Fermi polaron-polaritons in MoSe 2

Size: px
Start display at page:

Download "Fermi polaron-polaritons in MoSe 2"

Transcription

1 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu

2 Quantum impurity problem Nonperturbative interaction between a single quantum object/impurity and a degenerate Bose or Fermi system Infinite mass impurity - Fermi-edge singularity - Kondo physics Mobile impurity - polaron physics: modification of mass - transport

3 Polarons in condensed-matter and ultracold atoms Lattice polarons: electrons dressed with phonons Polarons in a BEC: a new strong coupling regime Fermi-polarons: metastable repulsive polarons Zwierlein (2009), Köhl (2012), Grimm (2012)

4 Polaritons in 2D materials: A new Bose-Fermi mixture for polaron physics Outline 1) Properties of transition metal dichalcogenide (TMD) monolayers 2) Cavity-polaritons in MoSe2 monolayer embedded in a fiber-microcavity

5 Transition Metal Dichalcogenides: A new class of truly 2d semiconductors Formula: MX2 M = Transition Metal X = Chalcogen Layered materials Se Mo Se Electrical property Material Semiconducting MoS 2 MoSe 2 WS 2 WSe 2 MoTe 2 WTe 2 Semimetallic TiS 2 TiSe 2 effective monolayer Metallic, CDW, Superconducting NbSe 2 NbS 2 NbTe 2 TaS 2 TaSe 2 TaTe 2

6 Crystal structure Monolayer has a honeycomb lattice Se,S W, Mo

7 Crystal structure Monolayer has a honeycomb lattice Valley semiconductor: physics at ±K Se,S W, Mo K Г -K

8 Crystal structure Monolayer has a honeycomb lattice Valley semiconductor: physics at ±K Se,S W, Mo Broken inversion symmetry band gap K Г -K

9 Band Structure at K-points (Valleys) 2 valley/pseudospin flavors Spin-valley-locking Berry curvature Conduction-band spin-orbit sign is different for MoSe 2 and WSe 2 ~ 4-40 mev ~1.7-2 ev K -K > 100 mev ȁ ȁ ȁ ȁ

10 Optical addressing of valleys in MoSe 2 ±K valleys respond to ±σ polarized light valley addressability like spin protection of spin coherence due to spinvalley locking? ȁ ȁ K -K ȁ ȁ σ σ + ȁ ȁ Mak et. al., Nat. Nanotech. 7, 494 (2012). ȁ ȁ

11 Optical addressing of valleys in MoSe 2 ±K valleys respond to ±σ polarized light valley addressability like spin protection of spin coherence due to spinvalley locking? ȁ ȁ K -K ȁ ȁ Mak et. al., Nat. Nanotech. 7, 494 (2012). σ ȁ ȁ σ σ + σ + ȁ ȁ

12 Optical addressing of valleys in MoSe 2 ±K valleys respond to ±σ polarized light valley addressability like spin protection of spin coherence due to spinvalley locking? Valley mixing requires - spin flip and short-range impurities - Electron-hole exchange Mak et. al., Nat. Nanotech. 7, 494 (2012). ȁ ȁ σ ȁ ȁ K -K ȁ ȁ σ σ + σ + ȁ ȁ

13 Photoluminescence (PL) of TMD monolayers Excitation of high-energy free electronhole pairs Strong Coulomb interaction due to lack of screening (truly 2D) 2 ev

14 Photoluminescence (PL) of TMD monolayers Excitation of high-energy free electronhole pairs Strong Coulomb interaction due to lack of screening (truly 2D) 0.5 ev Excitons form with huge binding energy of 500 mev (GaAs: ~ 10 mev) 2 ev

15 Photoluminescence (PL) of TMD monolayers Excitation of high-energy free electronhole pairs Strong Coulomb interaction due to lack of screening (truly 2D) Excitons form with huge binding energy of 500 mev (GaAs: ~ 10 mev) 0.5 ev 30 mev 2 ev PL is dominated by decay from exciton and trion

16 exciton trion Photoluminescence (PL) of a monolayer MoSe 2 PL dominated by exciton and trion peaks Most flakes are electron doped hence the trion peak Smallest linewidth: ΔE= 3 mev T = 4 K Radiative lifetime: Γ rad 1 mev small exciton Bohr radius strong light-matter coupling wavelength (nm)

17 Emission energy (ev) Intrinsic quantum well (QW) in a microcavity Upper polariton Photon z q ~ 5meV Exciton Lower polariton q k // k // = w/c sin(q) 0 k in-plane (μm -1 k ) ph 10 Polaritons have an effective mass ~10 4 m exc ; in-plane momentum is a good quantum number Polaritons interact (weakly) due to their exciton component

18 Semi-integrated fiber cavity (J. Reichel) Allows for coupling a wide range of emitters to a cavity with µm size beam radius: GaAs QW/2DEG, MoSe 2 Tunable vacuum field strength and long cavity lifetime allowing for high-precision spectroscopy Fiber mirror with a radius of curvature ~10 µm, allows for a beam waist < 1µm + Finesse > 100,000

19 Strong Coupling of MoSe 2 to a microcavity Dimple shot into a fiber forms top mirror of DBR coated 0d cavity Piezo to tune cavity length

20 Sample design Graphene serves as a top gate Tunable electron density

21 Sample design All flakes are exfoliated and stacked using pick-up transfer technique

22 perturbative coupling measure unperturbed MoSe 2 spectrum at a long cavity length (~10 µm) transmission spectrum of one cavity mode tuned across the MoSe 2 absorption spectrum

23 perturbative coupling At every cavity length, we fit a lorentzian to the transmission spectrum

24 perturbative coupling At every cavity length, we fit a lorentzian to the transmission spectrum Plotting the cavity linewdth against its center wavelength reveals the MoSe 2 absorption spectrum

25 perturbative coupling At every cavity length, we fit a lorentzian to the transmission spectrum Plotting the cavity linewdth against its center wavelength reveals the MoSe 2 absorption spectrum Two distinct resonances

26 perturbative coupling strong electron density dependence Increasing electron density shifts both resonances to higher energies Rapid broadening of the higher energy peak

27 perturbative coupling The direct optical creation of a bound molecular trion state is strongly suppressed due to vanishing oscillator strength exciton trion - Initial state: delocalized electron on the Fermi surface - Final state: electron localized around exciton

28 Optical resonances in absorption exciton energy lowered by electron-hole pair excitations from the degenerate Fermi sea: attractive polaron Concurrently, the system develops a metastable repulsive-polaron state

29 Trion-Exciton Spectrum modelled as a Fermi Polaron To model the system we assume the following Hamiltonian: cavity photon energy exciton energy Fermi sea of electron energy electron exciton interaction Interacting many-body system

30 Trion-Exciton Spectrum modelled as a Fermi Polaron Polaron Chevy-Ansatz (prior work: Suris) exciton Exciton + Fermi-sea electron-hole pair Quasi-particle weight: φ 0 0 ensures that polaron has finite oscillator strength

31 Trion-Exciton Spectrum modelled as a Fermi Polaron Polaron Chevy-Ansatz Describes trion for q = k F (delocalized hole)

32 Calculated spectrum Using a truncated basis (Chevy ansatz) we get: attractive polaron repulsive polaron molecule (trion)

33 Fermi energy dependence of the spectrum Experiment repulsive polaron Theory attractive polaron Blue shift of attractive polaron is due to phase space filling. In WSe 2 a red shift is expected

34 Trion vs. attractive polaron Assume a strongly bound exciton at r = 0 Trion Attractive Polaron 1/k F a Trion r r Net charge: -e Net charge: 0

35 Polarons How do we know we see the attractive polaron and not the trion? Overlap between initial and final state is very small for trion Coupling to light is small

36 Photo luminescence PL expected from trion PL and absorption data are in good agreement for low electron densities With increasing Fermi energy we observe a splitting between absorption and PL peak As well as a decrease of PL intensity (expected when Fermi energy > trion binding)

37 Strong Light-Matter Coupling in TMDs Strong Coulomb interaction Large normal-mode splitting 2D, massive Dirac limit, (GaAs ~ 5 mev) Possibility of room temperature polariton condensation Ω R comparable to trion binding (E T ) and accessable Fermi energies (E F ) 37

38 Strong coupling to cavity No electron doping: exciton polaritons with a splitting of 16 mev avoided crossing centered at the exciton resonance

39 Strong coupling to cavity E F < E T, Ω R : both repulsive to the attractive polaron

40 Strong coupling to cavity The observation of strong coupling between cavity and lower energy resonance proves that the latter is an attractive polaron

41 Signatures of polaron formation for an ultra-light polariton impurity? To model the system we assume the following Hamiltonian: cavity photon energy exciton energy photon - exciton interaction Fermi sea of electron energy electron exciton interaction

42 Strong coupling to cavity strong coupling transmission spectrum at resonance oscillator strength transfers from repulsive to attractive polaron At high electron densities, the attractive polaron splitting decreases again due to the spectral width of the polaron resonance

43 New features/open problems: Competition between polaron and polariton formation: quantum impurity with an ultralow mass Possibility to investigate Bose-polarons: electron dressed with polaritons or a K valley polariton dressed with Bogoluibov excitations from a ( K) valley polariton condensate Interaction between two attractive-polaron-polaritons: polariton blockade Signatures of interacting electron-polariton system in transport

44 Thanks to: Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu

Valley Zeeman Effect of free and bound excitons in WSe2

Valley Zeeman Effect of free and bound excitons in WSe2 Valley Zeeman Effect of free and bound excitons in WSe2 Ajit Srivastava Quantum Photonics Group ETH Zurich, Switzerland 24.01.2014 TMD Research Motivation Optical control of spins & pseudo-spins 2D optical

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

Valley Zeeman effect in elementary optical excitations of monolayerwse 2

Valley Zeeman effect in elementary optical excitations of monolayerwse 2 Valley Zeeman effect in elementary optical excitations of monolayerwse 2 Ajit Srivastava 1, Meinrad Sidler 1, Adrien V. Allain 2, Dominik S. Lembke 2, Andras Kis 2, and A. Imamoğlu 1 1 Institute of Quantum

More information

Excitonic luminescence upconversion in a two-dimensional semiconductor

Excitonic luminescence upconversion in a two-dimensional semiconductor Excitonic luminescence upconversion in a two-dimensional semiconductor Authors: Aaron M. Jones 1, Hongyi Yu 2, John R. Schaibley 1, Jiaqiang Yan 3,4, David G. Mandrus 3-5, Takashi Taniguchi 6, Kenji Watanabe

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature13734 1. Gate dependence of the negatively charged trion in WS 2 monolayer. We test the trion with both transport and optical measurements. The trion in our system is negatively charged,

More information

Dirac matter: Magneto-optical studies

Dirac matter: Magneto-optical studies Dirac matter: Magneto-optical studies Marek Potemski Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UGA/UPS/INSA/EMFL MOMB nd International Conference

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Exciton spectroscopy

Exciton spectroscopy Lehrstuhl Werkstoffe der Elektrotechnik Exciton spectroscopy in wide bandgap semiconductors Lehrstuhl Werkstoffe der Elektrotechnik (WW6), Universität Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen Vortrag

More information

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15 1 Lecture contents Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect Absorption edges in semiconductors Offset corresponds to bandgap Abs. coefficient is orders

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Single photon emitters in exfoliated WSe 2 structures

Single photon emitters in exfoliated WSe 2 structures Single photon emitters in exfoliated WSe 2 structures M. Koperski, 1,2 K. Nogajewski, 1 A. Arora, 1 V. Cherkez, 3 P. Mallet, 3 J.-Y. Veuillen, 3 J. Marcus, 3 P. Kossacki, 1,2 and M. Potemski 1 1 Laboratoire

More information

arxiv: v1 [cond-mat.mes-hall] 9 Jul 2014

arxiv: v1 [cond-mat.mes-hall] 9 Jul 2014 Valley Zeeman Effect in Elementary Optical Excitations of a Monolayer WSe Ajit Srivastava 1, Meinrad Sidler 1, Adrien V. Allain, Dominik S. Lembke, Andras Kis, and A. Imamoğlu 1 1 Institute of Quantum

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for six WSe 2 -MoSe 2 heterostructures under cw laser excitation

More information

Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy

Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy Ryusuke Matsunaga 1, Kazunari Matsuda 1, and Yoshihiko Kanemitsu 1,2 1 Institute for Chemical

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Lecture 8 Interband Transitions. Excitons

Lecture 8 Interband Transitions. Excitons Lecture 8 Interband Transitions Excitons Read: FS 4 Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 8 (2/4/2016) Slide 1 Textbook 1: M. Fox Optical Properties of Solids (2

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Optical Characterization of Solids

Optical Characterization of Solids D. Dragoman M. Dragoman Optical Characterization of Solids With 184 Figures Springer 1. Elementary Excitations in Solids 1 1.1 Energy Band Structure in Crystalline Materials 2 1.2 k p Method 11 1.3 Numerical

More information

Realization of an atomically thin mirror using monolayer MoSe 2

Realization of an atomically thin mirror using monolayer MoSe 2 arxiv:1705.07317v2 [cond-mat.mes-hall] 1 Jun 2017 Realization of an atomically thin mirror using monolayer MoSe 2 Patrick Back, 1 Aroosa Ijaz, 1 Sina Zeytinoglu, 1 Martin Kroner, 1 Atac Imamoğlu 1 1 Institute

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

Magnetic control of valley pseudospin in monolayer WSe 2

Magnetic control of valley pseudospin in monolayer WSe 2 Magnetic control of valley pseudospin in monolayer WSe 2 Grant Aivazian, Zhirui Gong, Aaron M. Jones, Rui-Lin Chu, Jiaqiang Yan, David G. Mandrus, Chuanwei Zhang, David Cobden, Wang Yao, and Xiaodong Xu

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Entangled Photon Generation via Biexciton in a Thin Film

Entangled Photon Generation via Biexciton in a Thin Film Entangled Photon Generation via Biexciton in a Thin Film Hiroshi Ajiki Tokyo Denki University 24,Apr. 2017 Emerging Topics in Optics (IMA, Univ. Minnesota) Entangled Photon Generation Two-photon cascade

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS A11046W1 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2015 Wednesday, 17 June, 2.30

More information

+ - Indirect excitons. Exciton: bound pair of an electron and a hole.

+ - Indirect excitons. Exciton: bound pair of an electron and a hole. Control of excitons in multi-layer van der Waals heterostructures E. V. Calman, C. J. Dorow, M. M. Fogler, L. V. Butov University of California at San Diego, S. Hu, A. Mishchenko, A. K. Geim University

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. DOI: 10.1038/NNANO.2017.105 Magnetic brightening and control of dark excitons in monolayer WSe 2 Xiao-Xiao Zhang 1,2,3, Ting Cao 4,5, Zhengguang Lu 6,

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Raman spectroscopy of transition metal dichalcogenides

Raman spectroscopy of transition metal dichalcogenides Journal of Physics: Condensed Matter TOPICAL REVIEW Raman spectroscopy of transition metal dichalcogenides To cite this article: R Saito et al J. Phys.: Condens. Matter Manuscript version: Accepted Manuscript

More information

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm.

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Charging steps are labeled by the vertical dashed lines. Intensity

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Spin Orbit Coupling (SOC) in Graphene

Spin Orbit Coupling (SOC) in Graphene Spin Orbit Coupling (SOC) in Graphene MMM, Mirko Rehmann, 12.10.2015 Motivation Weak intrinsic SOC in graphene: [84]: Phys. Rev. B 80, 235431 (2009) [85]: Phys. Rev. B 82, 125424 (2010) [86]: Phys. Rev.

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

Supporting Information: Probing Interlayer Interactions in Transition Metal. Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and

Supporting Information: Probing Interlayer Interactions in Transition Metal. Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and Supporting Information: Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS 2 /WS 2 and MoSe 2 /WSe 2 Albert F. Rigosi, Heather M. Hill, Yilei

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Density of states for electrons and holes. Distribution function. Conduction and valence bands

Density of states for electrons and holes. Distribution function. Conduction and valence bands Intrinsic Semiconductors In the field of semiconductors electrons and holes are usually referred to as free carriers, or simply carriers, because it is these particles which are responsible for carrying

More information

Coulomb Drag in Graphene

Coulomb Drag in Graphene Graphene 2017 Coulomb Drag in Graphene -Toward Exciton Condensation Philip Kim Department of Physics, Harvard University Coulomb Drag Drag Resistance: R D = V 2 / I 1 Onsager Reciprocity V 2 (B)/ I 1 =

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Valleytronic Properties in 2D materials

Valleytronic Properties in 2D materials MPI-UBC-UT Winter School on Quantum Materials Valleytronic Properties in 2D materials Feb 16, 2018 University of Tokyo Yoshi Iwasa, Univ. Tokyo & RIKEN Acknowledgements Univ Tokyo, Iwasa group SARPES M.

More information

Strong light matter coupling in two-dimensional atomic crystals

Strong light matter coupling in two-dimensional atomic crystals SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2014.304 Strong light matter coupling in two-dimensional atomic crystals Xiaoze Liu 1, 2, Tal Galfsky 1, 2, Zheng Sun 1, 2, Fengnian Xia 3, Erh-chen Lin 4,

More information

Summary lecture IX. The electron-light Hamilton operator reads in second quantization

Summary lecture IX. The electron-light Hamilton operator reads in second quantization Summary lecture IX The electron-light Hamilton operator reads in second quantization Absorption coefficient α(ω) is given by the optical susceptibility Χ(ω) that is determined by microscopic polarization

More information

Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles

Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles M. Koperski,, M. R. Molas, A. Arora,, K. Nogajewski, A. O. Slobodeniuk, C. Faugeras, M. Potemski Laboratoire

More information

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm. PL (normalized) Intensity (arb. u.) 1 1 8 7L-MoS 1L-MoS 6 4 37 38 39 4 41 4 Raman shift (cm -1 ) Supplementary Figure 1 Raman spectra of the Figure 1B at the 1L-MoS area (black line) and 7L-MoS area (red

More information

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin

This manuscript was submitted first in a reputed journal on Apri1 16 th Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin This manuscript was submitted first in a reputed journal on Apri1 16 th 2015 Stanene: Atomically Thick Free-standing Layer of 2D Hexagonal Tin Sumit Saxena 1, Raghvendra Pratap Choudhary, and Shobha Shukla

More information

Magneto-Optical Properties of Quantum Nanostructures

Magneto-Optical Properties of Quantum Nanostructures Magneto-optics of nanostructures Magneto-Optical Properties of Quantum Nanostructures Milan Orlita Institute of Physics, Charles University Institute of Physics, Academy of Sciences of the Czech Republic

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases Bad Honnef, 07 July 2015 Impurities in a Fermi sea: Decoherence and fast dynamics impurity physics: paradigms of condensed matter-physics Fermi sea fixed scalar impurity orthogonality catastrophe P.W.

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

Optical manipulation of valley pseudospin

Optical manipulation of valley pseudospin Optical manipulation of valley pseudospin Ziliang Ye, Dezheng Sun, and Tony F. Heinz Departments of Applied Physics and Photon Science, Stanford University, 348 Via Pueblo Mall, Stanford, CA 9435, USA

More information

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. 2 The relaxation-time approximation p. 3 The failure of the Drude model

More information

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures Intensity / a.u. Supplementary figures 110 MAPbI 3 1:1 MaPbI 3-x Cl x 3:1 220 330 0 10 15 20 25 30 35 40 45 2 theta / deg Supplementary Fig. 1 X-ray Diffraction (XRD) patterns of MAPbI3 and MAPbI 3-x Cl

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Chiral electroluminescence from 2D material based transistors

Chiral electroluminescence from 2D material based transistors New Perspectives in Spintronic and Mesoscopic Physics (NPSMP2015) June 10-12, 2015 Kashiwanoha, Japan Chiral electroluminescence from 2D material based transistors Y. Iwasa University of Tokyo & RIKEN

More information

Impurities and disorder in systems of ultracold atoms

Impurities and disorder in systems of ultracold atoms Impurities and disorder in systems of ultracold atoms Eugene Demler Harvard University Collaborators: D. Abanin (Perimeter), K. Agarwal (Harvard), E. Altman (Weizmann), I. Bloch (MPQ/LMU), S. Gopalakrishnan

More information

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators Chapter 6 Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators 6.1 Introduction Researchers have devoted considerable effort to enhancing light emission from semiconductors

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

doi: /PhysRevLett

doi: /PhysRevLett doi: 10.1103/PhysRevLett.77.494 Luminescence Hole Burning and Quantum Size Effect of Charged Excitons in CuCl Quantum Dots Tadashi Kawazoe and Yasuaki Masumoto Institute of Physics and Center for TARA

More information

Quantum Condensed Matter Physics Lecture 9

Quantum Condensed Matter Physics Lecture 9 Quantum Condensed Matter Physics Lecture 9 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 9.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS

Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS Zero-bias conductance peak in detached flakes of superconducting 2H-TaS2 probed by STS J. A. Galvis, L. C., I. Guillamon, S. Vieira, E. Navarro-Moratalla, E. Coronado, H. Suderow, F. Guinea Laboratorio

More information

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele

Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Electron Interactions and Nanotube Fluorescence Spectroscopy C.L. Kane & E.J. Mele Large radius theory of optical transitions in semiconducting nanotubes derived from low energy theory of graphene Phys.

More information

Intersubband Response:

Intersubband Response: Intersubband Response: Lineshape,, Coulomb Renormalization, and Microcavity Effects F. T. Vasko Inst. of Semiconductor Physics Kiev, Ukraine In collaboration with: A.V. Korovin and O.E. Raichev (Inst.

More information

Ch. 2: Energy Bands And Charge Carriers In Semiconductors

Ch. 2: Energy Bands And Charge Carriers In Semiconductors Ch. 2: Energy Bands And Charge Carriers In Semiconductors Discrete energy levels arise from balance of attraction force between electrons and nucleus and repulsion force between electrons each electron

More information

Optoelectronic properties of 2-dimensional materials

Optoelectronic properties of 2-dimensional materials Optoelectronic properties of 2-dimensional materials Grant Aivazian A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015

More information

Abstract. Introduction

Abstract. Introduction Two Dimensional Maps of Photoluminescence and Second Harmonic Generation Tara Boland University of North Dakota University of Washington INT REU, 2014 Advisor: Xiaodong Xu (Dated: August 31, 2014) Abstract

More information

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting Kondo Physics in Nanostructures Kondo Effects in Metals: magnetic impurities

More information

Physics in two dimensions in the lab

Physics in two dimensions in the lab Physics in two dimensions in the lab Nanodevice Physics Lab David Cobden PAB 308 Collaborators at UW Oscar Vilches (Low Temperature Lab) Xiaodong Xu (Nanoscale Optoelectronics Lab) Jiun Haw Chu (Quantum

More information

Fermi gases in an optical lattice. Michael Köhl

Fermi gases in an optical lattice. Michael Köhl Fermi gases in an optical lattice Michael Köhl BEC-BCS crossover What happens in reduced dimensions? Sa de Melo, Physics Today (2008) Two-dimensional Fermi gases Two-dimensional gases: the grand challenge

More information

Chapter 2 Optical Transitions

Chapter 2 Optical Transitions Chapter 2 Optical Transitions 2.1 Introduction Among energy states, the state with the lowest energy is most stable. Therefore, the electrons in semiconductors tend to stay in low energy states. If they

More information

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Growth of III V semiconductor quantum dots C. Schneider, S. Höfling and A. Forchel 1.1 Introduction

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Quantum dynamics in many body systems

Quantum dynamics in many body systems Quantum dynamics in many body systems Eugene Demler Harvard University Collaborators: David Benjamin (Harvard), Israel Klich (U. Virginia), D. Abanin (Perimeter), K. Agarwal (Harvard), E. Dalla Torre (Harvard)

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

Electron-polariton scattering, beneficial and detrimental effects

Electron-polariton scattering, beneficial and detrimental effects phys. stat. sol. (c) 1, No. 6, 1333 1338 (2004) / DOI 10.1002/pssc.200304063 Electron-polariton scattering, beneficial and detrimental effects P. G. Lagoudakis *, 1, J. J. Baumberg 1, M. D. Martin 1, A.

More information

materials with different strengths that can be combined to create new nan PALASH BHARADWAJ and LUKAS NOVOTNY

materials with different strengths that can be combined to create new nan PALASH BHARADWAJ and LUKAS NOVOTNY Initially energized by the isolation of graphene more than a decade ago, re materials with different strengths that can be combined to create new nan PALASH BHARADWAJ and LUKAS NOVOTNY 24 OPTICS & PHOTONICS

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

dots) and max max without energies

dots) and max max without energies Supplementary Figure 1 Light-polarization-dependent the crystal b-axis. Scale bar, 25 m. (b) Polarization-dependent absorption spectra of bilayer ReS 2. (c) Corresponding spectral weights of Lorentzian

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Exploring new aspects of

Exploring new aspects of Exploring new aspects of orthogonality catastrophe Eugene Demler Harvard University Harvard-MIT $$ NSF, AFOSR MURI, DARPA OLE, MURI ATOMTRONICS, MURI POLAR MOLECULES Outline Introduction: Orthogonality

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

Electronic and optical properties of graphene- and graphane-like SiC layers

Electronic and optical properties of graphene- and graphane-like SiC layers Electronic and optical properties of graphene- and graphane-like SiC layers Paola Gori, ISM, CNR, Rome, Italy Olivia Pulci, Margherita Marsili, Università di Tor Vergata, Rome, Italy Friedhelm Bechstedt,

More information

2D Materials for Gas Sensing

2D Materials for Gas Sensing 2D Materials for Gas Sensing S. Guo, A. Rani, and M.E. Zaghloul Department of Electrical and Computer Engineering The George Washington University, Washington DC 20052 Outline Background Structures of

More information