitons (Romer & Raikh 2000):

51

52 Results for microscopic calculation Song & SU PRB 2001 soft/parab walls hard wall binding energy NO AB oscillations!!

53 AB oscillations seen if ring is narrower ~ 1D like width = 10nm heavy hole light hole Hu et al PRB 2001

54 BUT excitons are polarizable! flux lines 80 nm flux lines Φ e v 0 e- v e- e- h+ R Φ h+ e φe φh = ( Φ e Φ h ) c net flux is nonzero!

55 strong Coulomb interaction limit: * 0 = ( e + h)/2 0 R R R a 2 2 Φ , Φ = π e h Φ 0 0 E exc = L + + E 2 MR ( R R ) B. weak interaction limit: R a * 0 0 correlated motion Φ e Φ h exc = 2 e h 2meRe Φ 0 2mhR Φ h 0 E L L, 2 e( h) π Re( h) B, Φ = L = Le + Lh independent motion

56 weak interaction limit optical emission strongly suppressed in B field windows dark window L tot non zero bright window L tot = 0 Govorov et al PRB 2002

57 strong interaction limit optical emission strongly suppressed after critical B field effective persistent current associated with Berry s phase and angular momentum in ground state

58 Optical emission from a charge tunable quantum ring Warburton et al Nature 2000

59 Optical detection of the AB effect in a charged particle ~30nm Bayer et al PRL 2003 ~90nm no oscillations in X 0 only diamagnetic shift lithographic ring PL

60 experiments calculations reasonable agreement w/calculations interactions do not change period and only slightly the amplitude

61 Science 2000

62

63 IFUAP BUAP Minicurso en Nanoestructuras Tarea # 2 Efecto Aharonov-Bohm en un anillo conductor. (a) En la figura debajo se muestra la conductancia experimental de un anillo construido en un gas de electrones de dos dimensiones en un semiconductor. Estime de la gráfica el período de éstas oscilaciones de Aharonov-Bohm. El eje horizontal es campo magnético en milésimas de Tesla. Por cierto, porqué se esperaría que la conductancia G fuera simétrica al invertir B, tal y como aparece en la figura? (b) Suponiendo que éstas oscilaciones son producidas por el efecto AB, la conductancia G se puede aproximar por: G G 0 1+ exp(iφ/φ 0 ) 2, en done Φ=BA es el flujo a través del anillo de area A, y Φ 0 =h/e es el cuanto de flujo magnético. Deduzca entonces el diámetro del anillo. (c) Suponga que el anillo fuera ancho y que entonces tuviera mas de un canal transversal. Si el anillo es de 1 micra de radio interno y 2 micras de radio externo, estime el numero de canales permitidos para una longitud de Fermi de 50nm. De este número, estime que rango de períodos de oscilaciones AB se podrían ver en el experimento. Se esperaría que las oscilaciones sobrevivieran? Explique brevemente su respuesta.

64 IFUAP-BUAP Mini-curso en Nanoestructuras Parte II. Toma 3 Sergio E. Ulloa Ohio University Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University, Athens, OH Supported by US DOE & NSF NIRT

65 Photons, excitons, spins, energy transfer & entaglement all in QDs Gammon/Steel optical control of quantum dot state Imamoglou single photon source from quantum dots Klimov Förster coupling between quantum dots Zrenner coherent control of quantum dot photodiode

66 Gammon/Steel optical control of quantum dot state

67 Gammon/Steel optical control of quantum dot state Bonadeo et al PRL 1998 Naturally Formed GaAs QDs Al mask with apertures 500 Å GaAs cap layer 500 Å Ga 0.3 Al 0.7 As 42 Å GaAs layer 250 Å Ga 0.3 Al 0.7 As 42 Å 40nm STM image showing the island formation and elongation. Gammon et al., Phys. Rev. Lett.76, 3005 (1996) Samples are provided by D.S. Katzer, D. Park, and E. S. Snow, NRL

68 B QD Magneto-excitons * - g factor Photoluminescence of a Single Exciton splitting shift T T T Magnetic Field (Tesla) Weak field limit: H int = g * exµ B B 0 S z + αb 2 0 g * ex = g * e + g * hh g * hh = 6κ + 27q/2 Zeeman splitting T T T T T * First reported by S. W. Brown et al., Phys. Rev. B 54, R (1996) Energy (mev)

69 Photoluminescence in SINGLE QD Excitons Excited excitons (s- and p-shell) Biexcitons, X -, X --, etc. laser power Findeis et al, Sol. State Comm, 2000

70 Experimental Techniques Linear Spectroscopy: Photoluminescence Indirect probe of exciton resonances Requires spectral diffusion of excited carriers CW Frequency Stabilized Dye Lasers Coherent Nonlinear Spectroscopy: CW differential transmission Resonant excitation Probe coherent interaction in the system E NL (ε) ~ χ (3) (ε) E pump E* pump E probe I signal = Re ( E NL E* probe ) D Steel et al U Michigan RF Electronics Reference Lock-in Amplifier E pump E NL Detector E probe AOM ƒ~100 MHz E probe 5 K Imaging

71 Non-degenerate Nonlinear Spectroscopy: Advantages Probe single excitonic state decay dynamics Measure both T 1 and T 2 * Probe coupling between different excitonic states Probe inter-dot energy transfer and dot-dot coupling Study excited states of excitons Probe multi-exciton correlation effects ; Study the coherent interaction between exciton doublet. * Nicolas H. Bonadeo et al., PRL, 81, 2759 (1998)

72 hh Excitonic Level Diagram c v B 0 = 0 B 0 0 σ σ σ- state Scattering states Two-exciton state E Bound state of multi-excitons σ+ state Ground state: 0-exciton state Non-degenerate experiments can excite both σ+ and σ- excitons by varying the frequency and the polarization of the excitation beams (pump and probe beam).

73 Exciting Two Electrons 3 2 c v σ- state Pump σ σ σ+ state σ level diagram in 2-electron basis + Probe σ+ 3 2 Ground state Resonant and coherent excitation of two electrons Two contributions: 1. Incoherent: Ground state depletion 2. Coherent: Zeeman coherence between σ- and σ+ state

74 Optically Entangling Two Systems: the Importance of Coupling coupling H total = H 0 + H H 0 + H Without coupling Product state of the two subsystems. A strong coupling allows one system to see the excitation of the other. Coulomb interaction between charged particles: trapped ions Magnetic dipole interaction: NMR systems Exciton-exciton Coulomb coupling: excitons Mutual coherence between E and E is essential.

75 Coulomb Correlation*: Coulomb interaction between electron-hole pairs within single QD 1 2 σ- state Two-exciton state 2 E Bound state of multi-excitons Pump σ Probe σ+ 3 2 Scattering states σ+ state Ground state: 0-exciton state Two-exciton state cancels the signal due to the symmetry in the level diagram. σ- σ But Two electrons are involved within a single QD. Coulomb interaction between the two excitons is important * Kner et al Phys. Rev. Lett. 78, 1319 (1997) Ostreich et al Phys. Rev. Lett. 74, 4698 (1995)

76 Turn on the Coulomb Correlation - Pump σ g σ σ+ + Probe σ+ Turn off the Coulomb Correlation - + Pump σ g Probe σ+ Pump: σ Groundstate Depletion Zeeman Coherence γ + = + γ γ = γ = =1 No Signal!! Total Signal Probe ( γ ) Probe ( γ )

77 Experiment : Coulomb Correlation and Zeeman Coherence σ+ σ Pump: σ + γ = γ = + γ = γ=1 Ground state depletion Zeeman Coherence Total Signal Degenerate and Non-degenerate Coherent Nonliear Response Evidence for Zeeman Coherence in Single QDs Degenerate Non-degenerate pump σ σ σ+ 1.3 Tesla 5K probe σ Probe ( γ ) Creation of two-electron entanglement Energy (mev)

78 Ultimate Goal Combine: Optical control of individual QDs Long spin lifetimes QD nanostructure engineering To produce: Qubit register of QD spins Coherence of a single QD can be controlled Gammon et al have demonstrated this for excitons [Stievator et al., PRL (2001)] Next: QNOT and other quantum gates Spins have long coherence times: dephasing times T2* = 5ns-300ns [Dzhioev et al., PRL (2002)] Next: explore in single QDs; optical read-out and initialization schemes

79 Science 2001

80 Imamoglou single photon source from QDs

81 Imamoglou single photon source from QDs Michler et al., Science 290, 2282 (2000) It is difficult to isolate a single photon, or fix the number of photons in a pulse Fluctuations in photon number mask the quantum features of light A stable train of laser pulses have Poissonian (photon number) statistics It is desirable to have single photon sources: single photon turnstile Complete regulation of photon generation

82 Single Photon Sources Quantum Cryptography: Quantum Computation: Available sources: Highly attenuated laser pulse Parametric down conversion secure key distribution by single photon pulses single photons + linear optical elements E. Knill, R. Laflamme, and G.J. Milburn, Nature 409, 46 (2001) Poisson fluctuations Random generation of single photons Possible solution: Deterministic (triggered) single photon emission: Single Photon Turnstile Device A. Imamoglu, Y. Yamamoto, Phys. Rev. Lett. 72, 210 (1994) Experiments: Coulomb blockade of electron/hole tunneling in a mesoscopic pn-junction: J. Kim et al. Nature 397, 500 (1999) Single Molecule at room temperature: B. Lounis and W.E. Moerner, Nature 407, 491 (2000) Single InAs Quantum Dot in a microcavity: P. Michler et al., Science 290, 2282 (2000)

83 Signature of a triggered single-photon source Intensity (photon) correlation function: g (2) ( τ ) = : I ( t) I ( t + τ ) : I ( t) 2 Single quantum emitter (I.e. an atom) driven by a cw laser field exhibits photon antibunching. g (2) (τ) 1 0 τ Triggered single photon source: absence of a peak at τ=0 indicates that none of the pulses contain more than 1 photon. g (2) (τ) 0 τ

84 Photon antibunching Intensity correlation (g (2) (τ)) of light generated by a single two-level (anharmonic) emitter. Assume that at τ=0 a photon is detected: - We know that the system is necessarily in the ground state g> - Emission of another photon at τ=0+ε is impossible. Photon antibunching: g (2) (0) = 0. pump (nonclassical light) photon at ω p g (2) (τ) recovers its steady-state value in a timescale given by the spontaneous emission time. If three are two or more 2-level emitters, detection of a photon at τ=0 can not ensure that the system is in the ground state (g (2) (0) >0.5).

85 Single InAs Quantum Dots InAs/GaAs Single QD P (W/cm 2 ) s-shell 650 p-shell T=4K Intensity (a.u.) X 1X 17 x5 in intensity Energy (ev) x2 in intensity Two main wavelengths emitted from each shell (For s-shell) 2X recombination while there is already an e-h pair in the s-shell (biexciton) 1X recombination while there is no other e-h pair in the s-shell (exciton) Due to carrier-carrier interaction Typically hν 1X = hν 2X + 2-3meV Unique wavelengths for 1X and 2X transitions

86 Exciton linewidth measured by a scanning Fabry-Perot Under non-resonant pulsed excitation Free Spectral Range: 62 µev 250 Intensity (a.u.) X2 X1 Intensity (a.u.) Energy (ev) Bins linewidth: 5.6 µev

87 Photon antibunching from a Single Quantum Dot (c) W/cm 2 g 2 (0)=0.1 τ = 750 ps PL spectrum Correlation Function g (2) (τ) (b) Coincidence Counts n(τ) 55 W/cm 2 g 2 (0)=0.0 τ = 1.4 ns Intensity (a.u.) P=55W/cm 2 T=4K 2X 1X (a) W/cm 2 g 2 (0)=0.0 τ = 3.6 ns Energy (ev) Delay Time τ (ns) proof of atom-like behavior

88 A single quantum dot excited with a short-pulse laser can provide single-photon pulses on demand BUT How about embedding quantum dots in a microcavity to increase collection efficiency and fast emission?

89 Q=13500 Q>17000 Microdisk Cavities No roughness on the sidewall up to 1nm! Q>18000 for 4.5µm diameter microdisk Q=9000 for 2µm diameter microdisk Michler et al., Appl. Phys. Lett. 77, 184 (2000) Fundamental whispering gallery modes cover a ring with width ~ λ/2n on the microdisk

90 A single quantum dot in a microdisk Larger width of the peaks due to larger lifetime of the quantum dot Intensity (a.u.) P=20W/cm 2 T=4K 2X WGM 1X Q = 6500 Pump power well above saturation level Energy (ev)

91 Tuning the quantum dot into resonance with a Cavity Mode Energy (mev) 1323 WGM 1X 1322 Cavity coupling can provide better collection T=44K WGM Intensity (a.u.) Temperature (K) WGM E 0.0 1X -E 0.5 (mev) 1.0 Small peak appears at τ=0: Purcell effect: reduction of emission time

92 Klimov Förster coupling between QDs

93 Klimov Förster coupling between QDs Crooker et al PRL 2002 Non-Radiative Energy Transfer Mechanism D * + A D + A * Coulomb-driven interaction Dipole-dipole interaction (Förster 1946) Higher multipoles interaction (Förster Dexter) Exchange-driven interaction (Dexter)

94 trioctylphosphine oxide (TOPO) ~11A A acceptor: larger dot D donor: smaller dot NQDs have better characteristics than biological light harvesting compounds, eg LH2

95 (a) PL decays from a dense film of monodisperse R=12.4A/9A CdSe/ZnS NQDs at the energies specified in the inset. Inset: cw PL spectra from film (solid) and original solution (dashed). (b) Dynamic redshift of the peak emission. Inset: PL spectra at the specified times. Crooker et al PRL 2002

96 (a) Schematic of NQD energy-gradient bilayer for light harvesting 13 A dots on 20.5 A dots. (b) Instantaneous PL spectra at 500 ps intervals (from 0 to 5 ns), showing rapid collapse of emission from 13 A dots.

97

98 Our Goal Study the excitation energy transfer in quantum-dot arrays using an appropriate model Hamiltonian N N ( ) N N H = T c c T d d Uc c d d U c c d d e i j + i j + h i i i i + NN i i j j + Vc s i d i djcj ij, i ij, = NN i j

99 Probability of each basis state as a function of time Period of small oscillation ~ 1.3 ~ 1 2T V e c Period of large oscillation ~ 15 ~ 1 2V f V c > 1001> 0110> 0011> total probability of exciton state Calculations V c for two t/(2π) V c dots t/(2π ) Probability of each basis as a function Probability of each basis as a function of time without Förster Probability of each basis as a function of time T e /V c =-0.8 V f =0 V cnn /V c = > 1001> 0110> 0011> of time without tunneling T e /V c =0 V f /V c =-0.04 V cnn /V c = > 1001> 0110> 0011> V c /(2π) V t/(2π)

100 3.0 V c =10 mev 1 Psec V c =100 mev Oscillator strength T e /V c = V c,nn /V c =0.1 V f /V c =0.04 T h = V c t/2π Time evolution of the oscillator strength of an exciton initially localized at dot 12 in a 24 dot chain G. W. Bryant, Physica B 314, 15 (2002).

101 The movie of the 24 dots exciton probability at each dot (12) (11) (14) (10) (15) (9) (16) (8) (17) (7) (18) (6) (19) (5) (20) (4) (21) (3) (22) (2) (23) (1) (24) V c t/2π

102 1.0 probability of exciton state in each dot exciton probability at each dot From graph/calculation Förster rate for polymer h 2π V c 2π t = = 3.1 n n + 1 8U 8U V c V c c /(2π) V c t/2π 23 2π t 2.2 V c efficient interdot transfer rate 24

103 Zrenner coherent control of quantum dot photodiodes

104 Zrenner coherent control of quantum dot photodiodes Zrenner et al Nature 2002 Laser focus Shadow mask Top contact: 5nm Ti (semitransparent) QDs InGaAs Back contact Possibles measurements Photolumenescence (PL) spectrum (for τ rad < τ tunnel ) Photocurrent (PC) spectrum (for τ rad > τ tunnel )

105 Rabi Oscillation in a two level system ω 0 For ω = ω 0 and using RWA H ω0 Ω() t = σ z + cos( ω t ) σ x 2 2 Ω () t = µ ε () t P 2 = 0 X sin Θ Exciton Population τ Θ= Ω() tdt π 2π Pulsed Area (Θ) 3π 4π

106 rad Time scales for the device τ 1 ns τ tunnel 3 ps Tuned by Vb Photoluminescence τ rad < τ tunnel τ rad < τ tunnel τ rad > τ tunnel NeHe laser Photocurrent τ rad > τ tunnel Ti:sapphire laser τ pulse 1 ps f pulse 82 MHz F. Findeis et al. Appl. Phys. Lett. 78, 2958 (2001)

107 Artificial ion (charged exciton) τ rad < τ tunnel F. Findeis et al. Phys. Rev. B 63, (2001)

108 How does the Zrenner device work? τ rad > τ tunnel A. Zrenner et al. Nature 418, 612 (2002)

109 How does the Zrenner device work? τ pulse 1 ps f pulse 82 MHz I = eρ f XX pulse ρ XX Θ 2 2 = sin

110 Mesoscopic optical spectrum analyser QCSE

111 Rabi Oscillation in the photocurrent I = eρ f XX pulse

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada Parte I Sergio E. Ulloa Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University, Athens,

More information

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada Parte III Sergio E. Ulloa Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University,

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Quantum Dot Lasers Using High-Q Microdisk Cavities

Quantum Dot Lasers Using High-Q Microdisk Cavities phys. stat. sol. (b) 224, No. 3, 797 801 (2001) Quantum Dot Lasers Using High-Q Microdisk Cavities P. Michler 1; *Þ (a), A. Kiraz (a), C. Becher (a), Lidong Zhang (a), E. Hu (a), A. Imamoglu (a), W. V.

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supporting online material SUPPLEMENTARY INFORMATION doi: 0.038/nPHYS8 A: Derivation of the measured initial degree of circular polarization. Under steady state conditions, prior to the emission of the

More information

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm.

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Charging steps are labeled by the vertical dashed lines. Intensity

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Single Photon Generation & Application in Quantum Cryptography

Single Photon Generation & Application in Quantum Cryptography Single Photon Generation & Application in Quantum Cryptography Single Photon Sources Photon Cascades Quantum Cryptography Single Photon Sources Methods to Generate Single Photons on Demand Spontaneous

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

Coherence of an Entangled Exciton-Photon State

Coherence of an Entangled Exciton-Photon State Coherence of an Entangled Exciton-Photon State A. J. Hudson,2, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll 2, P. Atkinson 2, K. Cooper 2, D. A. Ritchie 2 and A. J. Shields. Toshiba Research

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Journal of the Korean Physical Society, Vol. 42, No., February 2003, pp. 768 773 Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Axel Scherer, T. Yoshie, M. Lončar, J. Vučković

More information

Entangled Photon Generation via Biexciton in a Thin Film

Entangled Photon Generation via Biexciton in a Thin Film Entangled Photon Generation via Biexciton in a Thin Film Hiroshi Ajiki Tokyo Denki University 24,Apr. 2017 Emerging Topics in Optics (IMA, Univ. Minnesota) Entangled Photon Generation Two-photon cascade

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor p-n junction diodes. Reading: Kasap ,

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor p-n junction diodes. Reading: Kasap , MTLE-6120: Advanced Electronic Properties of Materials 1 Semiconductor p-n junction diodes Reading: Kasap 6.1-6.5, 6.9-6.12 Metal-semiconductor contact potential 2 p-type n-type p-type n-type Same semiconductor

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

InAs Quantum Dots for Quantum Information Processing

InAs Quantum Dots for Quantum Information Processing InAs Quantum Dots for Quantum Information Processing Xiulai Xu 1, D. A. Williams 2, J. R. A. Cleaver 1, Debao Zhou 3, and Colin Stanley 3 1 Microelectronics Research Centre, Cavendish Laboratory, University

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems

Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems Superlattices and Microstructures www.elsevier.com/locate/jnlabr/yspmi Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems S. Katsumoto, K. Kobayashi, H. Aikawa, A. Sano, Y. Iye Institute

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Semiconductor Quantum Dots

Semiconductor Quantum Dots Semiconductor Quantum Dots M. Hallermann Semiconductor Physics and Nanoscience St. Petersburg JASS 2005 Outline Introduction Fabrication Experiments Applications Porous Silicon II-VI Quantum Dots III-V

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Entangled photon pairs from radiative cascades in semiconductor quantum dots

Entangled photon pairs from radiative cascades in semiconductor quantum dots Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI Original phys. stat. sol. (b, 1 5 (26 / DOI 1.12/pssb.267152 Entangled

More information

Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot

Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, D. D. Awschalom* Center for Spintronics and Quantum

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Spectroscopy of self-assembled quantum rings

Spectroscopy of self-assembled quantum rings Spectroscopy of self-assembled quantum rings RJWarburton 1, B Urbaszek 1,EJMcGhee 1,CSchulhauser 2, A Högele 2, K Karrai 2, A O Govorov 3,JABarker 4, B D Gerardot 5,PMPetroff 5,and JMGarcia 6 1 Department

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Table of List of contributors Preface page xi xv Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 1 Growth of III V semiconductor quantum dots C.

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

what happens if we make materials smaller?

what happens if we make materials smaller? what happens if we make materials smaller? IAP VI/10 ummer chool 2007 Couvin Prof. ns outline Introduction making materials smaller? ynthesis how do you make nanomaterials? Properties why would you make

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi- Supporting Information Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi- Two-Dimensional Core/Shell Nanoplatelets Xuedan Ma, Benjamin T. Diroll, Wooje Cho, Igor Fedin, Richard D. Schaller,

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes Authors: Nathaniel. M. Gabor 1,*, Zhaohui Zhong 2, Ken Bosnick 3, Paul L.

More information

Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires

Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires Superlattices and Microstructures, Vol. 23, No. 6, 998 Article No. sm96258 Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires A. BALANDIN, S.BANDYOPADHYAY Department

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Introduction to Optoelectronic Device Simulation by Joachim Piprek

Introduction to Optoelectronic Device Simulation by Joachim Piprek NUSOD 5 Tutorial MA Introduction to Optoelectronic Device Simulation by Joachim Piprek Outline:. Introduction: VCSEL Example. Electron Energy Bands 3. Drift-Diffusion Model 4. Thermal Model 5. Gain/Absorption

More information

Solar Cell Materials and Device Characterization

Solar Cell Materials and Device Characterization Solar Cell Materials and Device Characterization April 3, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Tolk Department of Physics and Astronomy Vanderbilt University,

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

Generation of single photons and correlated photon pairs using InAs quantum dots

Generation of single photons and correlated photon pairs using InAs quantum dots Fortschr. Phys. 52, No. 2, 8 88 (24) / DOI.2/prop.2488 Generation of single photons and correlated photon pairs using InAs quantum dots C. Santori,2, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto,3,

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

PART 2 : BALANCED HOMODYNE DETECTION

PART 2 : BALANCED HOMODYNE DETECTION PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu 1 of 31 OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41 Supplementary Figure γ 4 Δ+δe Γ34 Γ43 γ 3 Δ Ω3,4 Pump Ω3,4, Ω3 Γ3 Γ3 Γ4 Γ4 Γ Γ Supplementary Figure Schematic picture of theoretical model: The picture shows a schematic representation of the theoretical

More information

Bright and dark exciton transfer in quantum dot arrays Anna Rodina

Bright and dark exciton transfer in quantum dot arrays Anna Rodina Bright and dark exciton transfer in quantum dot arrays Anna Rodina Ioffe Institute, St. Petersburg, Russia Collaboration and publications: [1] A. N. Poddubny, A. V. Rodina, Nonradiative and radiative Förster

More information

Semiconductor Nanostructures. Gerhard Abstreiter

Semiconductor Nanostructures. Gerhard Abstreiter Semiconductor Nanostructures Fabrication and Properties of Self-Assembled Quantum Dots Gerhard Abstreiter Walter Schottky Institute, TUM, Garching Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff

More information

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for six WSe 2 -MoSe 2 heterostructures under cw laser excitation

More information

No reason one cannot have double-well structures: With MBE growth, can control well thicknesses and spacings at atomic scale.

No reason one cannot have double-well structures: With MBE growth, can control well thicknesses and spacings at atomic scale. The story so far: Can use semiconductor structures to confine free carriers electrons and holes. Can get away with writing Schroedinger-like equation for Bloch envelope function to understand, e.g., -confinement

More information

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample.

Luminescence. Photoluminescence (PL) is luminescence that results from optically exciting a sample. Luminescence Topics Radiative transitions between electronic states Absorption and Light emission (spontaneous, stimulated) Excitons (singlets and triplets) Franck-Condon shift(stokes shift) and vibrational

More information

A Tunable Fano System Realized in a Quantum Dot in an Aharonov-Bohm Ring

A Tunable Fano System Realized in a Quantum Dot in an Aharonov-Bohm Ring A Tunable Fano System Realized in a Quantum Dot in an Aharonov-Bohm Ring K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye Institute for Solid State Physics, University of Tokyo, Kashiwanoha, Chiba 277-8581,

More information

Quantum optics with multi-level transitions in semiconductor quantum dots

Quantum optics with multi-level transitions in semiconductor quantum dots Quantum optics with multi-level transitions in semiconductor quantum dots Brian Gerardot Institute of Photonics and Quantum Sciences, SUPA Heriot-Watt University, Edinburgh, UK Confocal Quantum Coherent

More information

Electrical control of superposed quantum states evolution in quantum dot molecule by pulsed field

Electrical control of superposed quantum states evolution in quantum dot molecule by pulsed field 1 Electrical control of superposed quantum states evolution in quantum dot molecule by pulsed field S. W. Hwang*, D. Y. Jeong*, M. S. Jun*, M. H. Son*, L. W. Engel, J. E. Oh, & D. Ahn* *Institute of Quantum

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators Chapter 6 Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators 6.1 Introduction Researchers have devoted considerable effort to enhancing light emission from semiconductors

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Excitonic luminescence upconversion in a two-dimensional semiconductor

Excitonic luminescence upconversion in a two-dimensional semiconductor Excitonic luminescence upconversion in a two-dimensional semiconductor Authors: Aaron M. Jones 1, Hongyi Yu 2, John R. Schaibley 1, Jiaqiang Yan 3,4, David G. Mandrus 3-5, Takashi Taniguchi 6, Kenji Watanabe

More information

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots S. Spatzek, 1 A. Greilich, 1, * Sophia E. Economou, 2 S. Varwig, 1 A. Schwan, 1 D. R. Yakovlev, 1,3 D. Reuter, 4 A.

More information

Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot

Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot Physics Physics Research Publications Purdue University Year 2005 Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot M. E. Ware, E. A. Stinaff, D.

More information

The Role of Spin in Ballistic-Mesoscopic Transport

The Role of Spin in Ballistic-Mesoscopic Transport The Role of Spin in Ballistic-Mesoscopic Transport INT Program Chaos and Interactions: From Nuclei to Quantum Dots Seattle, WA 8/12/2 CM Marcus, Harvard University Supported by ARO-MURI, DARPA, NSF Spin-Orbit

More information

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots R. Heitz et al.: PL Study of Self-Organized InGaAs/GaAs Quantum Dots 65 phys. stat. sol. b) 221, 65 2000) Subject classification: 73.61.Ey; 78.47.+p; 78.55.Cr; 78.66.Fd; S7.12 Resonantly Excited Time-Resolved

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Correlation spectroscopy

Correlation spectroscopy 1 TWO-DIMENSIONAL SPECTROSCOPY Correlation spectroscopy What is two-dimensional spectroscopy? This is a method that will describe the underlying correlations between two spectral features. Our examination

More information

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Optics and Quantum Optics with Semiconductor Nanostructures. Overview Optics and Quantum Optics with Semiconductor Nanostructures Stephan W. Koch Department of Physics, Philipps University, Marburg/Germany and Optical Sciences Center, University of Arizona, Tucson/AZ Overview

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures Intensity / a.u. Supplementary figures 110 MAPbI 3 1:1 MaPbI 3-x Cl x 3:1 220 330 0 10 15 20 25 30 35 40 45 2 theta / deg Supplementary Fig. 1 X-ray Diffraction (XRD) patterns of MAPbI3 and MAPbI 3-x Cl

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature13734 1. Gate dependence of the negatively charged trion in WS 2 monolayer. We test the trion with both transport and optical measurements. The trion in our system is negatively charged,

More information