De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b)

Size: px
Start display at page:

Download "De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b)"

Transcription

1 PIEZOELECTRIC EFFECTS IN GaInN/GaN HETEROSTRUCTURES AND QUANTUM WELLS C. WETZEL, T. TAKEUCHI, S. YAMAGUCHI, H. KATO, H. AMANO, and I. AKASAKI High Tech Research Center, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya Japan The electronic bandstructure of strained GaInN/GaN multiple quantum wells is studied as an example for piezoelectric wurtzite nitrides. In photoreection, photoluminescence and electroreection a minimum of four discrete levels are identied. In the limit of large strain levels form a Stark-like ladder the step size of which is given by the piezoelectric dipole across the strained well layer. Electric elds up to 0.9 MV/cm are identied. Electroreectance under an external bias eld identies the direction of the piezo eld to point from growth surface to substrate for biaxially strained GaInN. Piezoelectric elds are found to strongly aect the electronic bandstructure. 1 Introduction The wurtzite wide bandgap system of GaInN/GaN exhibits superb optoelectronic properties 1. Despite considerable device progress the nature of the light emission process remains highly controversial 2;3;4. In order to elucidate the bandstructure in GaInN/GaN multiple quantum wells (MQWs) we performed photoreection (PR), electroreection (ER) and photoluminescence (PL) spectroscopy. 2 Experimental GaInN/GaN heterostructures were grown in metal organic vapor phase epitaxy on sapphire 5. MQWs consist of 5 sequences of nominally L z = 30 A GaInN wells embedded in 60 A GaN. The set is grown either on 2 m GaN or embedded in a GaN pn-junction with the p-side and a transparent contact on top. Pseudomorphic strain was identied in x-ray mapping of both lattice constants. Reection measurements were performed using a white light source and a 325 nm HeCd laser for modulation. PL was performed using the same laser. In electroreection (ER) a sinusoidal voltage of 0.2 V pp at 2 khz and a variable oset was applied. All experiments were performed at room temperature. 1

2 PR R/R Intensity (arb. inits) De De De M 1 M 0 M 3 M 2 + Q fix = const a) b) Figure 1: a) PR and PL spectra of GaInN/GaN MQW structures. Corresponding features are indicated by dashed lines identifying four major interband transitions M 0 M 3 and narrow FKOs E 0 E 4. Derived electric eld values F are indicated. b) Schematic of the bandstructure at every strained GaN/GaInN/GaN heterointerface. Spatially direct transitions are identied. Dipole D is induced by the xed piezoelectric -layers. 3 Photoreection and Photoluminescence PR and PL spectra of the set of samples is shown in Fig. 1a) in the sequence of decreasing PL energy, i.e. increasing InN-fraction x. In PR a narrow excitonic double feature at 3.43 ev marks the GaN bandgap energy labeled here M 0. This signal is superimposed on a strong oscillation that marks an abrupt onset labeled M 1. At even lower energy a transition occurs that splits into M 2 and M 3 for decreasing PL energy. The PL maximum follows the lowest level M 3. The oscillations above level M 1 resemble Franz-Keldysh oscillations (FKOs) previously identied in strained GaInN/GaN single heterostructures 2. Oscillations are perturbed in part by the excitonic features at the GaN bandgap but their strong amplitude allows to directly determine the piezoelectric eld in the structures (see labels in Fig. 1a). An equidistant spacing of levels M 0, M 1,M 2, and M 3 at high elds is readily seen. 4 Electroreection To identify the role of the electric eld ER under variable bias voltage was performed (Fig. 2). Three levels M 0, M 2 0 and M 3 are clearly observed in the spectra (Fig. 2 a) while more features are seen in the grayscale presentation (Fig. 2 c). For increasing reverse bias from -2 V to +10 V level M 0 shifts to the red while M 2 0 initially shows a blueshift and levels o around -8 V. A stronger blueshift is seen for M 3. M 3 and M 2 0 merge around U bias =,6 V clearly 2

3 indicating that splitting is controlled by the electric eld and that a xed piezoelectric eld exists in the well pointing from the growth surface to the substrate. This agrees with supports corresponds to the ndings by Takeuchi et al. interpreting the quantum conned Stark eect in PL 5. The connection between M 2 and M 2 0 is subject of ongoing work. 5 Discussion The FKOs identify that M 1 is the edge of a three dimensional density of states gap. The eld F increases with strain or InN fraction. In direct correlation all the splittings i;i+1 = E Mi,E Mi+1 grow with F : Delta i;i+1 = FeL z;eff,(i = 1 3) with L z;eff 1:2L z. The splitting can be as large as 300 mev. Under biaxial stress piezoelectric -charges Q fix of opposite polarity are induced at the GaInN-GaN heterointerfaces. Carriers traversing the capacitor-like dipole layer of the well gain or loose the energy W t = FeL z, which is identical to 01. M 1 therefore corresponds to transitions with nal states on opposite sides of the well. Transitions ending on the same side correspond to level M 0, the barrier material bandgap energy. For emission correlated pairs of electrons and holes entering the well at energy level M 1 screen and depolarize the xed piezo charges. The energy in the capacitor W n = n 2 e 2 L z =(2 0 r A) reduces by W n, W n,1 =(2n, 1) 2 e 2 L z =(2 0 r A), which again corresponds to the energy for traversing the dipole (approximation of xed eld) W t = ne 2 L z =( 0 r A) W n, W n,1. Upon annihilation the same amount is returned to the capacitor by reducing the PL energy. An identical pair of levels is expected in the GaInN well. The Stokes shifted emission path coincides with level M 3 and a respective level M 2 0 is expected at E M2 0 = E M3 + Delta 20 3 and experimentally coincides with M 2. Consequently for high piezoelectric elds a Stark-like ladder is formed in the GaInN well. The level spacing is given by the piezoelectric dipole D of the strained GaInN well layer with thickness L z. A Coulombic Stokes shift gives rise to discrete levels at lower energies in the recombination path. However, clear PR signal is also seen in M 3. At present no distinction is seen between M 2, the Stokes shifted barrier gap level, and M 2 0, the GaInN well level. Equivalent transitions may have been observed by Chichibu et al. 4. In contrast to their work we nd a PR level M 3 that corresponds to the PL energy. We conclude, that the apparent discrepancy between emission and absorption is a discrete splitting rather than a localization process coupled to any uctuation mechanism. 3

4 M 3 M 2 M 0 ER p GaN MQW n GaN sapphire M 3 M 2 M a) b) c) Figure 2: Electro reection of a GaInN/GaN MQW pn-diode for variable bias voltage. Spectra of xed U bias a) and a colorcoded equi-signal plot c) indicate the merging of M 3 and M 2 for reverse bias eld corresponding to F bias =0:3 MV/cm as derived from the eld shift of the M 0 barrier transition. The structure is indicated in b). 6 Conclusion The dominance of piezo electric eld eects in the electronic band structure of strained wurtzite nitride heterostructures has been demonstrated in the example of GaN/GaInN/GaN MQW structures. A Stark-like ladder system is found and well described by the piezoelectric dipole generated by xed charges at the well interfaces. Electric eld strengths of 0.9 MV/cm are directly identied. The system contains abundant new physics for future work. This work was supported by JSPS Research for the Future Program in the Area of Atomic Scale Surface and Interface Dynamics under the project of "Dynamic Process and Control of Buer Layer at the Interface in a Highly Mismatched System". References 1. I. Akasaki and H. Amano, Jpn. J. Appl. Phys. 36, 5393 (1997). 2. C. Wetzel, H. Amano, I. Akasaki, T. Suski, J.W. Ager, E.R. Weber, E.E. Haller, and B.K. Meyer, Proc. Mater. Res. Soc. 482, 489 (1998). 3. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, Proc. Mater. Res. Soc. (Wide-Bandgap Semiconductors for High Power, High Frequency and High Temperature, Symposium F Spring Meeting 1998) in print. 4. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996). 4

5 5. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 36, L 382 (1997). 5

PIEZOELECTRIC LEVEL SPLITTING IN. GaInN/GaN QUANTUM WELLS. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki

PIEZOELECTRIC LEVEL SPLITTING IN. GaInN/GaN QUANTUM WELLS. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki PIEZOELECTRIC LEVEL SPLITTING IN GaInN/GaN QUANTUM WELLS C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki High Tech Research Center and Department of Electrical and Electronic Engineering, Meijo University,

More information

Piezoelectric polarization in the radiative centers of GaInN/GaN quantum wells and devices. C. Wetzel, 1 T. Detchprohm, 1 T. Takeuchi, 1;2 H. Amano, 1

Piezoelectric polarization in the radiative centers of GaInN/GaN quantum wells and devices. C. Wetzel, 1 T. Detchprohm, 1 T. Takeuchi, 1;2 H. Amano, 1 Piezoelectric polarization in the radiative centers of GaInN/GaN quantum wells and devices. C. Wetzel, T. Detchprohm, T. Takeuchi, ;2 H. Amano, ;2 and I. Akasaki ;2 High Tech Research Center, Meijo University,

More information

2 1. Introduction Not only do signicant ionic contributions in the covalent bonding forces of group-iii nitrides lead to chemically stable and mechani

2 1. Introduction Not only do signicant ionic contributions in the covalent bonding forces of group-iii nitrides lead to chemically stable and mechani Typeset using jjaptex.sty Piezoelectric Polarization in GaInN/GaN Heterostructures and Some Consequences for Device Design Christian WETZEL, Hiroshi AMANO 1 and Isamu AKASAKI 1 High Tech Research

More information

PIEZOELECTRIC QUANTIZATION IN GaInN THIN FILMS AND MULTIPLE QUANTUM WELL STRUCTURES

PIEZOELECTRIC QUANTIZATION IN GaInN THIN FILMS AND MULTIPLE QUANTUM WELL STRUCTURES PIEZOELECTRIC QUANTIZATION IN GaInN THIN FILMS AND MULTIPLE QUANTUM WELL STRUCTURES Christian Wetzel, Tetsuya Takeuchi, Hiroshi Amano, and Isamu Akasaki High Tech Research Center and Department of Electrical

More information

Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures

Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures C. Wetzel 1, T. Takeuchi 2, H. Amano 2, and I. Akasaki 2 1 High Tech Research Center, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku,

More information

Discrete Steps in the Capacitance-Voltage Characteristics of GaInN/GaN Light Emitting Diode Structures

Discrete Steps in the Capacitance-Voltage Characteristics of GaInN/GaN Light Emitting Diode Structures Mater. Res. Soc. Symp. Proc. Vol. 831 005 Materials Research Society E3.38.1 Discrete Steps in the Capacitance-Voltage Characteristics of GaInN/GaN Light Emitting Diode Structures Y. Xia 1,, E. Williams

More information

1. Electric Fields in Polarized GaInN/GaN heterostructures

1. Electric Fields in Polarized GaInN/GaN heterostructures IN III-NITRIDE SEMICONDUCTORS: OPTICAL PROPERTIES II, EDITED BY M.O. MANASREH AND H.X. JIANG (TAYLOR & FRANCIS NEW YORK 2002) P. 219-258. 1. Electric Fields in Polarized GaInN/GaN heterostructures 2. C.

More information

Piezoelectric Effect in GaInN/GaN Heterostructure and Quantum Well Structure. T. Takeuchi, C. Wetzel, H. Amano, and Isamu Akasaki

Piezoelectric Effect in GaInN/GaN Heterostructure and Quantum Well Structure. T. Takeuchi, C. Wetzel, H. Amano, and Isamu Akasaki Piezoelectric Effect in GaInN/GaN Heterostructure and Quantum Well Structure T. Takeuchi, C. Wetzel, H. Amano, and Isamu Akasaki Department of Electrical and Electric Engineering, Meijo University, 1-501

More information

M R S Internet Journal of Nitride Semiconductor Research

M R S Internet Journal of Nitride Semiconductor Research M R S Internet Journal of Nitride Semiconductor Research Volume 2, Article 25 Properties of the Biexciton and the Electron-Hole-Plasma in Highly Excited GaN J.-Chr. Holst, L. Eckey, A. Hoffmann, I. Broser

More information

Band Gap Shift of GaN under Uniaxial Strain Compression

Band Gap Shift of GaN under Uniaxial Strain Compression Mat. Res. Soc. Symp. Proc. ol. 693 2002 Materials Research Society Band Gap Shift of GaN under Uniaxial Strain Compression H. Y. Peng, M. D. McCluskey, Y. M. Gupta, M. Kneissl 1, and N. M. Johnson 1 Institute

More information

LOCALIZED DONORS IN GaN: SPECTROSCOPY USING LARGE PRESSURES

LOCALIZED DONORS IN GaN: SPECTROSCOPY USING LARGE PRESSURES LOCALIZED DONORS IN GaN: SPECTROSCOPY USING LARGE PRESSURES C. WETZEL *, ***, H. AMANO *, I. AKASAKI *, T. SUSKI **, J.W. AGER ***, E.R. WEBER ***, E.E. HALLER ***, and B.K. MEYER **** * High Tech Research

More information

Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes. and

Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes. and Mat. Res. Soc. Symp. Proc. Vol. 680E 2001 Materials Research Society Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes B. Mishori, Martin Muñoz, L. Mourokh,

More information

Development of Dual MQW Region LEDs for General Illumination

Development of Dual MQW Region LEDs for General Illumination Mater. Res. Soc. Symp. Proc. Vol. 831 2005 Materials Research Society E10.3.1 Development of Dual MQW Region LEDs for General Illumination David Brackin Nicol 1, Ali Asghar 1, Martin Strassburg 1,3, My

More information

Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature

Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature Mater. Res. Soc. Symp. Proc. Vol. 955 2007 Materials Research Society 0955-I15-12 Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature Yufeng Li 1,2, Wei Zhao 1,2, Yong Xia

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Ultrafast carrier dynamics in InGaN MQW laser diode

Ultrafast carrier dynamics in InGaN MQW laser diode Invited Paper Ultrafast carrier dynamics in InGaN MQW laser diode Kian-Giap Gan* a, Chi-Kuang Sun b, John E. Bowers a, and Steven P. DenBaars a a Department of Electrical and Computer Engineering, University

More information

Chu-Young Cho 1 and Seong-Ju Park 2,* South Korea *

Chu-Young Cho 1 and Seong-Ju Park 2,* South Korea * Enhanced optical output and reduction of the quantum-confined Stark effect in surface plasmon-enhanced green light-emitting diodes with gold nanoparticles Chu-Young Cho 1 and Seong-Ju Park 2,* 1 Applied

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Low-Temperature Cathodoluminescence Mapping of Green, Blue, and UV GaInN/GaN LED Dies

Low-Temperature Cathodoluminescence Mapping of Green, Blue, and UV GaInN/GaN LED Dies Mater. Res. Soc. Symp. Proc. Vol. 955 27 Materials Research Society 955-I15-45 Low-Temperature Cathodoluminescence Mapping of Green, Blue, and UV GaInN/GaN LED Dies Yong Xia 1,2, Theeradetch Detchprohm

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 9 th 2016.6.13 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Site for uploading answer sheet Outline today Answer to the question

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells. Abstract

Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells. Abstract Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells R. J. Choi, H. W. Shim 2, E. K. Suh 2, H. J. Lee 2, and Y. B. Hahn,2, *. School of Chemical Engineering

More information

PHOTOLUMINESCENCE STUDIES OF GaN AND AlGaN LAYERS UNDER HYDROSTATIC PRESSURE

PHOTOLUMINESCENCE STUDIES OF GaN AND AlGaN LAYERS UNDER HYDROSTATIC PRESSURE PHOTOLUMINESCENCE STUDIES OF GaN AND AlGaN LAYERS UNDER HYDROSTATIC PRESSURE C. Wetzel, W. Walukiewicz, E.E. Haller, H. Amano*, and I. Akasaki* Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA *Dept.

More information

Performance of High-Power AlInGaN Light Emitting Diodes

Performance of High-Power AlInGaN Light Emitting Diodes phys. stat. sol. (a) 188, No. 1, 15 21 (2001) Performance of High-Power AlInGaN Light Emitting Diodes A.Y. Kim, W. Götz 1 ), D.A. Steigerwald, J.J. Wierer, N.F. Gardner, J. Sun, S.A. Stockman, P.S. Martin,

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY Naoya Miyashita 1, Nazmul Ahsan 1, and Yoshitaka Okada 1,2 1. Research Center

More information

Electron leakage effects on GaN-based light-emitting diodes

Electron leakage effects on GaN-based light-emitting diodes Opt Quant Electron (2010) 42:89 95 DOI 10.1007/s11082-011-9437-z Electron leakage effects on GaN-based light-emitting diodes Joachim Piprek Simon Li Received: 22 September 2010 / Accepted: 9 January 2011

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

GaInN-based Green Light Emitting Diode for Energy Efficient Solid State Lighting

GaInN-based Green Light Emitting Diode for Energy Efficient Solid State Lighting Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 GaInN-based Green Light Emitting Diode for Energy Efficient Solid State Lighting T. Detchprohm and C. Wetzel Abstract In metal organic vapor phase

More information

Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells

Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells Journal of Physics: Conference Series Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells To cite this article: A Drabinska et al 2010 J. Phys.: Conf. Ser. 253 012009

More information

Potential and Carrier Distribution in AlGaN Superlattice

Potential and Carrier Distribution in AlGaN Superlattice Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 4 Proceedings of the XXXIV International School of Semiconducting Compounds, Jaszowiec 2005 Potential and Carrier Distribution in AlGaN Superlattice K.P. Korona,

More information

Investigation of strain effect in InGaN/GaN multi-quantum wells

Investigation of strain effect in InGaN/GaN multi-quantum wells Indian Journal of Pure & Applied Physics Vol. 51, January 2013, pp. 39-43 Investigation of strain effect in In/ multi-quantum wells Ya-Fen Wu Department of Electronic Engineering, Ming Chi University of

More information

ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS

ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS Josef HUMLÍČEK a,b, Petr KLENOVSKÝ a,b, Dominik MUNZAR a,b a DEPT. COND. MAT. PHYS., FACULTY OF SCIENCE, Kotlářská 2, 611 37 Brno, Czech Republic b

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012770 TITLE: Observation of Internal Electric Charge in InP Self-Assembled Quantum Dots DISTRIBUTION: Approved for public release,

More information

SOLID-STATE lighting thrives on the efficient energy conversion

SOLID-STATE lighting thrives on the efficient energy conversion IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 10, OCTOBER 2010 2639 Boosting Green GaInN/GaN Light-Emitting Diode Performance by a GaInN Underlying Layer Yong Xia, Wenting Hou, Liang Zhao, Mingwei

More information

Present status and future prospects of Bi-containing semiconductors. M. Yoshimoto and K. Oe Dept. Electronics, Kyoto Institute Technology Japan

Present status and future prospects of Bi-containing semiconductors. M. Yoshimoto and K. Oe Dept. Electronics, Kyoto Institute Technology Japan Present status and future prospects of Bi-containing semiconductors M. Yoshimoto and K. Oe Dept. Electronics, Kyoto Institute Technology Japan Acknowledgement RBS: Prof. K. Takahiro (Kyoto Inst. Tech.),

More information

Simulation of GaN-based Light-Emitting Devices

Simulation of GaN-based Light-Emitting Devices Simulation of GaN-based Light-Emitting Devices Joachim Piprek Solid-State Lighting and Display Center Materials Department, College of Engineering University of California, Santa Barbara, CA 93106 piprek@ieee.org

More information

Optical and Terahertz Characterization of Be-Doped GaAs/AlAs Multiple Quantum Wells

Optical and Terahertz Characterization of Be-Doped GaAs/AlAs Multiple Quantum Wells Vol. 107 (2005) ACTA PHYSICA POLONICA A No. 2 Proceedings of the 12th International Symposium UFPS, Vilnius, Lithuania 2004 Optical and Terahertz Characterization of Be-Doped GaAs/AlAs Multiple Quantum

More information

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films A. Dixit 1,, J. S. Thakur 2, V. M. Naik 3, R. Naik 2 1 Center of Excellence in Energy & ICT, Indian Institute of Technology

More information

Abnormal PL spectrum in InGaN MQW surface emitting cavity

Abnormal PL spectrum in InGaN MQW surface emitting cavity Abnormal PL spectrum in InGaN MQW surface emitting cavity J. T. Chu a, Y.-J. Cheng b, H. C. Kuo a, T. C. Lu a, and S. C. Wang a a Department of Photonics & Institute of Electro-Optical Engineering, National

More information

Electronic band structure of wurtzite GaN under biaxial strain in the M plane investigated with photoreflectance spectroscopy

Electronic band structure of wurtzite GaN under biaxial strain in the M plane investigated with photoreflectance spectroscopy PHYSICAL REVIEW B, VOLUME 65, 075202 Electronic band structure of wurtzite GaN under biaxial strain in the M plane investigated with photoreflectance spectroscopy Sandip Ghosh, P. Waltereit, O. Brandt,

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at nm

Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at nm Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at 46-5 nm ongping Zhao, Ronald A. Arif, Yik-Khoon Ee, and Nelson Tansu ±, Department of Electrical

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Wavelength-stable rare earth-free green lightemitting diodes for energy efficiency

Wavelength-stable rare earth-free green lightemitting diodes for energy efficiency Wavelength-stable rare earth-free green lightemitting diodes for energy efficiency Christian Wetzel 1,2,* and Theeradetch Detchprohm 1,2 1 Future Chips Constellation, Rensselaer Polytechnic Institute,

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Temperature dependence studies of Er optical centers in GaN epilayers grown by MOCVD

Temperature dependence studies of Er optical centers in GaN epilayers grown by MOCVD MRS Advances 2017 Materials Research Society DOI: 10.1557/adv.2017. 27 Temperature dependence studies of Er optical centers in GaN epilayers grown by MOCVD V. X. Ho, 1 S. P. Dail, 1 T. V. Dao, 1 H. X.

More information

CARRIER LOCALIZATION IN GALLIUM NITRIDE

CARRIER LOCALIZATION IN GALLIUM NITRIDE Mater. Sci. Forum 196-201, 31-6 (1995). (18th Int. Conf. on Defects in Semiconductors, Sendai, Japan, July 23-28, 1995) CARRIER LOCALIZATION IN GALLIUM NITRIDE C. Wetzel 1,2, W. Walukiewicz 1, E.E. Haller

More information

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Yutaka Tokuda Department of Electrical and Electronics Engineering, Aichi Institute of Technology,

More information

Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures

Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures JOURNAL OF APPLIED PHYSICS 97, 024511 (2005) Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures S. L. Lu, L. Schrottke, R. Hey, H. Kostial,

More information

Effects of Si doping on optical properties of GaN epitaxial layers

Effects of Si doping on optical properties of GaN epitaxial layers (123) 31 Effects of Si doping on optical properties of GaN epitaxial layers Chiharu SASAKI (Department of Electrical and Electronic Engineering) Tatsuya YAMASHITA (Department of Electrical and Electronic

More information

Photoreflectance spectroscopy of thick GaN layers grown by hydride vapour phase epitaxy technique

Photoreflectance spectroscopy of thick GaN layers grown by hydride vapour phase epitaxy technique Optica Applicata, Vol. XXXV, No. 3, 2005 Photoreflectance spectroscopy of thick GaN layers grown by hydride vapour phase epitaxy technique MARCIN SYPEREK 1, ROBERT KUDRAWIEC 1, JAN MISIEWICZ 1, RYSZARD

More information

Multiband GaN/AlGaN UV Photodetector

Multiband GaN/AlGaN UV Photodetector Vol. 110 (2006) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXV International School of Semiconducting Compounds, Jaszowiec 2006 Multiband GaN/AlGaN UV Photodetector K.P. Korona, A. Drabińska, K.

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15 1 Lecture contents Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect Absorption edges in semiconductors Offset corresponds to bandgap Abs. coefficient is orders

More information

Si in GaN on the nature of the background donor. Abstract

Si in GaN on the nature of the background donor. Abstract Si in GaN on the nature of the background donor C. Wetzel, A.L. Chen, T. Suski, J.W. Ager III, and W. Walukiewicz Lawrence Berkeley National Laboratory, Mailstop 2-200, Berkeley, CA 94720, USA Abstract

More information

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way Contents Part I Concepts 1 The History of Heterostructure Lasers Zhores I. Alferov... 3 1.1 Introduction... 3 1.2 The DHS Concept and Its Application for Semiconductor Lasers. 3 1.3 Quantum Dot Heterostructure

More information

The origin of the PL photoluminescence Stokes shift in ternary group-iii nitrides: field effects and localization

The origin of the PL photoluminescence Stokes shift in ternary group-iii nitrides: field effects and localization phys. stat. sol. (c) 0, No. 6, 1835 1845 (2003) / DOI 10.1002/pssc.200303137 The origin of the PL photoluminescence Stokes shift in ternary group-iii nitrides: field effects and localization M. Strassburg

More information

Calculation on the Band Structure of GaAs using k p -theory FFF042

Calculation on the Band Structure of GaAs using k p -theory FFF042 Calculation on the Band Structure of GaAs using k p -theory FFF04 I-Ju Chen, Sara Thorberg, Yang Chen December 17, 014 1 Introduction With its superior electronics and optical characteristics, GaAs is

More information

Correlation between Current Collapse Phenomena and Deep-Level Defects in AlGaN/GaN Hetero-Structures Probed by Deep-Level Optical Spectroscopy

Correlation between Current Collapse Phenomena and Deep-Level Defects in AlGaN/GaN Hetero-Structures Probed by Deep-Level Optical Spectroscopy 総合工学第 23 巻 (211) 頁 Correlation between Current Collapse Phenomena and Deep-Level Defects in AlGaN/GaN Hetero-Structures Probed by Deep-Level Optical Spectroscopy Yoshitaka Nakano Abstract: We have investigated

More information

doi: /PhysRevLett

doi: /PhysRevLett doi: 10.1103/PhysRevLett.77.494 Luminescence Hole Burning and Quantum Size Effect of Charged Excitons in CuCl Quantum Dots Tadashi Kawazoe and Yasuaki Masumoto Institute of Physics and Center for TARA

More information

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices J. B. Herzog, A. M. Mintairov, K. Sun, Y. Cao, D. Jena, J. L. Merz. University of Notre Dame, Dept. of Electrical

More information

Strong light matter coupling in two-dimensional atomic crystals

Strong light matter coupling in two-dimensional atomic crystals SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2014.304 Strong light matter coupling in two-dimensional atomic crystals Xiaoze Liu 1, 2, Tal Galfsky 1, 2, Zheng Sun 1, 2, Fengnian Xia 3, Erh-chen Lin 4,

More information

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk Je-Hyung Kim, Young-Ho Ko, Su-Hyun Gong, Suk-Min Ko, Yong-Hoon Cho Department of Physics, Graduate School of Nanoscience

More information

Correspondence should be addressed to C. K. Wang;

Correspondence should be addressed to C. K. Wang; International Photoenergy Volume 2015, Article ID 135321, 6 pages http://dx.doi.org/10.1155/2015/135321 Research Article Investigating the Effect of Piezoelectric Polarization on GaN-Based LEDs with Different

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11314 TITLE: Luminescence of the InGaN/GaN Blue Light-Emitting Diodes DISTRIBUTION: Approved for public release, distribution

More information

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots R. Heitz et al.: PL Study of Self-Organized InGaAs/GaAs Quantum Dots 65 phys. stat. sol. b) 221, 65 2000) Subject classification: 73.61.Ey; 78.47.+p; 78.55.Cr; 78.66.Fd; S7.12 Resonantly Excited Time-Resolved

More information

Chapter 6: Light-Emitting Diodes

Chapter 6: Light-Emitting Diodes Chapter 6: Light-Emitting Diodes Photoluminescence and electroluminescence Basic transitions Luminescence efficiency Light-emitting diodes Internal quantum efficiency External quantum efficiency Device

More information

Computer Aided Design of GaN Light-Emitting Diodes. Copyright 2006 Crosslight Software Inc.

Computer Aided Design of GaN Light-Emitting Diodes. Copyright 2006 Crosslight Software Inc. Computer Aided Design of GaN Light-Emitting Diodes Copyright 2006 Crosslight Software Inc. www.crosslight.com 1 2 Contents Available tools and modules. Simulation of IQE droop. Design of superlattice.

More information

ρ ρ LED access resistances d A W d s n s p p p W the output window size p-layer d p series access resistance d n n-layer series access resistance

ρ ρ LED access resistances d A W d s n s p p p W the output window size p-layer d p series access resistance d n n-layer series access resistance LED access resistances W the output window size p-layer series access resistance d p n-layer series access resistance d n The n-layer series access resistance R = ρ s n where the resistivity of the n-layer

More information

How to measure packaging-induced strain in high-brightness diode lasers?

How to measure packaging-induced strain in high-brightness diode lasers? How to measure packaging-induced strain in high-brightness diode lasers? Jens W. Tomm Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Berlin Max-Born-Str. 2 A, D-12489 Berlin, Germany

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Novel materials and nanostructures for advanced optoelectronics

Novel materials and nanostructures for advanced optoelectronics Novel materials and nanostructures for advanced optoelectronics Q. Zhuang, P. Carrington, M. Hayne, A Krier Physics Department, Lancaster University, UK u Brief introduction to Outline Lancaster University

More information

PRELIMINARY EVALUATION OF QUANTUM HALL EFFECT DEVICES BY PHOTOREFLECTANCE SPECTROSCOPY

PRELIMINARY EVALUATION OF QUANTUM HALL EFFECT DEVICES BY PHOTOREFLECTANCE SPECTROSCOPY XIX IMEKO World Congress Fundamental and Applied Metrology September 6, 009, Lisbon, Portugal PRELIMINARY EVALUATION OF QUANTUM HALL EFFECT DEVICES BY PHOTOREFLECTANCE SPECTROSCOPY L. Zamora-Peredo, M.

More information

Structural and Optical Properties of III-III-V-N Type

Structural and Optical Properties of III-III-V-N Type i Structural and Optical Properties of III-III-V-N Type Alloy Films and Their Quantum Wells ( III-III-V- N 型混晶薄膜および量子井戸の構造的および光学的性質 ) This dissertation is submitted as a partial fulfillment of the requirements

More information

Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth Epitaxy (IGE)

Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth Epitaxy (IGE) Mater. Res. Soc. Symp. Proc. Vol. 866 2005 Materials Research Society V3.5.1 Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth

More information

Brazilian Journal of Physics, vol. 26, no. 1, March, D Electron Transport in Selectively Doped

Brazilian Journal of Physics, vol. 26, no. 1, March, D Electron Transport in Selectively Doped Brazilian Journal of Physics, vol. 26, no. 1, March, 1996 313 2D Electron Transport in Selectively Doped GaAs/In x Ga 1;xAs Multiple Quantum Well Structures V. A. Kulbachinskii, V. G. Kytin, T. S. Babushkina,

More information

Intersubband Transitions in Narrow InAs/AlSb Quantum Wells

Intersubband Transitions in Narrow InAs/AlSb Quantum Wells Intersubband Transitions in Narrow InAs/AlSb Quantum Wells D. C. Larrabee, J. Tang, M. Liang, G. A. Khodaparast, J. Kono Department of Electrical and Computer Engineering, Rice Quantum Institute, and Center

More information

Accurate validation of experimental results of interdiffused. InGaAs/GaAs strained quantum wells by suitable numerical.

Accurate validation of experimental results of interdiffused. InGaAs/GaAs strained quantum wells by suitable numerical. Accurate validation of experimental results of interdiffused InGaAs/GaAs strained quantum wells by suitable numerical methods () Miguel Prol, Alfonso Moredo-Araújo, F. Javier Fraile-Peláez Dept. de Tecnologías

More information

Optical properties of wurtzite and zinc-blende GaNÕAlN quantum dots

Optical properties of wurtzite and zinc-blende GaNÕAlN quantum dots Optical properties of wurtzite and zinc-blende GaNÕAlN quantum dots Vladimir A. Fonoberov a) and Alexander A. Balandin b) Nano-Device Laboratory, Department of Electrical Engineering, University of California

More information

Lecture 8 Interband Transitions. Excitons

Lecture 8 Interband Transitions. Excitons Lecture 8 Interband Transitions Excitons Read: FS 4 Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 8 (2/4/2016) Slide 1 Textbook 1: M. Fox Optical Properties of Solids (2

More information

Final Report for Army Research Office (ARO) and Dr. John Zavada. Report title:

Final Report for Army Research Office (ARO) and Dr. John Zavada. Report title: Final Report for Army Research Office (ARO) and Dr. John Zavada Report title: GaN light-emitting triodes (LETs) for high-efficiency hole injection and for assessment of the physical origin of the efficiency

More information

Terahertz Lasers Based on Intersubband Transitions

Terahertz Lasers Based on Intersubband Transitions Terahertz Lasers Based on Intersubband Transitions Personnel B. Williams, H. Callebaut, S. Kumar, and Q. Hu, in collaboration with J. Reno Sponsorship NSF, ARO, AFOSR,and NASA Semiconductor quantum wells

More information

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Jahan M. Dawlaty, Farhan Rana and William J. Schaff Department of Electrical and Computer

More information

GaN-based Devices: Physics and Simulation

GaN-based Devices: Physics and Simulation GaN-based Devices: Physics and Simulation Joachim Piprek NUSOD Institute Collaborators Prof. Shuji Nakamura, UCSB Prof. Steve DenBaars, UCSB Dr. Stacia Keller, UCSB Dr. Tom Katona, now at S-ET Inc. Dr.

More information

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for six WSe 2 -MoSe 2 heterostructures under cw laser excitation

More information

InGaN/GaN multi-quantum dot light-emitting diodes

InGaN/GaN multi-quantum dot light-emitting diodes InGaN/GaN multi-quantum dot light-emitting diodes * L. W. Ji 1 ( ), C. C. 1 ( ), Diao and Y. 2 ( ) K. Su 1 Department of Electronic Engineering, Kao Yuan Institute of Technology, Lu-Chu 821, Taiwan 2 Institute

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,500 108,000 1.7 M Open access books available International authors and editors Downloads Our

More information

Electronic band structure of wurtzite InN around the fundamental gap in the presence of biaxial strain

Electronic band structure of wurtzite InN around the fundamental gap in the presence of biaxial strain Original Paper phys. stat. sol. (a) 24, No. 2, 439 446 (27) / DOI 1.12/pssa.2673963 Electronic band structure of wurtzite InN around the fundamental gap in the presence of biaxial strain Jayeeta Bhattacharyya

More information

Band diagrams of heterostructures

Band diagrams of heterostructures Herbert Kroemer (1928) 17 Band diagrams of heterostructures 17.1 Band diagram lineups In a semiconductor heterostructure, two different semiconductors are brought into physical contact. In practice, different

More information

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures Optical Characterization of Self-Assembled Si/SiGe Nano-Structures T. Fromherz, W. Mac, G. Bauer Institut für Festkörper- u. Halbleiterphysik, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-

More information

QUANTUM WELL OPTICAL SWITCHING DEVICES. DAVID A. B. MILLER Rm. 4B-401, AT&T Bell Laboratories Holmdel, NJ USA

QUANTUM WELL OPTICAL SWITCHING DEVICES. DAVID A. B. MILLER Rm. 4B-401, AT&T Bell Laboratories Holmdel, NJ USA QUANTUM WELL OPTICAL SWITCHING DEVICES DAVID A. B. MILLER Rm. 4B-401, AT&T Bell Laboratories Holmdel, NJ07733-3030 USA ABSTRACT These lecture notes summarize the basic physics of quantum wells for optical

More information

Solar Cell Materials and Device Characterization

Solar Cell Materials and Device Characterization Solar Cell Materials and Device Characterization April 3, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Multi-quantum well nanowire heterostructures for wavelength-controlled lasers Fang Qian 1, Yat Li 1 *, Silvija Gradečak 1, Hong-Gyu Park 1, Yajie Dong 1, Yong Ding 2, Zhong

More information

ECE236A Semiconductor Heterostructure Materials Group III Nitride Semiconductors Lecture 17, Nov. 30, 2017

ECE236A Semiconductor Heterostructure Materials Group III Nitride Semiconductors Lecture 17, Nov. 30, 2017 ECE236A Semiconductor Heterostructure Materials Group III Nitride Semiconductors Lecture 17, Nov. 30, 2017 Spontaneous and Piezoelectric Polarization Effects on 2DEG in HFETs Effects of Polarization on

More information

PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS

PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS PHOTOLUMINESCENCE STUDY OF INGAAS/GAAS QUANTUM DOTS A. Majid a,b, Samir Alzobaidi a and Thamer Alharbi a a Department of Physics, College of Science, Almajmaah University, P. O. Box no.1712, Al-Zulfi 11932,

More information

Atomic Level Analysis of SiC Devices Using Numerical Simulation

Atomic Level Analysis of SiC Devices Using Numerical Simulation Atomic Level Analysis of Devices Using Numerical mulation HIRSE, Takayuki MRI, Daisuke TERA, Yutaka ABSTRAT Research and development of power semiconductor devices with (silicon carbide) has been very

More information

Polarization effects due to thickness fluctuations in nonpolar InGaN/GaN quantum wells

Polarization effects due to thickness fluctuations in nonpolar InGaN/GaN quantum wells Polarization effects due to thickness fluctuations in nonpolar InGaN/GaN quantum wells Oliver Marquardt, Tilmann Hickel, Jörg Neugebauer, and Chris G. Van de Walle Citation: Applied Physics Letters 103,

More information

Low efficiency droop of InGaN/GaN blue LEDs with super-lattice active structure

Low efficiency droop of InGaN/GaN blue LEDs with super-lattice active structure Low efficiency droop of InGaN/GaN blue LEDs with super-lattice active structure Shih-Pang Chang 1, Kuok-Pan Sou 1, Jet-Rung Chang 2, Yuh-Jen Cheng 1,3, Yuh-Jing Li 2, Yi-Chen Chen 1, Hao-Chung Kuo 1, Ken-Yuh

More information