Quantum optics with multi-level transitions in semiconductor quantum dots

Size: px
Start display at page:

Download "Quantum optics with multi-level transitions in semiconductor quantum dots"

Transcription

1 Quantum optics with multi-level transitions in semiconductor quantum dots Brian Gerardot Institute of Photonics and Quantum Sciences, SUPA Heriot-Watt University, Edinburgh, UK

2 Confocal Quantum Coherent Single Zero-dimensional dot microscope information spin- photonics transmission system: emitters at technologies experiment Heriot-Watt University Two open academic positions! (assistant to full professors)

3 Confocal Outline: Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission system: emitters technologies experiment 1. Introduction to quantum dots 2. Coherent spectroscopy of QDs 3. Multi-level systems in QDs 4. Hole-spin- system 5. Electro-elastic manipulation of quantum states 6. Outlook: broadband optical antennas

4 Confocal Introduction: Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission self-assembled system: emitters technologies experiment quantum dots InAs quantum dot InAs wetting layer InAs island t < 1.5 ML InAs t > 1.5 ML InAs Covered QD 60 nm x 16 nm X-STM 50 nm x 13 nm X-STM 1 µm x 1 µm AFM X-STM by P. M. Koenraad group

5 Confocal Energy Optical Self-assembled Single Zero-dimensional Quantum dot transition scales microscope information transmission quantum emitters technologies experiment dots Quantum dot: discrete energy levels in a solid-state matrix conduction band conduction levels valence levels p s s p ~50 mev ~1 ev ~1.4 ev valence band

6 Confocal Optical Self-assembled Single Zero-dimensional Quantum dot transitions microscope information transmission quantum emitters technologies experiment dots Selection rules for transitions across energy gap conduction band conduction levels valence levels p s s p unoccupied states, atomic s character, S=1/2 dipole transitions occupied states, atomic p character, J=3/2 valence band

7 Confocal Outline: Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission system: emitters technologies experiment 1. Introduction to quantum dots 2. Coherent spectroscopy of QDs 3. Multi-level systems in QDs 4. Hole-spin- system 5. Electro-elastic manipulation of quantum states 6. Outlook: broadband optical antennas

8 Confocal Experimental Single Zero-dimensional Quantum dot microscope information transmission setup emitters technologies experiment fiber beam splitter photo-luminescence or resonant flouresence XYZpositioners objective (NA=0.68) solid immersion lens sample V g non- resonant excitation or resonant excitation cryostat, 4.2 K FWHM 0.35 µm Si pin photodiode

9 g 2 ( ) Confocal 2-level Single Zero-dimensional Quantum dot quantum microscope information transmission system emitters technologies experiment exciton X laser field spontaneous recombination, ~1 ns Flouresence (Hz) 2000 FWHM 2.1 ev 510 MHz Detuning (V) Delay (ns)

10 Confocal Outline: Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission system: emitters technologies experiment 1. Introduction to quantum dots 2. Coherent spectroscopy of QDs 3. Multi-level systems in QDs 4. Hole-spin- system 5. Electro-elastic manipulation of quantum states 6. Outlook: broadband optical antennas

11 Confocal 3-level Single Zero-dimensional Quantum dot quantum microscope information transmission systems emitters technologies experiment Ladder System V System System Requirements: 1> - 2> & 2> - 3> : dipole coupled 1> - 3> : dipole forbidden (metastable) M. Fleischauer, A. Imamoğlu, and J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005).

12 Confocal Spin- Coherent Single Zero-dimensional Quantum dot systems microscope information spin- transmission system: emitters technologies experiment Photon = flying quantum bit + Atom = stationary qubit 3 dipole 1 1 dipole 2 2 Applications: Spinphoton entanglement Coherent population trapping Quantum networking / repeaters Remote matter entanglement

13 Confocal Quantum Single Zero-dimensional dot microscope information dot transmission level emitters schemes technologies experiment Rotational symmetry Real quantum dot XX J=0 J=0 X J=-1 J=+1 E 0 Entangled photon generation: N. Akopian et al, Phys. Rev. Lett. 96, (2006). R. M. Stevenson et al, Nature 439, 179 (2006). R. Hafenbrak et al, N. Journal Physics 8, 29 (2007).

14 Three-level Confocal Quantum Single Zero-dimensional dot microscope information dot transmission atomic level emitters cascade schemes technologies experiment Neutral quantum dot V System 1 x y E 1 3 Ladder System x y X. Xu et al., Science 317, 929 (2007) 2 B. D. Gerardot et al., New Journal of Physics 11, (2009). Charged quantum dot (B>0) Faraday: Voigt: System E + - x y x E y

15 PL Energy (ev) Confocal Deterministic Controlled Exciton Increasing Two-level Zero-dimensional Quantum search coherence microscope of information behaviour: electron the coherence electron contrast emitters charging power technologies charging dependence back contact QD gate E C E F V X 0 GaAs n-doped E V X 1- V 1 > V Applied Bias (V) R. J. Warburton et al., Nature 405, 926 (2000)

16 Confocal Coulomb Controlled Exciton Increasing Two-level Zero-dimensional Quantum search coherence microscope of information blockade behaviour: electron the coherence contrast emitters charging at power technologies telecom dependence wavelengths Wavelength (nm) back contact QD gate 1286 E C E F V GaAs n-doped E V 1294 V 1 > V Voltage (V)

17 Confocal Deterministic Hole Controlled Electron Exciton Increasing Two-level Zero-dimensional Quantum search spin coherence spin and microscope hyperfine of information behaviour: hole the coherence nuclear resonance hole contrast charging emitters charging interaction power spins technologies dependence Wavelength (nm) E C E V GaAs p-doped back contact QD E F gate V X 0 X1+ X0 GaAs p-doped E F V 1 < V p-doped back gate X3- X2- X 1- X Applied Bias (V) B. D. Gerardot et al., Nature 451, 441 (2008)

18 Confocal Outline: Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission system: emitters technologies experiment 1. Introduction to quantum dots 2. Coherent spectroscopy of QDs 3. Multi-level systems in QDs 4. Hole-spin- system 5. Electro-elastic manipulation of quantum states 6. Outlook: broadband optical antennas

19 4 Confocal Hole Fano Non-linear Laser Electron Exciton Increasing Two-level Zero-dimensional Quantum Coherent search spin- spin: effect spectroscopy coherence model and microscope hyperfine of information population behaviour: Voigt the Fano system coherence nuclear resonance contrast geometry effect emitters interaction trapping power spins technologies single dependence (CPT) hole B, x y y x,,, X. Xu et al., Phys. Rev. Lett. 99, (2007); Nature Physics 4, 692 (2008)

20 Confocal Hole Electron Exciton Increasing Two-level Zero-dimensional Quantum search spin: coherence spin and microscope of information behaviour: Motivation the motivation coherence nuclear resonance contrast emitters power spins technologies dependence hole spin Ĥ phonons contact hyperfine Phonons: suppressed via large heavy hole light hole splitting 1 Contact hyperfine: reduced owing to p like atomic state 2 R 2 ˆ HH nuclei contact Ai i i H I S and benign for ideal heavy-hole with an in-plane B 3 i 1. D. V. Bulaev and D. Loss, Phys. Rev. Lett. 95, (2005); D. Heiss et al., Phys. Rev. B 76, (2007); B. D. Gerardot et al., Nature 451, 441 (2008). 2. P. Fallahi, S. T. Yilmaz, and A. Imamoglu, Phys. Rev. Lett. 105, (2010) E. A. Chekhovich, et al., Phys. Rev. Lett. 106, (2011) 3. J. Fischer et al., Phys. Rev. B 78, (2008)

21 4 Confocal Coherent Hole Fano Non-linear Laser Electron Exciton Increasing Two-level Zero-dimensional Quantum search spin effect spectroscopy coherence model spin and microscope hyperfine of information population behaviour: the Fano coherence nuclear resonance contrast effect emitters interaction power spins technologies trapping single dependence (CPT) hole probe probe pump pump E probe pump ( 31 / probe )Im[ 13 ] Probe detuning ( ev) M. Fleischhauer et al., Rev. Mod. Phys. 77, 633 (2005) 2 pump ~ spon dark state

22 4 Confocal Single Hole Fano Non-linear Laser Electron Exciton Increasing Two-level Zero-dimensional Quantum Coherent search spin: effect spectroscopy dot coherence model spin and microscope hyperfine of information population behaviour: Voigt coherent the Fano coherence nuclear resonance contrast geometry effect emitters interaction trapping population power spins technologies single dependence (CPT) hole trapping Probe absorption D. Brunner et al, Science 325, 70 (2009) Probe laser wavelength (nm)

23 Probe absorption (x10-4 ) 4 Confocal CPT: Hole Fano Non-linear Laser Electron Exciton Increasing Two-level Zero-dimensional Quantum Coherent Two-photon search high spin: effect spectroscopy coherence model spin and microscope hyperfine of information population dephasing behaviour: resolution Voigt the Fano coherence nuclear resonance contrast geometry effect emitters interaction trapping time power spins technologies spectroscopy single dependence (CPT) hole double convolution: 4 ev spectral broadening, 2 MHz mutual laser coherence MHz (54 nev) 0 B=0.5 T pump = -2.5 ev Probe detuning (MHz) Other measurements 1-3 : T * 2 ~ 20 ns. 1. K. De Greve et al., Nature Physics 7, 872 (2011). 2. A. Greilich et al., Nature Photonics 5, 702 (2011). 3. T Godden et al., Phys. Rev. Lett. 108, (2012). pump probe 0.30 ev 0.17 ev

24 Confocal Outline: Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission system: emitters technologies experiment 1. Introduction to quantum dots 2. Coherent spectroscopy of QDs 3. Multi-level systems in QDs 4. Hole-spin- system 5. Electro-elastic manipulation of quantum states 6. Outlook: broadband optical antennas

25 PL Intensity Confocal Uniaxial Coherent Single Zero-dimensional Quantum dot strain microscope information spin- transmission system: emitters technologies experiment to collection optics SIL sample length to focus [110] 300V PZT 200V QD1 QD2 PZT 100V strain gauge 0V -100V -200V -300V QD2 QD Energy (mev) C. E. Kuklewicz et al., Nano Lett. 12, 3761 (2012)

26 Confocal Electro-elastic Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission characterisation system: emitters technologies experiment

27 Confocal Coulomb Coherent Single Zero-dimensional Quantum dot microscope information spin- blockade transmission system: emitters model technologies experiment E F = 0 = b/a e(v g +V 0 )/ n-doped back contact E eh E C E 0 E GaAs e V 0 e V g Gate E V a b R. J. Warburton et al, Phys. Rev. B 58, (1996); P. A. Dalgarno et al., Phys. Rev. B 77, (2008).

28 Confocal Electro-elastic Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission characterisation system: emitters technologies experiment C. E. Kuklewicz et al., Nano Lett. 12, 3761 (2012)

29 Confocal Sample Coherent Single Zero-dimensional Quantum dot comparison microscope information spin- transmission system: emitters technologies experiment Sample A: partially capped island quantum dots Sample B: In-flush quantum dots PCI QDs: J.M. Garcia et al., Appl. Phys. Lett. 71, 2014 (1997). P. Offermans et al., Physica E 32, 41 (2005). In-flush QDs: Z. R. Waselewski et al., J. Cryst. Growth 201/202, 1131 (1999). J. G. Keizer et al., Nanotechnology 21, (2010).

30 Confocal Fine-structure Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission splitting system: emitters technologies experiment at ~ 1300nm Intensity (counts/60s) Fine Structure Splitting ( ev) 1000 FSS = 38 µev 800 fit 2X π + π Wavelength (nm) X 0 π + π - FSS fine structure splitting down to 34 µev Wavelength (nm) FSS smaller than previously reported N.I. Cade et al., Phys. Rev. B 73, (2006) A.I. Tartakovskii et al., Appl. Phys. Lett. 88, (2006) M. B. Ward et al., J. Phys.: Conf. Ser. 210, (2010)

31 Confocal Electro-elastic Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission tuning system: emitters technologies telecom experiment QDs Intensity (counts/90s) Strain tuning of telecom wavelength quantum dots V PZT =-300V V PZT =+300V X X Wavelength (nm) application of external uni-axial strain: tuning of emission wavelength of ~ 1nm S. Seidl et al., Appl. Phys. Lett. 88, (2006) C.E. Kuklewicz, R.N.E. Malein, P.M. Petroff, B.D. Gerardot, Nano Letters 12, 3761 (2012) R. Trotta et al., Phys. Rev. Lett. 109, (2012)

32 Intensity (counts/90s) FSS ( ev) Confocal Fine-structure Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission splitting system: emitters technologies experiment at ~ 1300nm V PZT = -300V V PZT = +300V fit fit 65 QD1, nm QD2, nm Wavelength (nm) manipulation of the FSS of up to ~ 40% V PZT (V) towards a source of polarization-entangled photons at telecom wavelengths A.J. Bennett et al, Nature Physics 6, 947 (2010) R. Trotta et al., Phys. Rev. Lett. 109, (2012)

33 Confocal Outline: Coherent Single Zero-dimensional Quantum dot microscope information spin- transmission system: emitters technologies experiment 1. Introduction to quantum dots 2. Coherent spectroscopy of QDs 3. Multi-level systems in QDs 4. Hole-spin- system 5. Electro-elastic manipulation of quantum states 6. Outlook: broadband optical antennas

34 Confocal Outlook: Self-assembled Single Zero-dimensional Quantum dot microscope Light-matter information transmission Quantum quantum emitters technologies dots: interaction experiment dots state of strategies? the art 1 μm 1 μm 1 μm [1] Q 100,000, υ eff 5 [1] J. P. Reithmaier et al., Nature 432, 197 (2004); [2] P. Michler et al., Science 290, 2282 (2000); [3] GaAs at λ = 1.5 μm, arxiv: v1. [2] Q 30,000, υ eff 6 Q 700,000 [3], υ eff < 1 Observation of cavity QED effects relies on high Q/ V eff spatial-spectral matching between QD and cavity mode

35 Power per solid angle Confocal Light-matter Self-assembled Single Zero-dimensional Quantum dot microscope information transmission Quantum interaction quantum emitters technologies dots: experiment strategies: dots state of the optical art antennas Highly directional emission from a quantum dot in a : broadband planar cavity antenna... ~ 40% d h (a) 2θ NA SIL Dipole GaAs Gold z+ θ φ E total,z+ E (-) E total,z- M 3-4 E (+) Φ 3 M 2-3 Φ 2 M 1-2 (a) (b) θ NA Free space Bulk Bulk + SIL Membrane Membrane + SIL Membrane FDTD vacuum + SIL + FDTD Mirror Model 1 without SIL FDTD Model 1 with SIL FDTD Model 2 without SIL FDTD Model 2 with SIL FDTD Membrane + SIL +Mirror Membrane + SIL + Mirror θ (degree) (b) θ NA

36 Confocal Light-matter Self-assembled Single Zero-dimensional Quantum dot microscope information transmission Quantum interaction quantum emitters technologies dots: experiment strategies: dots state of the optical art antennas Highly directional emission from a quantum dot in a: broadband nanowire antenna... ~ 75% CNRS structure 2 Our structure 1. I. Friedler et al. Opt. Exp. 17, 2095 (2009) 2. J. Cloudon et al., Nature Photonics 4, 174 (2010)

37 Confocal Light-matter Self-assembled Single Zero-dimensional Quantum dot microscope information transmission Quantum interaction quantum emitters technologies dots: experiment strategies: dots state of the optical art antennas Highly directional emission from a quantum dot in a : moderately broadband bullseye antenna... ~ 80% Dr. Kartik Srinivasan M. Davanco et al., Appl. Phys. Lett. 99, (2011)

38 Intensity (counts/90s) Probe absorption (x10-4 ) 4 Confocal Summary Hole Fano Non-linear Laser Electron Exciton Increasing Two-level Zero-dimensional Quantum Coherent Conclusions Two-photon Inhomogeneous search spin: effect spectroscopy coherence model spin and microscope hyperfine of information population dephasing behaviour: Voigt the Fano coherence nuclear resonance contrast geometry effect broadening emitters interaction trapping time power spins technologies single dependence (CPT) hole 1. Coherent spin- system:, 50 nev FWHM: T 2 >> 100 ns Q-factor 10 8! 2. Electro-elastic quantum control on-chip indistinguishable emitters telecom entangled photons (on-demand) Probe detuning (MHz) 3. Broadband optical antennas V PZT =-300V V PZT =+300V X 0 X Wavelength (nm)

39 4 Confocal Co-workers Hole Fano Non-linear Laser Electron Exciton Increasing Two-level Zero-dimensional Quantum Coherent Conclusions Two-photon Inhomogeneous search spin: effect spectroscopy coherence model spin and microscope hyperfine of information population dephasing behaviour: Voigt the Fano coherence nuclear resonance contrast geometry effect broadening emitters interaction trapping time power spins technologies single dependence (CPT) hole Resonant fluorescence Dr. Chris Kuklewicz Mr. Ted Santana Broadband antennas Dr. Yong Ma Mr. Peter Kremer Hole spins (Basel Uni) Prof. Richard Warburton Dr. Julien Houel Strain tuning Dr. Chris Kuklewicz Mr. Ralph Malein Telecom QDs Dr. Luca Sapienza Mr. Ralph Malein Ms. Rima Al-Khuzeyri Samples Prof. Pierre Petroff (UCSB) Dr. Edmund Clarke (Sheffield III-V Facility)

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

arxiv: v1 [cond-mat.mes-hall] 26 Aug 2010

arxiv: v1 [cond-mat.mes-hall] 26 Aug 2010 Direct measurement of the hole-nuclear spin interaction in single quantum dots E. A. Chekhovich 1, A. B. Krysa 2, M. S. Skolnick 1, A. I. Tartakovskii 1 1 Department of Physics and Astronomy, University

More information

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Table of List of contributors Preface page xi xv Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 1 Growth of III V semiconductor quantum dots C.

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Growth of III V semiconductor quantum dots C. Schneider, S. Höfling and A. Forchel 1.1 Introduction

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

Quantum Dot Lasers Using High-Q Microdisk Cavities

Quantum Dot Lasers Using High-Q Microdisk Cavities phys. stat. sol. (b) 224, No. 3, 797 801 (2001) Quantum Dot Lasers Using High-Q Microdisk Cavities P. Michler 1; *Þ (a), A. Kiraz (a), C. Becher (a), Lidong Zhang (a), E. Hu (a), A. Imamoglu (a), W. V.

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

Entangled photon pairs from radiative cascades in semiconductor quantum dots

Entangled photon pairs from radiative cascades in semiconductor quantum dots Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI Original phys. stat. sol. (b, 1 5 (26 / DOI 1.12/pssb.267152 Entangled

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Journal of the Korean Physical Society, Vol. 42, No., February 2003, pp. 768 773 Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Axel Scherer, T. Yoshie, M. Lončar, J. Vučković

More information

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics

More information

Single Photon Generation & Application in Quantum Cryptography

Single Photon Generation & Application in Quantum Cryptography Single Photon Generation & Application in Quantum Cryptography Single Photon Sources Photon Cascades Quantum Cryptography Single Photon Sources Methods to Generate Single Photons on Demand Spontaneous

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Charge noise and spin noise in a semiconductor quantum device

Charge noise and spin noise in a semiconductor quantum device Charge noise and spin noise in a semiconductor quantum device Andreas V. Kuhlmann, 1 Julien Houel, 1 Arne Ludwig, 1, 2 Lukas Greuter, 1 Dirk Reuter, 2, 3 Andreas D. Wieck, 2 Martino Poggio, 1 and Richard

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Image courtesy of Keith Schwab http://www.lbl.gov/science-articles/archive/afrd Articles/Archive/AFRD-quantum-logic.html http://www.wmi.badw.de/sfb631/tps/dqd2.gif http://qist.lanl.gov/qcomp_map.shtml

More information

The Solid-State Quantum Network (SSQN)

The Solid-State Quantum Network (SSQN) The Solid-State Quantum Network (SSQN) An ERC CHIST-ERA grant Imperial College London (theory) Bristol That s us! (spin-photon interface) University of Würzburg (fabrication of micropillar samples) CNRS/LPN

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS

A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS Romanian Reports in Physics, Vol. 63, No. 4, P. 1061 1069, 011 A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS H. ARABSHAHI Payame Nour University of Fariman, Department

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

InAs Quantum Dots for Quantum Information Processing

InAs Quantum Dots for Quantum Information Processing InAs Quantum Dots for Quantum Information Processing Xiulai Xu 1, D. A. Williams 2, J. R. A. Cleaver 1, Debao Zhou 3, and Colin Stanley 3 1 Microelectronics Research Centre, Cavendish Laboratory, University

More information

Coherence of an Entangled Exciton-Photon State

Coherence of an Entangled Exciton-Photon State Coherence of an Entangled Exciton-Photon State A. J. Hudson,2, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll 2, P. Atkinson 2, K. Cooper 2, D. A. Ritchie 2 and A. J. Shields. Toshiba Research

More information

Ultrafast solid-state quantum optics

Ultrafast solid-state quantum optics Ultrafast solid-state quantum optics Department of Physics and Center for Applied Photonics (CAP) Rudolf Bratschitsch University of Konstanz, Germany Outline Solid-state systems for quantum optics Semiconductor

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston Understanding Nanoplasmonics Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm 1ns 100ps 10ps Photonics 1ps 100fs 10fs 1fs Time Surface Plasmons Surface

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures Optical Characterization of Self-Assembled Si/SiGe Nano-Structures T. Fromherz, W. Mac, G. Bauer Institut für Festkörper- u. Halbleiterphysik, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-

More information

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots

Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots Optical Control of Coherent Interactions between Electron Spins in InGaAs Quantum Dots S. Spatzek, 1 A. Greilich, 1, * Sophia E. Economou, 2 S. Varwig, 1 A. Schwan, 1 D. R. Yakovlev, 1,3 D. Reuter, 4 A.

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field

Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field Received 5 Jul 211 Accepted 21 Dec 211 Published 7 Feb 212 DOI: 1.138/ncomms1657 Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field Mohsen Ghali

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

Heriot-Watt University

Heriot-Watt University Heriot-Watt University Heriot-Watt University Research Gateway Highly directional emission from a quantum emitter embedded in a hemispherical cavity Ma, Y.; Ballesteros-Garcia, Guillem; Zajac, J. M.; Sun,

More information

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada Parte III Sergio E. Ulloa Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature13734 1. Gate dependence of the negatively charged trion in WS 2 monolayer. We test the trion with both transport and optical measurements. The trion in our system is negatively charged,

More information

doi: /PhysRevLett

doi: /PhysRevLett doi: 10.1103/PhysRevLett.77.494 Luminescence Hole Burning and Quantum Size Effect of Charged Excitons in CuCl Quantum Dots Tadashi Kawazoe and Yasuaki Masumoto Institute of Physics and Center for TARA

More information

Wednesday 3 September Session 3: Quantum dots, nanocrystals and low dimensional materials (16:15 16:45, Huxley LT311)

Wednesday 3 September Session 3: Quantum dots, nanocrystals and low dimensional materials (16:15 16:45, Huxley LT311) Session 3: Quantum dots, nanocrystals and low dimensional materials (16:15 16:45, (invited) Engineering entangled photon emission from site controlled quantum dots E Pelucchi, G Juska, V Dimastrodonato,

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supporting online material SUPPLEMENTARY INFORMATION doi: 0.038/nPHYS8 A: Derivation of the measured initial degree of circular polarization. Under steady state conditions, prior to the emission of the

More information

Novel materials and nanostructures for advanced optoelectronics

Novel materials and nanostructures for advanced optoelectronics Novel materials and nanostructures for advanced optoelectronics Q. Zhuang, P. Carrington, M. Hayne, A Krier Physics Department, Lancaster University, UK u Brief introduction to Outline Lancaster University

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

Supplementary Figures

Supplementary Figures 1 Supplementary Figures a cw diode laser 78 nm cw Ti:sa laser 78 nm Gain-switched diode laser TRIG TRIG 78 nm Tunable pulsed fiber laser 82-95 nm optical attenuator SMF flip mirror zoom barrel LPF white

More information

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers Colloquium of the Research Training Group 1729, Leibniz University Hannover, Germany, November 8, 2012 Arno Rauschenbeutel Vienna Center

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots R. Heitz et al.: PL Study of Self-Organized InGaAs/GaAs Quantum Dots 65 phys. stat. sol. b) 221, 65 2000) Subject classification: 73.61.Ey; 78.47.+p; 78.55.Cr; 78.66.Fd; S7.12 Resonantly Excited Time-Resolved

More information

Single-photon nonlinearity of a semiconductor quantum dot in a cavity

Single-photon nonlinearity of a semiconductor quantum dot in a cavity Single-photon nonlinearity of a semiconductor quantum dot in a cavity D. Sanvitto, F. P. Laussy, F. Bello, D. M. Whittaker, A. M. Fox and M. S. Skolnick Department of Physics and Astronomy, University

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia Ultrafast optical rotations of electron spins in quantum dots A. Greilich 1*, Sophia E. Economou 2, S. Spatzek 1, D. R. Yakovlev 1,3, D. Reuter 4, A. D. Wieck 4, T. L. Reinecke 2, and M. Bayer 1 1 Experimentelle

More information

arxiv:quant-ph/ v3 20 Apr 2005

arxiv:quant-ph/ v3 20 Apr 2005 Controlling the Spontaneous Emission Rate of Single Quantum Dots in a 2D Photonic Crystal Dirk Englund, 1 David Fattal, 1 Edo Waks, 1 Glenn Solomon, 1,2 Bingyang Zhang, 1 Toshihiro Nakaoka, 3 Yasuhiko

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

Single photon emitters in exfoliated WSe 2 structures

Single photon emitters in exfoliated WSe 2 structures Single photon emitters in exfoliated WSe 2 structures M. Koperski, 1,2 K. Nogajewski, 1 A. Arora, 1 V. Cherkez, 3 P. Mallet, 3 J.-Y. Veuillen, 3 J. Marcus, 3 P. Kossacki, 1,2 and M. Potemski 1 1 Laboratoire

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Spectroscopy of self-assembled quantum rings

Spectroscopy of self-assembled quantum rings Spectroscopy of self-assembled quantum rings RJWarburton 1, B Urbaszek 1,EJMcGhee 1,CSchulhauser 2, A Högele 2, K Karrai 2, A O Govorov 3,JABarker 4, B D Gerardot 5,PMPetroff 5,and JMGarcia 6 1 Department

More information

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Optics and Quantum Optics with Semiconductor Nanostructures. Overview Optics and Quantum Optics with Semiconductor Nanostructures Stephan W. Koch Department of Physics, Philipps University, Marburg/Germany and Optical Sciences Center, University of Arizona, Tucson/AZ Overview

More information

Rydberg excited Calcium Ions for quantum interactions

Rydberg excited Calcium Ions for quantum interactions Warsaw 08.03.2012 Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Igor Lesanovsky Outline 1. The R-ION consortium Who are we? 2. Physics Goals What State are of we the

More information

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way Contents Part I Concepts 1 The History of Heterostructure Lasers Zhores I. Alferov... 3 1.1 Introduction... 3 1.2 The DHS Concept and Its Application for Semiconductor Lasers. 3 1.3 Quantum Dot Heterostructure

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Introduction to Optoelectronic Device Simulation by Joachim Piprek

Introduction to Optoelectronic Device Simulation by Joachim Piprek NUSOD 5 Tutorial MA Introduction to Optoelectronic Device Simulation by Joachim Piprek Outline:. Introduction: VCSEL Example. Electron Energy Bands 3. Drift-Diffusion Model 4. Thermal Model 5. Gain/Absorption

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY MATERIAL Towards quantum dot arrays of entangled photon emitters Gediminas Juska *1, Valeria Dimastrodonato 1, Lorenzo O. Mereni 1, Agnieszka Gocalinska 1 and Emanuele Pelucchi 1 1 Tyndall

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 14 Dispersion engineering part 1 - Introduction EEC 598-2 Winter 26 Nanophotonics and Nano-scale Fabrication P.C.Ku chedule for the rest of the semester Introduction to light-matter interaction

More information

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips

Atom trifft Photon. Rydberg blockade. July 10th 2013 Michael Rips Atom trifft Photon Rydberg blockade Michael Rips 1. Introduction Atom in Rydberg state Highly excited principal quantum number n up to 500 Diameter of atom can reach ~1μm Long life time (~µs ~ns for low

More information

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston Origin of Optical Enhancement by Metal Nanoparticles Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm Photonics 1ns 100ps 10ps 1ps 100fs 10fs 1fs Time

More information

Terahertz sensing and imaging based on carbon nanotubes:

Terahertz sensing and imaging based on carbon nanotubes: Terahertz sensing and imaging based on carbon nanotubes: Frequency-selective detection and near-field imaging Yukio Kawano RIKEN, JST PRESTO ykawano@riken.jp http://www.riken.jp/lab-www/adv_device/kawano/index.html

More information

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz Supplemental Material Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz spectroscopy H. Yada 1, R. Uchida 1, H. Sekine 1, T. Terashige 1, S. Tao 1, Y. Matsui 1, N. Kida

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Hole - Nuclear Spin Interaction in Quantum Dots

Hole - Nuclear Spin Interaction in Quantum Dots 1 Hole - Nuclear Spin Interaction in Quantum Dots B. Eble (1), C. Testelin (1), P. Desfonds (1), F. Bernardot (1), A. Balocchi (2), T. Amand (2), A. Miard (3), A. Lemaître (3), X. Marie (2) and M. Chamarro

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

An artificial atom locked to natural atoms

An artificial atom locked to natural atoms An artificial atom locked to natural atoms N. Akopian 1*, R. Trotta 2, E. Zallo 2, S. Kumar 2, P. Atkinson 2, A. Rastelli 2, O. G. Schmidt 2 & V. Zwiller 1 1 Kavli Institute of Nanoscience Delft, Delft

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Valley Zeeman Effect of free and bound excitons in WSe2

Valley Zeeman Effect of free and bound excitons in WSe2 Valley Zeeman Effect of free and bound excitons in WSe2 Ajit Srivastava Quantum Photonics Group ETH Zurich, Switzerland 24.01.2014 TMD Research Motivation Optical control of spins & pseudo-spins 2D optical

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013248 TITLE: Spin Coherence in Semiconductor Nanostructures DISTRIBUTION: Approved for public release, distribution unlimited

More information

Measurement Based Quantum Computing, Graph States, and Near-term Realizations

Measurement Based Quantum Computing, Graph States, and Near-term Realizations Measurement Based Quantum Computing, Graph States, and Near-term Realizations Miami 2018 Antonio Russo Edwin Barnes S. E. Economou 17 December 2018 Virginia Polytechnic Institute and State University A.

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information