Cavity QED with quantum dots in microcavities

Size: px
Start display at page:

Download "Cavity QED with quantum dots in microcavities"

Transcription

1 Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB)

2 Motivation and Applications Motivation: Full control of Atom-field interaction Quantum state of light Quantum state of atom Applications: Quantum logic (quantum gates) Quantum communication (quantum internet) C. Bonato et al., Phys. Rev. Lett., 4, 653 (2) Martin van Exter - Quantum Optics group - University of Leiden 2

3 Cavity QED (= Quantum Electro Dynamics) Single atom in high-quality optical cavity Weak coupling: Intermediate coupling: Cooperativity: Strong coupling: (Dressed states) Motivation: - Single-photon nonlinearities - Construction of quantum gate Martin van Exter - Quantum Optics group - University of Leiden 3

4 Artificial atoms = InAs Quantum dots in GaAs Artificial atoms GaAs InAs Ground state: Excited state: Martin van Exter - Quantum Optics group - University of Leiden 4

5 Tuning energy and charge via bias voltage 949 Charged QD Wavelength (nm) X X - PL (a.u.) Voltage (V) Wavelength (nm) Stark Shift Martin van Exter - Quantum Optics group - University of Leiden 5

6 Semiconductor quantum dots in cavities a) Photonic crystal cavity b) Microdisk cavity c)-e) Micropillar cavities Martin van Exter - Quantum Optics group - University of Leiden 6

7 Semiconductor quantum dots in cavities c)-e) Micropillar cavities Martin van Exter - Quantum Optics group - University of Leiden 7

8 Ten years of technology: micropillar cavities Small volume (~2µm 3 ) and high Q ~3k, (Maximum Purcell factor 2) Oxide aperture QDs V M. P. Bakker et al., Appl. Phys. Lett. 4, 9 (24) Martin van Exter - Quantum Optics group - University of Leiden 8

9 . Resonant spectroscopy; where a single-atom matters Empty cavity: Scanning laser Reflection Transmission Refl.5.2. Trans Cryostat (9. K) -2-2 Freq (GHz) Q = Martin van Exter - Quantum Optics group - University of Leiden 9

10 . Resonant spectroscopy; where a single-atom matters Full cavity: Electronic tuning of QD resonance frequency.77 VV.725 V Refl.5 Trans -2-2 Freq (GHz) -2-2 Freq (GHz) QD cavity 2 QD cavity 2 QD cavity Martin van Exter - Quantum Optics group - University of Leiden

11 QD-cavity coupling Voltage (V) QD Reflectivity Refl Refl Trans Trans.7.68 cavity -2-2 Frequency (GHz).6.5 Refl Freq (GHz). Trans Martin van Exter - Quantum Optics group - University of Leiden

12 QD-cavity coupling Voltage (V) Avoided crossing: Qdot Reflectivity Refl Refl Trans Trans.7 Qdot Frequency (GHz) cavity.6.5 Refl Freq (GHz). Trans Martin van Exter - Quantum Optics group - University of Leiden 2

13 Conclusion : QD-cavity coupling Voltage (V) Avoided crossing: First Polarization degenerate.7 CQED system! Voltage control.68 Single-photon transistor! -2-2 Frequency (GHz) Polarization properties can be observed more easily Freq (GHz) M. P. Bakker et al., Phys. Rev. B. 9, 539 (25) Martin van Exter - Quantum Optics group - University of Leiden 3 Reflectivity Refl Refl Refl Trans Trans Trans

14 2. Cavity reflection as probe for dynamics of single QD pw laser intensity:.7 V.725 V.74 V Reflectivity Freq (GHz) -2 2 Freq (GHz) -2 2 Freq (GHz) Martin van Exter - Quantum Optics group - University of Leiden 4

15 2. Cavity reflection as probe for dynamics of single QD pw laser intensity:.7 V.725 V.74 V Reflectivity.7.4 nw:.69 V Hysteresis!.75 V.72 V Reflectivity Freq (GHz) -2 2 Freq (GHz) -2 2 Freq (GHz) Martin van Exter - Quantum Optics group - University of Leiden 5

16 Probing build-up and decay: ms timescale Martin van Exter - Quantum Optics group - University of Leiden 6

17 Charges trapped behind oxide aperture Resonant laser excites charges, trapped by aperture Electric field over QDs decreases Oxide aperture QDs V -V charge M. P. Bakker et al., Phys. Rev. B. 9, 2435 (25) Martin van Exter - Quantum Optics group - University of Leiden 7

18 3. Coherence measurements: empty cavity (reference) sanity check: empty cavity M. P. Bakker et al., Opt. Lett., 4, 373 (25) Martin van Exter - Quantum Optics group - University of Leiden 8

19 3. Coherence measurements: cavity with QD Direct observation of decoherence of Q dot! Martin van Exter - Quantum Optics group - University of Leiden 9

20 4. Single-photon nonlinearities At output: extreme bunching of photons! Martin van Exter - Quantum Optics group - University of Leiden 2

21 Conclusion Quantum dot in microcavity = versatile quantum system.76. Resonant spectroscopy, where a single atom maters Voltage (V) Reflectivity Frequency (GHz).5 2. Hysteresis effects & charge memory 3. Decoherence directly observed Reflectivity Freq (GHz) 4. Extreme photon bunching Martin van Exter - Quantum Optics group - University of Leiden 2

22 Future goal: create a quantum gate Use single-photon nonlinearities to create a quantum gate C. Bonato et al., Phys. Rev. Lett., 4, 653 (2) Martin van Exter - Quantum Optics group - University of Leiden 22

23 QD jumps On/off blinking behavior: Intensity (a.u.) Average Intensity (a.u.).5..5 time (s) ON Reflection Tranmission OFF OFF ON -2-2 Frequency (GHz) Fix laser here QD Trap Martin van Exter - Quantum Optics group - University of Leiden 23

24 Resonant spectroscopy Neutral QD: Voltage =.787 V Voltage =.82 V Voltage =.87 V Intensity (a.u.) Frequency (GHz) Negative QD: -2 2 Frequency (GHz) -2 2 Frequency (GHz) Intensity (a.u.).5 Voltage =.95 V -2 2 Frequency (GHz) Voltage =.98 V -2 2 Frequency (GHz) Voltage =.995 V -2 2 Frequency (GHz) Morten Bakker - Quantum Optics group - University of Leiden 24

25 Magnetic field X and X -, in-plane B=.9 Tesla field (Zeeman splitting): Intensity (a.u.) Voltage =.975 V -2-2 Frequency (GHz) B= T B=.9 T B= T B=.9 T E Z (h) E Z (e) Morten Bakker - Quantum Optics group - University of Leiden 25

26 Sample P-contact N-contact 3 µm 2 nm.5 mm Morten Bakker - Quantum Optics group - University of Leiden 26

27 Setup Morten Bakker - Quantum Optics group - University of Leiden 27

28 3. Phase variations around resonance Morten Bakker - Quantum Optics group - University of Leiden 28

29 Viewing the aperture Reflectance at 64 nm Y X Morten Bakker - Quantum Optics group - University of Leiden 29

30 Polarization degenerate CQED Neutral QD: 9 Refl.5.2. Trans Refl.5. Trans Voltage (V) Refl.5.2. Trans Frequency (GHz) -2-2 Freq (GHz) Morten Bakker - Quantum Optics group - University of Leiden 3

31 QD power dependence Negative QD, vary excitation power: Power =.6 nw Power = 2.6 nw Power = 7.2 nw Intensity (a.u.) Frequency (GHz) -2-2 Frequency (GHz) -2-2 Frequency (GHz) γ QD =.3 GHz γ QD =.6 GHz γ QD = 2.3 GHz Q cavity = 27. Morten Bakker - Quantum Optics group - University of Leiden 3

32 QD (charge?) jumps A curious QD that shows on/off blinking behavior: (not all QDs show this!) Average.8 Intensity (a.u.) Frequency (GHz) Morten Bakker - Quantum Optics group - University of Leiden 32

33 Outline Motivation Introduction of system: Qdots & microcavities Various experiments:. Resonant spectroscopy 2. Hysteresis effects & charge memory 3. Coherence measurements Morten Bakker - Quantum Optics group - University of Leiden 33

34 Motivation Quantum dots (artificial atoms) and micropillar cavities.2 photon Refl.5. Trans -2 2 Freq (GHz) Morten Bakker - Quantum Optics group - University of Leiden 34

35 Motivation Quantum dots (artificial atoms) and micropillar cavities.2 photon Refl.5. Trans + photon e g (artificial) atom Towards QD photon entanglement Refl Freq (GHz).2. Trans Morten Bakker - Quantum Optics group - University of Leiden 35

36 Artificial atoms Neutral QD: Charged QD: +B-field: Morten Bakker - Quantum Optics group - University of Leiden 36

37 Voltage control Voltage control of charge and energy (through Stark effect) Neutral 949 Charged PL (a.u.) H V Wavelength (nm) X X - PL (a.u.) Wavelength (nm) Voltage (V) Wavelength (nm) Morten Bakker - Quantum Optics group - University of Leiden 37

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Quantum optics with multi-level transitions in semiconductor quantum dots

Quantum optics with multi-level transitions in semiconductor quantum dots Quantum optics with multi-level transitions in semiconductor quantum dots Brian Gerardot Institute of Photonics and Quantum Sciences, SUPA Heriot-Watt University, Edinburgh, UK Confocal Quantum Coherent

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Table of List of contributors Preface page xi xv Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 1 Growth of III V semiconductor quantum dots C.

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Rabi oscillations in a cavity-quantum dot system

Rabi oscillations in a cavity-quantum dot system Rabi oscillations in a cavity-quantum dot system THESIS submitted in partial fulfillment of the requirements for the degree of BACHELOR OF SCIENCE in PHYSICS Author : Steven Riedijk Student ID : 1693042

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Journal of the Korean Physical Society, Vol. 42, No., February 2003, pp. 768 773 Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Axel Scherer, T. Yoshie, M. Lončar, J. Vučković

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Single-photon nonlinearity of a semiconductor quantum dot in a cavity

Single-photon nonlinearity of a semiconductor quantum dot in a cavity Single-photon nonlinearity of a semiconductor quantum dot in a cavity D. Sanvitto, F. P. Laussy, F. Bello, D. M. Whittaker, A. M. Fox and M. S. Skolnick Department of Physics and Astronomy, University

More information

Single photon nonlinear optics in photonic crystals

Single photon nonlinear optics in photonic crystals Invited Paper Single photon nonlinear optics in photonic crystals Dirk Englund, Ilya Fushman, Andrei Faraon, and Jelena Vučković Ginzton Laboratory, Stanford University, Stanford, CA 94305 ABSTRACT We

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

Terahertz sensing and imaging based on carbon nanotubes:

Terahertz sensing and imaging based on carbon nanotubes: Terahertz sensing and imaging based on carbon nanotubes: Frequency-selective detection and near-field imaging Yukio Kawano RIKEN, JST PRESTO ykawano@riken.jp http://www.riken.jp/lab-www/adv_device/kawano/index.html

More information

Image courtesy of Keith Schwab http://www.lbl.gov/science-articles/archive/afrd Articles/Archive/AFRD-quantum-logic.html http://www.wmi.badw.de/sfb631/tps/dqd2.gif http://qist.lanl.gov/qcomp_map.shtml

More information

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada Parte III Sergio E. Ulloa Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University,

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Entangled photon pairs from radiative cascades in semiconductor quantum dots

Entangled photon pairs from radiative cascades in semiconductor quantum dots Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI Original phys. stat. sol. (b, 1 5 (26 / DOI 1.12/pssb.267152 Entangled

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Labs 3-4: Single-photon Source

Labs 3-4: Single-photon Source Labs 3-4: Single-photon Source Lab. 3. Confocal fluorescence microscopy of single-emitter Lab. 4. Hanbury Brown and Twiss setup. Fluorescence antibunching 1 Labs 3-4: Single-photon Source Efficiently produces

More information

Cavity QED: Quantum Control with Single Atoms and Single Photons. Scott Parkins 17 April 2008

Cavity QED: Quantum Control with Single Atoms and Single Photons. Scott Parkins 17 April 2008 Cavity QED: Quantum Control with Single Atoms and Single Photons Scott Parkins 17 April 2008 Outline Quantum networks Cavity QED - Strong coupling cavity QED - Network operations enabled by cavity QED

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics

More information

Computational Optoelectronics Group, Integrated Systems Laboratory, ETH Zurich 2. Institute of Photonics and Quantum Electronics, EPF Lausanne

Computational Optoelectronics Group, Integrated Systems Laboratory, ETH Zurich 2. Institute of Photonics and Quantum Electronics, EPF Lausanne Modelling the Purcell Effect in Photonic Crystal Cavities with a 3D Finite Element Maxwell Solver Friedhard Römer 1, Andrea Fiore 2, Laurent Balet 2, and Bernd Witzigmann 1 1 Computational Optoelectronics

More information

An entangled LED driven quantum relay over 1km

An entangled LED driven quantum relay over 1km An entangled LED driven quantum relay over 1km Christiana Varnava 1,2 R. Mark Stevenson 1, J. Nilsson 1, J. Skiba Szymanska 1, B. Dzurnak 1, M. Lucamarini 1, A. J. Bennett 1,M. B. Ward 1, R. V. Penty 2,I.

More information

Quantum Condensed Matter Physics Lecture 9

Quantum Condensed Matter Physics Lecture 9 Quantum Condensed Matter Physics Lecture 9 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 9.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal Nanocavity via Unsymmetrical Displacement of Air-Holes

Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal Nanocavity via Unsymmetrical Displacement of Air-Holes The International Journal Of Engineering And Science (Ijes) Volume 2 Issue 2 Pages 146-150 2013 Issn: 2319 1813 Isbn: 2319 1805 Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal

More information

Theory of quantum dot cavity-qed

Theory of quantum dot cavity-qed 03.01.2011 Slide: 1 Theory of quantum dot cavity-qed -- LO-phonon induced cavity feeding and antibunching of thermal radiation -- Alexander Carmele, Julia Kabuss, Marten Richter, Andreas Knorr, and Weng

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

+ - Indirect excitons. Exciton: bound pair of an electron and a hole.

+ - Indirect excitons. Exciton: bound pair of an electron and a hole. Control of excitons in multi-layer van der Waals heterostructures E. V. Calman, C. J. Dorow, M. M. Fogler, L. V. Butov University of California at San Diego, S. Hu, A. Mishchenko, A. K. Geim University

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

An Opto-Mechanical Microwave-Rate Oscillator

An Opto-Mechanical Microwave-Rate Oscillator An Opto-Mechanical Microwave-Rate Oscillator Tal Carmon and Kerry Vahala California Institute of Technology Diameter of a human hair Opto excited Vibration: Explanation Pump Res Wavelength Experimental

More information

An artificial atom locked to natural atoms

An artificial atom locked to natural atoms An artificial atom locked to natural atoms N. Akopian 1*, R. Trotta 2, E. Zallo 2, S. Kumar 2, P. Atkinson 2, A. Rastelli 2, O. G. Schmidt 2 & V. Zwiller 1 1 Kavli Institute of Nanoscience Delft, Delft

More information

Quantum Information Processing with Electrons?

Quantum Information Processing with Electrons? Quantum Information Processing with 10 10 Electrons? René Stock IQIS Seminar, October 2005 People: Barry Sanders Peter Marlin Jeremie Choquette Motivation Quantum information processing realiations Ions

More information

How to measure packaging-induced strain in high-brightness diode lasers?

How to measure packaging-induced strain in high-brightness diode lasers? How to measure packaging-induced strain in high-brightness diode lasers? Jens W. Tomm Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Berlin Max-Born-Str. 2 A, D-12489 Berlin, Germany

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia

Ultrafast optical rotations of electron spins in quantum dots. St. Petersburg, Russia Ultrafast optical rotations of electron spins in quantum dots A. Greilich 1*, Sophia E. Economou 2, S. Spatzek 1, D. R. Yakovlev 1,3, D. Reuter 4, A. D. Wieck 4, T. L. Reinecke 2, and M. Bayer 1 1 Experimentelle

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Practical realization of Quantum Computation

Practical realization of Quantum Computation Practical realization of Quantum Computation Cavity QED http://www.quantumoptics.ethz.ch/ http://courses.washington.edu/ bbbteach/576/ http://www2.nict.go.jp/ http://www.wmi.badw.de/sfb631/tps/dipoletrap_and_cavity.jpg

More information

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures

Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Supplementary Information: Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures Andreas W. Schell, 1, a) Johannes Kaschke, 2 Joachim Fischer,

More information

AP/P387 Note2 Single- and entangled-photon sources

AP/P387 Note2 Single- and entangled-photon sources AP/P387 Note Single- and entangled-photon sources Single-photon sources Statistic property Experimental method for realization Quantum interference Optical quantum logic gate Entangled-photon sources Bell

More information

Optically-controlled controlled quantum dot spins for quantum computers

Optically-controlled controlled quantum dot spins for quantum computers Optically-controlled controlled quantum dot spins for quantum computers David Press Yamamoto Group Applied Physics Department Ph.D. Oral Examination April 28, 2010 1 What could a Quantum Computer do? Simulating

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels Gage Redler and Stephen Hill Department of Physics, University of Florida Abstract High Frequency Electron Paramagnetic Resonance

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation

1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation QSIT09.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical

More information

The Solid-State Quantum Network (SSQN)

The Solid-State Quantum Network (SSQN) The Solid-State Quantum Network (SSQN) An ERC CHIST-ERA grant Imperial College London (theory) Bristol That s us! (spin-photon interface) University of Würzburg (fabrication of micropillar samples) CNRS/LPN

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Generation of single photons and correlated photon pairs using InAs quantum dots

Generation of single photons and correlated photon pairs using InAs quantum dots Fortschr. Phys. 52, No. 2, 8 88 (24) / DOI.2/prop.2488 Generation of single photons and correlated photon pairs using InAs quantum dots C. Santori,2, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto,3,

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Spin selective Purcell effect in a quantum dot microcavity system

Spin selective Purcell effect in a quantum dot microcavity system Spin selective urcell effect in a quantum dot microcavity system Qijun Ren, 1 Jian Lu, 1, H. H. Tan, 2 Shan Wu, 3 Liaoxin Sun, 1 Weihang Zhou, 1 Wei ie, 1 Zheng Sun, 1 Yongyuan Zhu, 3 C. Jagadish, 2 S.

More information

Exciton photon strong-coupling regime for a single quantum dot in a microcavity.

Exciton photon strong-coupling regime for a single quantum dot in a microcavity. Exciton photon strong-coupling regime for a single quantum dot in a microcavity. Emmanuelle Peter, Pascale Senellart, David Martrou, Aristide Lemaître, Jacqueline Bloch, Julien Hours, Jean-Michel Gérard

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Single Photon Generation & Application in Quantum Cryptography

Single Photon Generation & Application in Quantum Cryptography Single Photon Generation & Application in Quantum Cryptography Single Photon Sources Photon Cascades Quantum Cryptography Single Photon Sources Methods to Generate Single Photons on Demand Spontaneous

More information

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Growth of III V semiconductor quantum dots C. Schneider, S. Höfling and A. Forchel 1.1 Introduction

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Simulation of Optical Modes in Microcavities

Simulation of Optical Modes in Microcavities Simulation of Optical Modes in Microcavities Bernd Witzigmann, Matthias Streiff Computational Optoelectronics Group Integrated Systems Laboratory, ETH Zurich bernd@iis.ee.ethz.ch Overview Introduction

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

Limits of the separated-path Ramsey atom interferometer

Limits of the separated-path Ramsey atom interferometer J. Phys. B: At. Mol. Opt. Phys. 3 (1999) 5033 5045. Printed in the UK PII: S0953-4075(99)06844-3 Limits of the separated-path Ramsey atom interferometer R M Godun,CLWebb, P D Featonby, M B d Arcy, M K

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1

quantum mechanics is a hugely successful theory... QSIT08.V01 Page 1 1.0 Introduction to Quantum Systems for Information Technology 1.1 Motivation What is quantum mechanics good for? traditional historical perspective: beginning of 20th century: classical physics fails

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

Quantum Dots: Artificial Atoms & Molecules in the Solid-State

Quantum Dots: Artificial Atoms & Molecules in the Solid-State Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, UC Berkeley, Univ. of Illinois, UTEP Quantum Dots: Artificial Atoms & Molecules in the Solid-State Network for Computational

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics

Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics Single Photon Nonlinear Optics with Cavity enhanced Quantum Electrodynamics Xiaozhen Xu Optical Science and Engineering University of New Mexico Albuquerque, NM 87131 xzxu@unm.edu We consider the nonlinearity

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Multi-cycle THz pulse generation in poled lithium niobate crystals

Multi-cycle THz pulse generation in poled lithium niobate crystals Laser Focus World April 2005 issue (pp. 67-72). Multi-cycle THz pulse generation in poled lithium niobate crystals Yun-Shik Lee and Theodore B. Norris Yun-Shik Lee is an assistant professor of physics

More information

OPTICAL nonlinearity observable with low power light is

OPTICAL nonlinearity observable with low power light is 8 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 8, NO. 6, NOVEMBER/DECEMBER All Optical Switching With a Single Quantum Dot Strongly Coupled to a Photonic Crystal Cavity Arka Majumdar, Michal

More information

PHYS598 AQG Introduction to the course

PHYS598 AQG Introduction to the course PHYS598 AQG Introduction to the course First quantum gas in dilute atomic vapors 87 Rb BEC : Wieman / Cornell group (1995) Logistics A bit about the course material Logistics for the course Website: https://courses.physics.illinois.edu/phys598aqg/fa2017/

More information

Quantum Photonic Integrated Circuits

Quantum Photonic Integrated Circuits Quantum Photonic Integrated Circuits IHFG Hauptseminar: Nanooptik und Nanophotonik Supervisor: Prof. Dr. Peter Michler 14.07.2016 Motivation and Contents 1 Quantum Computer Basics and Materials Photon

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Quantum manipulation of NV centers in diamond

Quantum manipulation of NV centers in diamond Quantum manipulation of NV centers in diamond 12.09.2014 The University of Virginia Physics Colloquium Alex Retzker Jianming Cai, Andreas Albrect, M. B. Plenio,Fedor Jelezko, P. London, R. Fisher,B. Nayedonov,

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Electrical control of superposed quantum states evolution in quantum dot molecule by pulsed field

Electrical control of superposed quantum states evolution in quantum dot molecule by pulsed field 1 Electrical control of superposed quantum states evolution in quantum dot molecule by pulsed field S. W. Hwang*, D. Y. Jeong*, M. S. Jun*, M. H. Son*, L. W. Engel, J. E. Oh, & D. Ahn* *Institute of Quantum

More information