SUPPLEMENTARY INFORMATION

Size: px
Start display at page:

Download "SUPPLEMENTARY INFORMATION"

Transcription

1 SUPPLEMENTARY MATERIAL Towards quantum dot arrays of entangled photon emitters Gediminas Juska *1, Valeria Dimastrodonato 1, Lorenzo O. Mereni 1, Agnieszka Gocalinska 1 and Emanuele Pelucchi 1 1 Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland * Corresponding author: gediminas.juska@tyndall.ie Here we discuss in more details some issues which did not find space in the main body of our contribution, as a source of extra clarification. Linewidth The typical Lorentzian linewidth of the exciton transition was found to be 80±15 µev in our first samples. Such broadening of the natural linewidth is possibly due to patterning introduced impurities creating local electric field fluctuations by randomly trapped charges 1 and unintentional impurities generated during the MOVPE precursor decomposition. While linewidth has a minor role on the specific of this report (which concentrates on the achievement of high symmetry dots emitting entangled photons, while spectral meandering, which is not noise, is a slow process (typically a few milliseconds) and does not affect in itself entanglement nor coherence), we nevertheless anticipate, as an answer to possible readers concerns, that it is possible to reduce spectral meandering below 20 µev under non resonant excitation in our QDs, when proper reactor and processing protocols are adopted. We actually managed to obtain entangled photons from QDs exhibiting lines as narrow as ~40 µev, after our manuscript was firstly submitted 2,3. These results are a clear indication that spectral meandering can be defeated, and does not represent a limitation for pyramidal QDs incorporation in integrated photonic circuits. Significance of the excitonic pattern In the text, we stress that a particular excitonic pattern acts as a very reliable fingerprint of entangled photon emitters. The samples which we present here contain QDs with two different types of excitonic patterns which mainly differ in the order of biexciton and charged exciton (the attributed type of transitions is consistent with photon correlation, excitation power dependent, time resolved and temperature dependent measurements). The most widely spread type is presented in Fig. S1(a). It is the pattern which we almost always observed in our first samples 4 antibinding biexciton with binding energy in the range of 3-4 mev. Typically there exists a charged exciton between exciton and biexciton. In the new optimized and reproducible samples, a significant percentage of QDs (~20%) NATURE PHOTONICS 1

2 Figure S1. Significance of the excitonic pattern. (a), (b) Two different types of excitonic patterns found on the same sample. The data presented in the main text is obtained from QD with excitonic pattern (b). (c) Biexciton binding energy of QDs from dots with an excitonic pattern as in (b). (d) Fidelity of entangled state as a function of QD emission energy for dots with an excitonic pattern as in (b). had a different excitonic pattern (Fig. S1(b)). The main difference comparing to the first pattern is swapped positions of biexciton and charged exciton with biexciton being separated from exciton by mev (Fig. S1(c)). By picking these dots, entanglement tests have failed only a minority of times. It must be stressed that the fine-structure splitting (FSS) values were not reliable indicators of entangled photon emitters for the both types of excitonic patterns, as in majority of cases, no FSS was measured within the 4 µev resolution of our FSS detection procedure. By picking QDs with the first pattern, entanglement tests have failed all the times despite vanishing FSS. The reasons of such behavior are not obvious we can only confirm the observed result, and suggest that maybe a FSS was actually present, even if not detectable by us. Fig. S1(d) shows the fidelity of entangled state as a function of the exciton transition energy from the second pattern QDs. No dependence was observed, suggesting that as long as the excitonic pattern is the same, the entanglement quality is maintained. 2 NATURE PHOTONICS

3 Influence of the fine-structure splitting In the main text, we state the typical FSS detection procedure limit to be generally ~4 µev. In some individual cases, this limit could be overcome and the FSS was measured even if smaller than 4 µev. Figure S2 shows a particular QD with the FSS of 3 µev (Fig. 2S(a)). The QD is from a different sample, with a slightly thicker nominal QD layer (it is reflected in the reduced emission energy (Fig. 2S(b))). We stress that, in general, a rather small splitting is sufficient to destroy all the indications of polarizationentanglement. Fig. S2(a) presents the degree of correlation as a function of linear polarization detection angle (twice the angle between a fixed linear-polarizer and the fast axis of a half-wave plate). The degree of correlation follows the sinusoidal trend an indication of classical correlations 5. For comparison, Fig. S2(c) presents the same type of measurement when a QD does not suffer from FSS related issues. The degree of correlation barely depends on polarization angle, as expected for entangled photons. The average value of 0.56±0.04 can be only obtained if polarization correlations are nonclassical. Data points fit better with sinusoidal than linear trend possibly due to a tiny remaining FSS and (or) incoherent dephasing effects 6. Figure S2. Demonstration of the fine-structure splitting influence on polarizationentanglement indication.(a) FSS measurementand degree of correlation as a function of linear polarization detection angle showing typical behavior when only classical polarization correlations are present. (b) The spectrum of the same QD with ~3 µev FSS. (c) Degree of correlation as a function of linear polarization detection angle obtained from a different QD which does not suffer from FSS related issues. The trend and the average value of 0.56±0.04 demonstrate presence of non-classical correlations. (d) A direct example of classical polarization correlations obtained from photons emitted by the QD shown in (b). NATURE PHOTONICS 3

4 The obtained FSS and degree of correlation curves (Fig. S2(a)) are in agreement with each other. The maximum and minimum of the FSS curve indicate the polarization axes of the QD (which are expected to be random for different QDs, as the sources of the FSS are not expected to be related to crystallographic directions). The degree of correlation is expected to be highest at these angles. Fig. S2(d) directly demonstrates the presence of classical correlations. Polarization correlation is observed only in linear bases, but not in diagonal and circular. Useful QD density comparison with other QD systems In our contribution, we claimed easily finding areas containing at least 15% of entangled photon emitters. Comparing to the other QD systems, this density is typical significantly smaller (1/100 or worse). For example, Salter et al. 7 claimed finding one good dot per device with an active area of ~130k µm 2, patterned with 100 circular holes. The typical density of QDs quoted is 1 µm -2, suggests one entangled photon emitter out of 300 potential candidates (without using any FSS tuning strategy, such as magnetic, electric fields, strain), per useful area, and 1/130k per total area involved. Different figure presentation Figure presentation is often a question of taste: here we show the original Figure 1 in the text with a different labeling criteria, for the demanding reader. Figure S3. An alternative version of the Figure 1 in the main text to introduce the information on absolute QD intensity values to the concerned readers. 4 NATURE PHOTONICS

5 REFERENCES 1. Empedocles, S. A. & Bawendi, M. G. Quantum-confined stark effect in single CdSe nanocrystallite quantum dots. Science 278, (1997). 2. Mereni, L. O., Dimastrodonato, V., Young, R. J. & Pelucchi, E. A site-controlled quantum dot system offering both high uniformity and spectral purity. Appl. Phys. Lett. 94, (2009). 3. Juska, G., Dimastrodonato, V., Mereni, L. O., Gocalinska, A. & Pelucchi, E. A study of nitrogen incorporation in pyramidal site-controlled quantum dots. Nanoscale Res. Lett. 6, 567 (2011). 4.Dimastrodonato, V., Mereni, L. O., Juska, G. & Pelucchi, E. Impact of nitrogen incorporation on pseudomorphic site-controlled quantum dots grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 97, , (2010). 5.Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, (2006). 6.Yuan, L. Q. & Das, S. Quantum correlations and violation of the Bell inequality induced by an external field in a two-photon radiative cascade. Physical Review A 83, (2011). 7. Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594 (2010). NATURE PHOTONICS 5

Wednesday 3 September Session 3: Quantum dots, nanocrystals and low dimensional materials (16:15 16:45, Huxley LT311)

Wednesday 3 September Session 3: Quantum dots, nanocrystals and low dimensional materials (16:15 16:45, Huxley LT311) Session 3: Quantum dots, nanocrystals and low dimensional materials (16:15 16:45, (invited) Engineering entangled photon emission from site controlled quantum dots E Pelucchi, G Juska, V Dimastrodonato,

More information

Coherence of an Entangled Exciton-Photon State

Coherence of an Entangled Exciton-Photon State Coherence of an Entangled Exciton-Photon State A. J. Hudson,2, R. M. Stevenson, A. J. Bennett, R. J. Young, C. A. Nicoll 2, P. Atkinson 2, K. Cooper 2, D. A. Ritchie 2 and A. J. Shields. Toshiba Research

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

of AlInP Quantum Wires for Polarized Micron-sized

of AlInP Quantum Wires for Polarized Micron-sized Three-dimensional Self-assembled Columnar Arrays of AlInP Quantum Wires for Polarized Micron-sized Amber Light Emitting Diodes Andrea Pescaglini, a Agnieszka Gocalinska, a, * Silviu Bogusevschi, a,b Stefano

More information

Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field

Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field Received 5 Jul 211 Accepted 21 Dec 211 Published 7 Feb 212 DOI: 1.138/ncomms1657 Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field Mohsen Ghali

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

On-demand generation of indistinguishable polarization-entangled photon pairs

On-demand generation of indistinguishable polarization-entangled photon pairs On-demand generation of indistinguishable polarization-entangled photon pairs M. Müller, S. Bounouar, K. D. Jöns and P. Michler August 21, 2013 Institut für Halbleiteroptik und Funktionelle Grenzflächen,

More information

Entangled photons on-demand from single quantum dots

Entangled photons on-demand from single quantum dots Entangled photons on-demand from single quantum dots Robert J. Young 1, R. Mark Stevenson 1, Paola Atkinson 2, Ken Cooper 2, David A. Ritchie 2, Andrew J. Shields 1 1 Toshiba Research Europe Limited, 260

More information

Entangled photon pairs from radiative cascades in semiconductor quantum dots

Entangled photon pairs from radiative cascades in semiconductor quantum dots Early View publication on www.interscience.wiley.com (issue and page numbers not yet assigned; citable using Digital Object Identifier DOI Original phys. stat. sol. (b, 1 5 (26 / DOI 1.12/pssb.267152 Entangled

More information

Spin selective Purcell effect in a quantum dot microcavity system

Spin selective Purcell effect in a quantum dot microcavity system Spin selective urcell effect in a quantum dot microcavity system Qijun Ren, 1 Jian Lu, 1, H. H. Tan, 2 Shan Wu, 3 Liaoxin Sun, 1 Weihang Zhou, 1 Wei ie, 1 Zheng Sun, 1 Yongyuan Zhu, 3 C. Jagadish, 2 S.

More information

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm.

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Charging steps are labeled by the vertical dashed lines. Intensity

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Journal of the Korean Physical Society, Vol. 42, No., February 2003, pp. 768 773 Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Axel Scherer, T. Yoshie, M. Lončar, J. Vučković

More information

An entangled LED driven quantum relay over 1km

An entangled LED driven quantum relay over 1km An entangled LED driven quantum relay over 1km Christiana Varnava 1,2 R. Mark Stevenson 1, J. Nilsson 1, J. Skiba Szymanska 1, B. Dzurnak 1, M. Lucamarini 1, A. J. Bennett 1,M. B. Ward 1, R. V. Penty 2,I.

More information

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Growth of III V semiconductor quantum dots C. Schneider, S. Höfling and A. Forchel 1.1 Introduction

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots R. Heitz et al.: PL Study of Self-Organized InGaAs/GaAs Quantum Dots 65 phys. stat. sol. b) 221, 65 2000) Subject classification: 73.61.Ey; 78.47.+p; 78.55.Cr; 78.66.Fd; S7.12 Resonantly Excited Time-Resolved

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

solidi current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates

solidi current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates solidi status physica pss c current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates M. Zervos1, C. Xenogianni1,2, G. Deligeorgis1, M. Androulidaki1,

More information

Terahertz Lasers Based on Intersubband Transitions

Terahertz Lasers Based on Intersubband Transitions Terahertz Lasers Based on Intersubband Transitions Personnel B. Williams, H. Callebaut, S. Kumar, and Q. Hu, in collaboration with J. Reno Sponsorship NSF, ARO, AFOSR,and NASA Semiconductor quantum wells

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk Je-Hyung Kim, Young-Ho Ko, Su-Hyun Gong, Suk-Min Ko, Yong-Hoon Cho Department of Physics, Graduate School of Nanoscience

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supporting online material SUPPLEMENTARY INFORMATION doi: 0.038/nPHYS8 A: Derivation of the measured initial degree of circular polarization. Under steady state conditions, prior to the emission of the

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Single Photon Generation & Application in Quantum Cryptography

Single Photon Generation & Application in Quantum Cryptography Single Photon Generation & Application in Quantum Cryptography Single Photon Sources Photon Cascades Quantum Cryptography Single Photon Sources Methods to Generate Single Photons on Demand Spontaneous

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

An artificial atom locked to natural atoms

An artificial atom locked to natural atoms An artificial atom locked to natural atoms N. Akopian 1*, R. Trotta 2, E. Zallo 2, S. Kumar 2, P. Atkinson 2, A. Rastelli 2, O. G. Schmidt 2 & V. Zwiller 1 1 Kavli Institute of Nanoscience Delft, Delft

More information

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures Superlattices and Microstructures, Vol. 2, No. 4, 1996 Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures M. R. Deshpande, J. W. Sleight, M. A. Reed, R. G. Wheeler

More information

arxiv: v1 [cond-mat.mtrl-sci] 11 Apr 2016

arxiv: v1 [cond-mat.mtrl-sci] 11 Apr 2016 Indium segregation during III-V quantum wire and quantum dot formation on patterned substrates Stefano T. Moroni 1, Valeria Dimastrodonato 1, Tung-Hsun Chung 1, Gediminas Juska 1, Agnieszka Gocalinska

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Charge noise and spin noise in a semiconductor quantum device

Charge noise and spin noise in a semiconductor quantum device Charge noise and spin noise in a semiconductor quantum device Andreas V. Kuhlmann, 1 Julien Houel, 1 Arne Ludwig, 1, 2 Lukas Greuter, 1 Dirk Reuter, 2, 3 Andreas D. Wieck, 2 Martino Poggio, 1 and Richard

More information

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells 1 14. Intermediate-Band Solar Cells Intermediate (impurity) band solar cells (IBSCs) (I) Concept first proposed by A. Luque and A. Martí in 1997. Establish an additional electronic band within the band

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.017.65 Imaging exciton-polariton transport in MoSe waveguides F. Hu 1,, Y. Luan 1,, M. E. Scott 3, J.

More information

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Tillmann Kubis, Gerhard Klimeck Department of Electrical and Computer Engineering Purdue University, West Lafayette, Indiana

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics 550 Brazilian Journal of Physics, vol. 34, no. 2B, June, 2004 Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics S. Fafard, K. Hinzer, and C. N. Allen Institute for Microstructural

More information

Heterogeneous teleportation with laser and quantum light sources

Heterogeneous teleportation with laser and quantum light sources Heterogeneous teleportation with laser and quantum light sources R. M. Stevenson 1 *, J. Nilsson 1, A. J. Bennett 1, J. Skiba-Szymanska 1, I. Farrer 2, D. A. Ritchie 2, A. J. Shields 1 * 1 Toshiba Research

More information

Quantum optics with multi-level transitions in semiconductor quantum dots

Quantum optics with multi-level transitions in semiconductor quantum dots Quantum optics with multi-level transitions in semiconductor quantum dots Brian Gerardot Institute of Photonics and Quantum Sciences, SUPA Heriot-Watt University, Edinburgh, UK Confocal Quantum Coherent

More information

ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS

ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS Josef HUMLÍČEK a,b, Petr KLENOVSKÝ a,b, Dominik MUNZAR a,b a DEPT. COND. MAT. PHYS., FACULTY OF SCIENCE, Kotlářská 2, 611 37 Brno, Czech Republic b

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

Dr. Masahiro Yoshita Inst. for Sol. St. Physics Univ. of Tokyo CREST, JST Kashiwanoha, Kashiwa Chiba , JAPAN. Dear Dr.

Dr. Masahiro Yoshita Inst. for Sol. St. Physics Univ. of Tokyo CREST, JST Kashiwanoha, Kashiwa Chiba , JAPAN. Dear Dr. Subject: Your_manuscript LP9512 Yoshita From: Physical Review Letters Date: Tue, 13 Jul 2004 18:56:22 UT To: yoshita@issp.u-tokyo.ac.jp Re: LP9512 Crossover of excitons to an electron-hole

More information

dots) and max max without energies

dots) and max max without energies Supplementary Figure 1 Light-polarization-dependent the crystal b-axis. Scale bar, 25 m. (b) Polarization-dependent absorption spectra of bilayer ReS 2. (c) Corresponding spectral weights of Lorentzian

More information

Generation of single photons and correlated photon pairs using InAs quantum dots

Generation of single photons and correlated photon pairs using InAs quantum dots Fortschr. Phys. 52, No. 2, 8 88 (24) / DOI.2/prop.2488 Generation of single photons and correlated photon pairs using InAs quantum dots C. Santori,2, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto,3,

More information

Wavelength extension of GaInAs/GaIn(N)As quantum dot structures grown on GaAs

Wavelength extension of GaInAs/GaIn(N)As quantum dot structures grown on GaAs PUBLICATION V Journal of Crystal Growth 248 (2003) 339 342 Wavelength extension of GaInAs/GaIn(N)As quantum dot structures grown on GaAs T. Hakkarainen*, J. Toivonen, M. Sopanen, H. Lipsanen Optoelectronics

More information

Using Light to Prepare and Probe an Electron Spin in a Quantum Dot

Using Light to Prepare and Probe an Electron Spin in a Quantum Dot A.S. Bracker, D. Gammon, E.A. Stinaff, M.E. Ware, J.G. Tischler, D. Park, A. Shabaev, and A.L. Efros Using Light to Prepare and Probe an Electron Spin in a Quantum Dot A.S. Bracker, D. Gammon, E.A. Stinaff,

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) (invited) TBC Session 3: Metamaterials Theory (16:45 17:00, Huxley LT308) Light trapping states in media with longitudinal electric waves D McArthur,

More information

Low threshold and room-temperature lasing of electrically pumped red-emitting InP/(Al Ga 0.80 ) In 0.49.

Low threshold and room-temperature lasing of electrically pumped red-emitting InP/(Al Ga 0.80 ) In 0.49. Journal of Physics: Conference Series Low threshold and room-temperature lasing of electrically pumped red-emitting InP/(Al 0.20 Ga 0.80 ) 0.51 In 0.49 P quantum dots To cite this article: Marcus Eichfelder

More information

doi: /PhysRevLett

doi: /PhysRevLett doi: 10.1103/PhysRevLett.77.494 Luminescence Hole Burning and Quantum Size Effect of Charged Excitons in CuCl Quantum Dots Tadashi Kawazoe and Yasuaki Masumoto Institute of Physics and Center for TARA

More information

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics

More information

Electron-polariton scattering, beneficial and detrimental effects

Electron-polariton scattering, beneficial and detrimental effects phys. stat. sol. (c) 1, No. 6, 1333 1338 (2004) / DOI 10.1002/pssc.200304063 Electron-polariton scattering, beneficial and detrimental effects P. G. Lagoudakis *, 1, J. J. Baumberg 1, M. D. Martin 1, A.

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Content Introduction to XEOL Application of XEOL Development and Application of XEOL in STXM

More information

Supplementary for Disorder Dependent Valley Properties in Monolayer WSe 2

Supplementary for Disorder Dependent Valley Properties in Monolayer WSe 2 Supplementary for Disorder Dependent Valley Properties in Monolayer WSe 2 Kha Tran 1, Akshay Singh 1,*, Joe Seifert 1, Yiping Wang 1, Kai Hao 1, Jing-Kai Huang 2, Lain-Jong Li 2, Takashi Taniguchi 4, Kenji

More information

Single photon emitters in exfoliated WSe 2 structures

Single photon emitters in exfoliated WSe 2 structures Single photon emitters in exfoliated WSe 2 structures M. Koperski, 1,2 K. Nogajewski, 1 A. Arora, 1 V. Cherkez, 3 P. Mallet, 3 J.-Y. Veuillen, 3 J. Marcus, 3 P. Kossacki, 1,2 and M. Potemski 1 1 Laboratoire

More information

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for six WSe 2 -MoSe 2 heterostructures under cw laser excitation

More information

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height

Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height Supplementary Figure S1. AFM characterizations and topographical defects of h- BN films on silica substrates. (a) (c) show the AFM height topographies of h-bn film in a size of ~1.5µm 1.5µm, 30µm 30µm

More information

Your_manuscript LP9512 Yoshita

Your_manuscript LP9512 Yoshita 1/6 2005/07/21 16:55 Subject: Your_manuscript LP9512 Yoshita From: Physical Review Letters Date: Mon, 28 Feb 2005 22:32:45 UT To: yoshita@issp.u-tokyo.ac.jp Re: LP9512 Evolution of

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

Excitonic luminescence upconversion in a two-dimensional semiconductor

Excitonic luminescence upconversion in a two-dimensional semiconductor Excitonic luminescence upconversion in a two-dimensional semiconductor Authors: Aaron M. Jones 1, Hongyi Yu 2, John R. Schaibley 1, Jiaqiang Yan 3,4, David G. Mandrus 3-5, Takashi Taniguchi 6, Kenji Watanabe

More information

Internal magnetic field measurement in tokamak plasmas using a Zeeman polarimeter

Internal magnetic field measurement in tokamak plasmas using a Zeeman polarimeter PRAMANA cfl Indian Academy of Sciences Vol. 55, Nos 5 & 6 journal of Nov. & Dec. 2000 physics pp. 751 756 Internal magnetic field measurement in tokamak plasmas using a Zeeman polarimeter M JAGADEESHWARI

More information

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23

Lecture contents. Stress and strain Deformation potential. NNSE 618 Lecture #23 1 Lecture contents Stress and strain Deformation potential Few concepts from linear elasticity theory : Stress and Strain 6 independent components 2 Stress = force/area ( 3x3 symmetric tensor! ) ij ji

More information

Self-limiting evolution of seeded quantum wires and dots on patterned substrates

Self-limiting evolution of seeded quantum wires and dots on patterned substrates Self-limiting evolution of seeded quantum wires and dots on patterned substrates V. Dimastrodonato, 1 E. Pelucchi, 1 and D. D. Vvedensky 2 1 Tyndall National Institute, University College Cork, Lee Maltings,

More information

Quantum Feedback Stabilized Solid-State Emitters

Quantum Feedback Stabilized Solid-State Emitters FOPS 2015 Breckenridge, Colorado Quantum Feedback Stabilized Solid-State Emitters Alexander Carmele, Julia Kabuss, Sven Hein, Franz Schulze, and Andreas Knorr Technische Universität Berlin August 7, 2015

More information

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Chemistry Instrumental Analysis Lecture 5. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 5 Light Amplification by Stimulated Emission of Radiation High Intensities Narrow Bandwidths Coherent Outputs Applications CD/DVD Readers Fiber Optics Spectroscopy

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Electrical control of single hole spins in nanowire quantum dots V. S. Pribiag, S. Nadj-Perge, S. M. Frolov, J. W. G. van den Berg, I. van Weperen., S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven

More information

PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS

PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS A. Majid a,b, Samir Alzobaidi a and Thamer Alharbi a a Department of Physics, College of Science, Almajmaah University, P. O. Box no.1712, Al-Zulfi 11932,

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

EXCITONS, PLASMONS, AND EXCITONIC COMPLEXES UNDER STRONG CONFINEMENT IN QUASI-1D SEMICONDUCTORS. Theory and Perspectives

EXCITONS, PLASMONS, AND EXCITONIC COMPLEXES UNDER STRONG CONFINEMENT IN QUASI-1D SEMICONDUCTORS. Theory and Perspectives EXCITONS, PLASMONS, AND EXCITONIC COMPLEXES UNDER STRONG CONFINEMENT IN QUASI-1D SEMICONDUCTORS. Theory and Perspectives Igor Bondarev Math & Physics Department North Carolina Central University Durham,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Summary We describe the signatures of exciton-polariton condensation without a periodically modulated potential, focusing on the spatial coherence properties and condensation in momentum space. The characteristics

More information

Vanishing biexciton binding energy from stacked, MOVPE grown, site-controlled pyramidal quantum dots for twin photon generation

Vanishing biexciton binding energy from stacked, MOVPE grown, site-controlled pyramidal quantum dots for twin photon generation Vanishing biexciton binding energy from stacked, MOVPE grown, site-controlled pyramidal quantum dots for twin photon generation S. T. Moroni, S. Varo, G. Juska, T. H. Chung, A. Gocalinska, E. Pelucchi

More information

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi-

Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi- Supporting Information Size-Dependent Biexciton Quantum Yields and Carrier Dynamics of Quasi- Two-Dimensional Core/Shell Nanoplatelets Xuedan Ma, Benjamin T. Diroll, Wooje Cho, Igor Fedin, Richard D. Schaller,

More information

Valley Zeeman Effect of free and bound excitons in WSe2

Valley Zeeman Effect of free and bound excitons in WSe2 Valley Zeeman Effect of free and bound excitons in WSe2 Ajit Srivastava Quantum Photonics Group ETH Zurich, Switzerland 24.01.2014 TMD Research Motivation Optical control of spins & pseudo-spins 2D optical

More information

Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells

Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells Time Resolved Faraday Rotation Measurements of Spin Polarized Currents in Quantum Wells M. R. Beversluis 17 December 2001 1 Introduction For over thirty years, silicon based electronics have continued

More information

Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot

Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, D. D. Awschalom* Center for Spintronics and Quantum

More information

De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b)

De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b) PIEZOELECTRIC EFFECTS IN GaInN/GaN HETEROSTRUCTURES AND QUANTUM WELLS C. WETZEL, T. TAKEUCHI, S. YAMAGUCHI, H. KATO, H. AMANO, and I. AKASAKI High Tech Research Center, Meijo University, 1-501 Shiogamaguchi,

More information

Quantum Dot Lasers Using High-Q Microdisk Cavities

Quantum Dot Lasers Using High-Q Microdisk Cavities phys. stat. sol. (b) 224, No. 3, 797 801 (2001) Quantum Dot Lasers Using High-Q Microdisk Cavities P. Michler 1; *Þ (a), A. Kiraz (a), C. Becher (a), Lidong Zhang (a), E. Hu (a), A. Imamoglu (a), W. V.

More information

Supporting Info for. Lithography"

Supporting Info for. Lithography Supporting Info for "Deterministic Integration of Quantum Dots into on-chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography" Peter Schnauber, Johannes Schall, Samir Bounouar,

More information

Measurement Based Quantum Computing, Graph States, and Near-term Realizations

Measurement Based Quantum Computing, Graph States, and Near-term Realizations Measurement Based Quantum Computing, Graph States, and Near-term Realizations Miami 2018 Antonio Russo Edwin Barnes S. E. Economou 17 December 2018 Virginia Polytechnic Institute and State University A.

More information

Optical and Terahertz Characterization of Be-Doped GaAs/AlAs Multiple Quantum Wells

Optical and Terahertz Characterization of Be-Doped GaAs/AlAs Multiple Quantum Wells Vol. 107 (2005) ACTA PHYSICA POLONICA A No. 2 Proceedings of the 12th International Symposium UFPS, Vilnius, Lithuania 2004 Optical and Terahertz Characterization of Be-Doped GaAs/AlAs Multiple Quantum

More information

Magnetic control of valley pseudospin in monolayer WSe 2

Magnetic control of valley pseudospin in monolayer WSe 2 Magnetic control of valley pseudospin in monolayer WSe 2 Grant Aivazian, Zhirui Gong, Aaron M. Jones, Rui-Lin Chu, Jiaqiang Yan, David G. Mandrus, Chuanwei Zhang, David Cobden, Wang Yao, and Xiaodong Xu

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

Linear and nonlinear spectroscopy

Linear and nonlinear spectroscopy Linear and nonlinear spectroscopy We ve seen that we can determine molecular frequencies and dephasing rates (for electronic, vibrational, or spin degrees of freedom) from frequency-domain or timedomain

More information

Structural and Optical Properties of III-III-V-N Type

Structural and Optical Properties of III-III-V-N Type i Structural and Optical Properties of III-III-V-N Type Alloy Films and Their Quantum Wells ( III-III-V- N 型混晶薄膜および量子井戸の構造的および光学的性質 ) This dissertation is submitted as a partial fulfillment of the requirements

More information

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1 Laser Diodes Revised: 3/14/14 14:03 2014, Henry Zmuda Set 6a Laser Diodes 1 Semiconductor Lasers The simplest laser of all. 2014, Henry Zmuda Set 6a Laser Diodes 2 Semiconductor Lasers 1. Homojunction

More information

Theory of quantum dot cavity-qed

Theory of quantum dot cavity-qed 03.01.2011 Slide: 1 Theory of quantum dot cavity-qed -- LO-phonon induced cavity feeding and antibunching of thermal radiation -- Alexander Carmele, Julia Kabuss, Marten Richter, Andreas Knorr, and Weng

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Influence of Plasmonic Array Geometry on Energy Transfer from a. Quantum Well to a Quantum Dot Layer

Influence of Plasmonic Array Geometry on Energy Transfer from a. Quantum Well to a Quantum Dot Layer Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2016 Influence of Plasmonic Array Geometry on Energy Transfer from a Quantum Well to a Quantum Dot

More information

Entangled Photon Generation via Biexciton in a Thin Film

Entangled Photon Generation via Biexciton in a Thin Film Entangled Photon Generation via Biexciton in a Thin Film Hiroshi Ajiki Tokyo Denki University 24,Apr. 2017 Emerging Topics in Optics (IMA, Univ. Minnesota) Entangled Photon Generation Two-photon cascade

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

QUANTUM WELLS, WIRES AND DOTS

QUANTUM WELLS, WIRES AND DOTS QUANTUM WELLS, WIRES AND DOTS Theoretical and Computational Physics of Semiconductor Nanostructures Second Edition Paul Harrison The University of Leeds, UK /Cf}\WILEY~ ^INTERSCIENCE JOHN WILEY & SONS,

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013064 TITLE: Apparent Microcavity Effect in the Near-Field Photoluminescence f a Single Quantum Dot DISTRIBUTION: Approved

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information