Ultrafast carrier dynamics in InGaN MQW laser diode

Size: px
Start display at page:

Download "Ultrafast carrier dynamics in InGaN MQW laser diode"

Transcription

1 Invited Paper Ultrafast carrier dynamics in InGaN MQW laser diode Kian-Giap Gan* a, Chi-Kuang Sun b, John E. Bowers a, and Steven P. DenBaars a a Department of Electrical and Computer Engineering, University of California, Santa Barbara, California, USA 93106; b Department of Electrical Engineering and Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei 10617, Taiwan, R.O.C. ABSTRACT The ultrafast carrier dynamics in InGaN multiple quantum well (MQW) laser diodes were investigated using a timeresolved bias-lead monitoring techniques. Both pump and probe beams were from the second harmonic generation (SHG) of a tunable 100-fs Ti:Sapphire modelocked laser. From the optical selection rules of TE and TM polarized lights, one can selectively excite and probe different valance subbands to conduction band transitions in the MQW structure with different polarized pump and probe light. Using this technique, ultrafast inter-subband hole relaxation processes were found to dominate the observed carrier dynamics. Keywords: Ultrafast carrier dynamics; InGaN MQW laser diode; Inter-subband hole relaxation 1. INTRODUCTION The group-iii nitride semiconductor alloys AlN-GaN-InN are recognized as an important material system for the optoelectronic devices in the spectral range from visible to ultraviolet. In particular, GaN-InN based III-V nitride semiconductors are attracting strong interest for their many commercial applications, such as light emitting diodes (LEDs) and laser diodes (LDs). 1,2 The carrier dynamics, which are important for high speed device design, have recently been studied by femtosecond time-resolved pump-probe 3 or coherent spectroscopy 4,5 with above band gap photons, which generate both extra electron and hole distributions. However, various contributions such as electronelectron scattering, hole-hole scattering, electron-hole scattering, electron-phonon interactions, and hole-phonon interactions, mix together and make it very difficult to extract the fundamental material parameter for one particular scattering process or single type of carrier. C. K. Sun et al. and H. Ye et al. have developed an infrared pumpultraviolet probe technique to isolate electron and hole dynamics and used it to study the electron relaxation dynamics in n-type GaN 6, 7 and hole dynamics in p-type GaN 8. In this paper, we present a time-resolved bias-lead monitoring pump-probe technique 9 that uses two UV pulses of equal amplitude with various polarization configurations (TE-TE, TM-TE, and TM-TM) to study the carrier dynamics in the InGaN MQW laser diode. From the optical selection rules of TE and TM polarized lights, one can selectively excite and probe different valance subbands to conduction band transitions in the MQW structure with different polarized pump and probe light. Using this technique, ultrafast intersubband hole relaxation processes were found to dominate the observed carrier dynamics. 2. EXPERIMENTS AND SAMPLE The schematic diagram of the time-resolved bias-lead monitoring setup is shown in Figure 1. The pump and probe beam are derived from the second harmonic generation (SHG) of a tunable 100-fs Ti:Sapphire modelocked laser. Pump and probe beam are combined collinearly and directed to the laser diode under test. Both the pump and probe beam are mechanically chopped at frequencies of 1.7 khz and 2.0 khz respectively. The photocurrent collected from the laser diode was measured by a lock-in amplifier at 3.7 khz as a function of the delay between the pump and probe beam. In order to avoid the interference signal between the pump and probe in the co-polarization configuration, the frequency of the probe beam was shifted by 40 MHz with an acousto-optic frequency shifter. * giap@ece.ucsb.edu; phone ; fax Ultrafast Phenomena in Semiconductors VII, Kong-Thon F. Tsen, Jin-Joo Song, Hongxing Jiang, Editors, Proceedings of SPIE Vol (2003) 2003 SPIE X/03/$

2 The laser diode under investigated was ridge waveguide MQW InGaN laser diode. The electro luminescence and the lasing spectrum of the laser diode are shown in Figure 2. Notice that the peak of the electro luminescence at TE and TM are separated by 6.6 nm (50 mev). Figure 1: Schematic diagram of the time-resolved pump-probe experiment Figure 2: Electro-luminescence and the lasing spectrum of the MQW InGaN laser diode 3. BAND STRUCTURE AND OPTICAL SELECTION RULES In the wurtize structure, the selection rules for the optical momentum matrix elements for the transitions between the conduction band and the three valence bands can be derived from the symmetry properties of the zone center wave function 10, 11. In the following section, these acronym will be used, C: conduction, HH: heavy hole, LH: light hole and CH: crystal-field splitoff hole. Figure 3 shows the band structure and the optical selection rule of In 0.15 Ga 0.85 N. At the 84 Proc. of SPIE Vol. 4992

3 zone center (k = 0), C-HH transition will only occur when the light is polarized perpendicular to the c-axis, i.e., TE polarized. The C-CH transition will favor the TM polarized light, i.e., the light polarized along the c-axis. For the LH band, C-LH transition will mostly occur when the light is TE polarized. Away from the zone center, the C-HH transition remains to be TE polarized while the C-CH transition and the C-LH transition switch polarization, i.e., C-CH transition became TE polarized and C-LH became TM polarized. From the Figure 3, it is clear that TM light will excite holes with higher energy compare to the energy of the holes excited by the TE light. So the holes excited by TM light will relax back to the top of the valance band and thus affected the absorption properties of TE light, but not the other way around, i.e., TM will affected TE but TE will not affected TM. Figure 3: Band structure of In 0.15 Ga 0.85 N at (k z = 0) and the optical selection rules In the quantum well (QW) structure, the valance band turns into different valance subbands. And because of the valance band mixing effect, the optical selection rules will need to be modified. We use finite-difference method to solve the effective-mass equations 12 for the quantum well structure. The band structure parameter was taken from the reference 13 and valance band offset of 33% was used. Figure 4 shows the different valance subbands in the QW structure of 30 Å In 0.15 Ga 0.85 N well and In 0.02 Ga 0.98 N barrier. The solution of the effective mass equation was used to calculate the transition matrix element in order to find the optical transition strength for different valance subbands to conduction band transition. The optical transition strengths for the four lowest valance subband to the conduction band transitions are shown in Figure 5. Note that the first significant TM polarized transition occurs at a higher energy compare with the TE polarized transition and the energy separation (~50 mev) is consistence with the electro luminescence measurement. Since the TM polarized light will excite the higher energy hole compare to the TE polarized light, the same prediction for the bulk InGaN will also applied to InGaN QW, i.e., TM will affected TE but TE will not affected TM. Proc. of SPIE Vol

4 Figure 4: Valance subbands of In 0.02 Ga 0.98 N-In 0.15 Ga 0.85 N-In 0.02 Ga 0.98 N QW structure and the optical selection rules. Figure 5: Normalized transition strength for the first four subband transitions in the QW. 86 Proc. of SPIE Vol. 4992

5 4. RESULTS AND DISCUSSIONS Figure 6 shows an example of the time-resolved photo current response signal measured at a below-bandgap wavelength. The positive instantaneous signal is attributed to the two-photon absorption (TPA) and the width of this signal is 0.37 ps and is limited by the autocorrelation width of the laser pulse. Figure 6: Time-resolved photocurrent signal at 425nm When we tune the laser wavelength to be above the bandgap of InGaN MQW, different behaviors were observed for different pump-probe polarization configurations. Figure 7 shows examples trace taken at a wavelength of 400nm. As shown in Figure 4, when both pump and probe are TE polarized, there is a negative instantaneous signal and a negative double-sided exponential decay signal. The negative instantaneous signal is attributed to a phase space filling effect with a fast initial relaxation faster than our system time resolution. This initial fast relaxation can be attributed to the carrier thermalization mainly due to carrier-carrier scatterings. The slower negative exponential decay signal with a time constant of 2 ps is attributed to the carrier energy relaxation where carrier-phonon interaction will lead to a new equilibrium between the carriers and the lattice system. However, when both pump and probe are TM polarized, only negative instantaneous signal can be observed. This resolution-limited response suggests an extremely fast intersubband hole relaxation for the TM-generated hole in the LH2 and HH2 subbands into lower HH1 and LH1 subbands, which are only sensitive to the TE polarized light. In order to study this intersubband hole relaxation process, cross polarization configuration measurement was performed and the result is show in Figure 8. Proc. of SPIE Vol

6 Figure 7: Time-resolved photocurrent signal at 400nm in TETE, TMTM, and TMTE polarization configurations Figure 8: Time-resolved photocurrent signal at 400nm in TMTE polarization configuration In the cross polarization configuration, positive delay means TM polarized light (pump) enters the laser diode before the TE polarized (probe) and negative delay means TE polarized light (pump) enters the laser diode before TM polarized (probe). At positive delay, there is fast initial decay followed by another positive single-sided exponential decay signal 88 Proc. of SPIE Vol. 4992

7 with the same time constant (2 ps) as the one observed in the TE-TE polarization configuration. The fast initial raise of the observed TE signal supports the previous suggestion that an extremely fast inter-subband hole relaxation for the TM generated holes in LH2 and HH2 subbands relaxed into the HH1 and LH1 subbands. These LH2 and HH2 subbands transferred holes in the lower HH1 and LH1 subbands will then follow a similar thermalization process as the directly generated holes. It is interesting to notice that at negative delay, the signal remains constant, suggesting weak HH1 and LH1 subbands to LH2 and HH2 subband transitions as expected. 5. CONCLUSION The femtosecond carrier dynamics in InGaN MQW laser diode were studied using a time-resolved bias-lead monitoring technique. Using the optical selection rules in the wurtize QW structure and various pump-probe polarizations configurations, ultrafast inter-subband hole relaxation process can be observed. We believe these ultrafast intersubband hole transitions will have a profound influence on the laser gain dynamics of InGaN laser diodes. REFERENCES 1. S. Nakamura, M. Senoh, and T.Mukai,"High-power InGaN/GaN double-heterostructure violet light emitting diodes", Appl. Phys. Lett., 62, , S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, "InGaN/GaN/AlGaN-based laser diodes with modulationdoped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate", Appl. Phys. Lett., 72, , C.-K. Sun, F. Vallee, S. Keller, J.E. Bowers, and S. P. DenBaars, "Femtosecond studies of carrier dynamics in InGaN", Appl. Phys. Lett., 70, , S. Pau, J. Kuhl, F. Scholz, V. Haerle, M.A. Khan, and C. J. Sun, "Femtosecond degenerate four-wave mixing of GaN on sapphire: Measurement of intrinsic exciton dephasing time", Phys. Rev. B, 56, , R. Zimmermann, A. Euteneuer, J. Mobius, D. Weber, M, R. Hofmann, W. W. Ruhle, E. O. Gobel, B. K. Meyer, H. Amano, and I. Akasaki, "Trasient four-wave-mixing spectroscopy on gallium nitride: Energy splittings of intrinsic exciton resonances", Phys. Rev. B, 56, , C.-K. Sun, Y.-L. Huang, S. Keller, U. K. Mishra, and S. P. DenBaars, "Ultrafast electron dynamics study of GaN", Phys. Rev. B, 59, , H. Ye, G. W. Wicks, and P. M. Fauchet, "Hot electron relaxation time in GaN", Appl. Phys. Lett., 74, , H. Ye, G. W. Wicks, and P. M. Fauchet, "Hot hole relaxation dynamics in p-gan", Appl. Phys. Lett., 77, , K. L. Hall, E. P. Ippen, and G. Eisenstein, "Bias-lead monitoring of ultrafast nonlinearities in InGaAsP diode laser amplifiers", Appl. Phys. Lett., 57, , G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductor, Wiley, New York, S. L. Chuang and C. S. Chang, "Effective-mass Hamiltonian for strained wurtize GaN and analytical solutions", Appl. Phys. Lett., 68, , S. L. Chuang and C. S. Chang, "A band-structure model of strained quantum-well wurtzite semiconductors", Semicond. Sci. Technol., 12, , Y. C. Yeo, T. C. Chong, and M. F. Li, "Electronic band structures and effective-mass parameters of wurtize GaN and InN", J. Appl. Phys., 83, , Proc. of SPIE Vol

Simulation of GaN-based Light-Emitting Devices

Simulation of GaN-based Light-Emitting Devices Simulation of GaN-based Light-Emitting Devices Joachim Piprek Solid-State Lighting and Display Center Materials Department, College of Engineering University of California, Santa Barbara, CA 93106 piprek@ieee.org

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at nm

Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at nm Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at 46-5 nm ongping Zhao, Ronald A. Arif, Yik-Khoon Ee, and Nelson Tansu ±, Department of Electrical

More information

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films A. Dixit 1,, J. S. Thakur 2, V. M. Naik 3, R. Naik 2 1 Center of Excellence in Energy & ICT, Indian Institute of Technology

More information

M R S Internet Journal of Nitride Semiconductor Research

M R S Internet Journal of Nitride Semiconductor Research M R S Internet Journal of Nitride Semiconductor Research Volume 2, Article 25 Properties of the Biexciton and the Electron-Hole-Plasma in Highly Excited GaN J.-Chr. Holst, L. Eckey, A. Hoffmann, I. Broser

More information

Emission Spectra of the typical DH laser

Emission Spectra of the typical DH laser Emission Spectra of the typical DH laser Emission spectra of a perfect laser above the threshold, the laser may approach near-perfect monochromatic emission with a spectra width in the order of 1 to 10

More information

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012 Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012 Introduction Experimental Condensed Matter Research Study of large

More information

Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells. Abstract

Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells. Abstract Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells R. J. Choi, H. W. Shim 2, E. K. Suh 2, H. J. Lee 2, and Y. B. Hahn,2, *. School of Chemical Engineering

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b)

De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b) PIEZOELECTRIC EFFECTS IN GaInN/GaN HETEROSTRUCTURES AND QUANTUM WELLS C. WETZEL, T. TAKEUCHI, S. YAMAGUCHI, H. KATO, H. AMANO, and I. AKASAKI High Tech Research Center, Meijo University, 1-501 Shiogamaguchi,

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Jahan M. Dawlaty, Farhan Rana and William J. Schaff Department of Electrical and Computer

More information

Investigation of strain effect in InGaN/GaN multi-quantum wells

Investigation of strain effect in InGaN/GaN multi-quantum wells Indian Journal of Pure & Applied Physics Vol. 51, January 2013, pp. 39-43 Investigation of strain effect in In/ multi-quantum wells Ya-Fen Wu Department of Electronic Engineering, Ming Chi University of

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Effects of Si doping on optical properties of GaN epitaxial layers

Effects of Si doping on optical properties of GaN epitaxial layers (123) 31 Effects of Si doping on optical properties of GaN epitaxial layers Chiharu SASAKI (Department of Electrical and Electronic Engineering) Tatsuya YAMASHITA (Department of Electrical and Electronic

More information

Electron leakage effects on GaN-based light-emitting diodes

Electron leakage effects on GaN-based light-emitting diodes Opt Quant Electron (2010) 42:89 95 DOI 10.1007/s11082-011-9437-z Electron leakage effects on GaN-based light-emitting diodes Joachim Piprek Simon Li Received: 22 September 2010 / Accepted: 9 January 2011

More information

Optical Nonlinearities in Quantum Wells

Optical Nonlinearities in Quantum Wells Harald Schneider Institute of Ion-Beam Physics and Materials Research Semiconductor Spectroscopy Division Rosencher s Optoelectronic Day Onéra 4.05.011 Optical Nonlinearities in Quantum Wells Harald Schneider

More information

Spontaneous Emission and Ultrafast Carrier Relaxation in InGaN Quantum Well with Metal Nanoparticles. Meg Mahat and Arup Neogi

Spontaneous Emission and Ultrafast Carrier Relaxation in InGaN Quantum Well with Metal Nanoparticles. Meg Mahat and Arup Neogi Spontaneous Emission and Ultrafast Carrier Relaxation in InGaN Quantum Well with Metal Nanoparticles Meg Mahat and Arup Neogi Department of Physics, University of North Texas, Denton, Tx, 76203 ABSTRACT

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes. and

Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes. and Mat. Res. Soc. Symp. Proc. Vol. 680E 2001 Materials Research Society Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes B. Mishori, Martin Muñoz, L. Mourokh,

More information

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors

Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons in II-VI Ternary Semiconductors 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Impact of Magnetic Impurities on Transient Propagation of Coherent Acoustic Phonons

More information

Energy Band Calculations for Dynamic Gain Models in Semiconductor Quantum Well Lasers

Energy Band Calculations for Dynamic Gain Models in Semiconductor Quantum Well Lasers Energy Band Calculations for Dynamic Gain Models in School of Electrical and Electronic Engineering University of Nottingham; Nottingham NG7 2RD; UK Email: eexpjb1@nottingham.ac.uk Presentation Outline

More information

Absorption in InGaN-on-Sapphire Based Light-Emitting Diodes

Absorption in InGaN-on-Sapphire Based Light-Emitting Diodes Absorption in InGaN-on-Sapphire Based Light-Emitting Diodes Sven-Silvius Schad and Barbara Neubert In this work, we investigate the absorption distribution in InGaN-on-sapphire based lightemitting diodes

More information

GaN-based Devices: Physics and Simulation

GaN-based Devices: Physics and Simulation GaN-based Devices: Physics and Simulation Joachim Piprek NUSOD Institute Collaborators Prof. Shuji Nakamura, UCSB Prof. Steve DenBaars, UCSB Dr. Stacia Keller, UCSB Dr. Tom Katona, now at S-ET Inc. Dr.

More information

Investigation of Optical Nonlinearities and Carrier Dynamics in In-Rich InGaN Alloys

Investigation of Optical Nonlinearities and Carrier Dynamics in In-Rich InGaN Alloys Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Investigation of Optical Nonlinearities and Carrier Dynamics in In-Rich InGaN

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Progress Report to AOARD

Progress Report to AOARD Progress Report to AOARD C. C. (Chih-Chung) Yang The Graduate Institute of Electro-Optical Engineering National Taiwan University No. 1, Roosevelt Road, Section 4, Taipei, Taiwan (phone) 886-2-23657624

More information

Subpicosecond Observation of Photoexcited Carrier Thermalization and Relaxation in InP-Based Films 1

Subpicosecond Observation of Photoexcited Carrier Thermalization and Relaxation in InP-Based Films 1 International Journal of Thermophysics, Vol. 26, No. 1, January 2005 ( 2005) DOI: 10.1007/s10765-005-2358-y Subpicosecond Observation of Photoexcited Carrier Thermalization and Relaxation in InP-Based

More information

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact J. Liu 1, R. Camacho 2, X. Sun 2, J. Bessette 2, Y. Cai 2, X. X. Wang 1, L. C. Kimerling 2 and J. Michel 2 1 Thayer School, Dartmouth College;

More information

Abnormal PL spectrum in InGaN MQW surface emitting cavity

Abnormal PL spectrum in InGaN MQW surface emitting cavity Abnormal PL spectrum in InGaN MQW surface emitting cavity J. T. Chu a, Y.-J. Cheng b, H. C. Kuo a, T. C. Lu a, and S. C. Wang a a Department of Photonics & Institute of Electro-Optical Engineering, National

More information

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk

Ultrafast single photon emitting quantum photonic structures. based on a nano-obelisk Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk Je-Hyung Kim, Young-Ho Ko, Su-Hyun Gong, Suk-Min Ko, Yong-Hoon Cho Department of Physics, Graduate School of Nanoscience

More information

Peng Zhao, Lu Han, Matthew R. McGoogan, and Hongping Zhao *

Peng Zhao, Lu Han, Matthew R. McGoogan, and Hongping Zhao * Analysis of TM mode light extraction efficiency enhancement for deep ultraviolet AlGaN quantum wells light-emitting diodes with III-nitride micro-domes Peng Zhao, Lu Han, Matthew R. McGoogan, and Hongping

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

Naser M. Ahmed *, Zaliman Sauli, Uda Hashim, Yarub Al-Douri. Abstract

Naser M. Ahmed *, Zaliman Sauli, Uda Hashim, Yarub Al-Douri. Abstract Int. J. Nanoelectronics and Materials (009) 89-95 Investigation of the absorption coefficient, refractive index, energy band gap, and film thickness for Al 0. Ga 0.89 N, Al 0.03 Ga 0.97 N, and GaN by optical

More information

QUANTUM WELL OPTICAL SWITCHING DEVICES. DAVID A. B. MILLER Rm. 4B-401, AT&T Bell Laboratories Holmdel, NJ USA

QUANTUM WELL OPTICAL SWITCHING DEVICES. DAVID A. B. MILLER Rm. 4B-401, AT&T Bell Laboratories Holmdel, NJ USA QUANTUM WELL OPTICAL SWITCHING DEVICES DAVID A. B. MILLER Rm. 4B-401, AT&T Bell Laboratories Holmdel, NJ07733-3030 USA ABSTRACT These lecture notes summarize the basic physics of quantum wells for optical

More information

Optical properties of strain-compensated hybrid InGaN/InGaN/ZnO quantum well lightemitting

Optical properties of strain-compensated hybrid InGaN/InGaN/ZnO quantum well lightemitting Optical properties of strain-compensated hybrid InGaN/InGaN/ZnO quantum well lightemitting diodes S.-H. Park 1, S.-W. Ryu 1, J.-J. Kim 1, W.-P. Hong 1, H.-M Kim 1, J. Park 2, and Y.-T. Lee 3 1 Department

More information

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner

Ge Quantum Well Modulators on Si. D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner 10.1149/1.2986844 The Electrochemical Society Ge Quantum Well Modulators on Si D. A. B. Miller, R. K. Schaevitz, J. E. Roth, Shen Ren, and Onur Fidaner Ginzton Laboratory, 450 Via Palou, Stanford CA 94305-4088,

More information

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes Authors: Nathaniel. M. Gabor 1,*, Zhaohui Zhong 2, Ken Bosnick 3, Paul L.

More information

Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth Epitaxy (IGE)

Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth Epitaxy (IGE) Mater. Res. Soc. Symp. Proc. Vol. 866 2005 Materials Research Society V3.5.1 Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING

More information

Terahertz Lasers Based on Intersubband Transitions

Terahertz Lasers Based on Intersubband Transitions Terahertz Lasers Based on Intersubband Transitions Personnel B. Williams, H. Callebaut, S. Kumar, and Q. Hu, in collaboration with J. Reno Sponsorship NSF, ARO, AFOSR,and NASA Semiconductor quantum wells

More information

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way Contents Part I Concepts 1 The History of Heterostructure Lasers Zhores I. Alferov... 3 1.1 Introduction... 3 1.2 The DHS Concept and Its Application for Semiconductor Lasers. 3 1.3 Quantum Dot Heterostructure

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

PIEZOELECTRIC LEVEL SPLITTING IN. GaInN/GaN QUANTUM WELLS. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki

PIEZOELECTRIC LEVEL SPLITTING IN. GaInN/GaN QUANTUM WELLS. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki PIEZOELECTRIC LEVEL SPLITTING IN GaInN/GaN QUANTUM WELLS C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki High Tech Research Center and Department of Electrical and Electronic Engineering, Meijo University,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supporting online material SUPPLEMENTARY INFORMATION doi: 0.038/nPHYS8 A: Derivation of the measured initial degree of circular polarization. Under steady state conditions, prior to the emission of the

More information

Strain effects on the valence band structure, optical transitions, and light gain spectra in zinc-blende GaN quantum wells

Strain effects on the valence band structure, optical transitions, and light gain spectra in zinc-blende GaN quantum wells PACS 61.50.Ah, 70, 81.05.Ea Strain effects on the valence band structure, optical transitions, and light gain spectra in zinc-blende GaN quantum wells L.O. Lokot V. Lashkaryov Institute for Semiconductor

More information

Second-Harmonic Generation Studies of Silicon Interfaces

Second-Harmonic Generation Studies of Silicon Interfaces Second-Harmonic Generation Studies of Silicon Interfaces Z. Marka 1, Y. D. Glinka 1, Y. Shirokaya 1, M. Barry 1, S. N. Rashkeev 1, W. Wang 1, R. D. Schrimpf 2,D. M. Fleetwood 2 and N. H. Tolk 1 1 Department

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes

Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes Joachim Piprek, Thomas Katona, Stacia Keller, Steve DenBaars, and Shuji Nakamura Solid State Lighting and Display Center University of California

More information

Study on Quantum Dot Lasers and their advantages

Study on Quantum Dot Lasers and their advantages Study on Quantum Dot Lasers and their advantages Tae Woo Kim Electrical and Computer Engineering University of Illinois, Urbana Champaign Abstract Basic ideas for understanding a Quantum Dot Laser were

More information

Mutual transparency of coherent laser beams through a terahertz-field-driven quantum well

Mutual transparency of coherent laser beams through a terahertz-field-driven quantum well A. Maslov and D. Citrin Vol. 19, No. 8/August 2002/J. Opt. Soc. Am. B 1905 Mutual transparency of coherent laser beams through a terahertz-field-driven quantum well Alexey V. Maslov and D. S. Citrin School

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Nonlinear Saturation Behaviors of High-Speed p-i-n Photodetectors

Nonlinear Saturation Behaviors of High-Speed p-i-n Photodetectors JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 18, NO. 2, FEBRUARY 2000 203 Nonlinear Saturation Behaviors of High-Speed p-i-n Photodetectors Yong-Liang Huang and Chi-Kuang Sun, Member, IEEE, Member, OSA Abstract

More information

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Chemistry Instrumental Analysis Lecture 5. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 5 Light Amplification by Stimulated Emission of Radiation High Intensities Narrow Bandwidths Coherent Outputs Applications CD/DVD Readers Fiber Optics Spectroscopy

More information

Quantum Condensed Matter Physics Lecture 9

Quantum Condensed Matter Physics Lecture 9 Quantum Condensed Matter Physics Lecture 9 David Ritchie QCMP Lent/Easter 2018 http://www.sp.phy.cam.ac.uk/drp2/home 9.1 Quantum Condensed Matter Physics 1. Classical and Semi-classical models for electrons

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11314 TITLE: Luminescence of the InGaN/GaN Blue Light-Emitting Diodes DISTRIBUTION: Approved for public release, distribution

More information

Free carrier absorption in III nitride semiconductors

Free carrier absorption in III nitride semiconductors Chapter 5 Free carrier absorption in III nitride semiconductors 5.1 Introduction The absorption of electromagnetic radiation, due to its interaction with electrons in semiconductors, is essentially determined

More information

Semiconductor Lasers for Optical Communication

Semiconductor Lasers for Optical Communication Semiconductor Lasers for Optical Communication Claudio Coriasso Manager claudio.coriasso@avagotech.com Turin Technology Centre 10Gb/s DFB Laser MQW 1 Outline 1) Background and Motivation Communication

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Potential and Carrier Distribution in AlGaN Superlattice

Potential and Carrier Distribution in AlGaN Superlattice Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 4 Proceedings of the XXXIV International School of Semiconducting Compounds, Jaszowiec 2005 Potential and Carrier Distribution in AlGaN Superlattice K.P. Korona,

More information

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures Springer Series in Solid-State Sciences 115 Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures Bearbeitet von Jagdeep Shah erweitert 1999. Buch. xvi, 522 S. Hardcover ISBN 978 3

More information

Low efficiency droop of InGaN/GaN blue LEDs with super-lattice active structure

Low efficiency droop of InGaN/GaN blue LEDs with super-lattice active structure Low efficiency droop of InGaN/GaN blue LEDs with super-lattice active structure Shih-Pang Chang 1, Kuok-Pan Sou 1, Jet-Rung Chang 2, Yuh-Jen Cheng 1,3, Yuh-Jing Li 2, Yi-Chen Chen 1, Hao-Chung Kuo 1, Ken-Yuh

More information

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP

High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP Vol. 107 (2005) ACTA PHYSICA POLONICA A No. 2 Proceedings of the 12th International Symposium UFPS, Vilnius, Lithuania 2004 High-Speed Quadratic Electrooptic Nonlinearity in dc-biased InP L. Subačius a,,

More information

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction K. Sokolowski-Tinten, M. Horn von Hoegen, D. von der Linde Inst. for Laser- and Plasmaphysics, University

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 9 th 2016.6.13 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Site for uploading answer sheet Outline today Answer to the question

More information

Nature, Vol 458, 2009 Leon Camenzind FMM University of Basel,

Nature, Vol 458, 2009 Leon Camenzind FMM University of Basel, Nature, Vol 458, 2009 Leon Camenzind University of Basel, 17.6.2011 Outlook Part I: Transient (Spin)-Grating Spectroscopy Part II: Theory of Persistent Spin Helix (PSH) Experimental results Part I Transient

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Multi-quantum well nanowire heterostructures for wavelength-controlled lasers Fang Qian 1, Yat Li 1 *, Silvija Gradečak 1, Hong-Gyu Park 1, Yajie Dong 1, Yong Ding 2, Zhong

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires

Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires Superlattices and Microstructures, Vol. 23, No. 6, 998 Article No. sm96258 Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires A. BALANDIN, S.BANDYOPADHYAY Department

More information

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Tolk Department of Physics and Astronomy Vanderbilt University,

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

Lecture #2 Nanoultrasonic imaging

Lecture #2 Nanoultrasonic imaging Lecture #2 Nanoultrasonic imaging Dr. Ari Salmi www.helsinki.fi/yliopisto 24.1.2014 1 Background Matemaattis-luonnontieteellinen tiedekunta / Henkilön nimi / Esityksen nimi www.helsinki.fi/yliopisto 24.1.2014

More information

Exciton spectroscopy

Exciton spectroscopy Lehrstuhl Werkstoffe der Elektrotechnik Exciton spectroscopy in wide bandgap semiconductors Lehrstuhl Werkstoffe der Elektrotechnik (WW6), Universität Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen Vortrag

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

THz SOURCES BASED ON INTERSUBBAND TRANSITIONS IN QUANTUM WELLS AND STRAINED LAYERS *

THz SOURCES BASED ON INTERSUBBAND TRANSITIONS IN QUANTUM WELLS AND STRAINED LAYERS * Fourth International Symposium on Space Terahertz Technology Page 573 THz SOURCES BASED ON INTERSUBBAND TRANSITIONS IN QUANTUM WELLS AND STRAINED LAYERS * A. Afzali-Kushaa, G. I. Haddad, and T. B. Norris

More information

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS Second Edition B.K. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS Contents Preface Introduction 1 Simple Models of the Electron-Phonon Interaction

More information

Ultrafast Laser Physics!

Ultrafast Laser Physics! Ultrafast Laser Physics! Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 10: Ultrafast Measurements Ultrafast Laser Physics ETH Zurich Ultrafast laser

More information

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials International Workshop on Photonics and Applications. Hanoi, Vietnam. April 5-8,24 Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials Lap Van Dao,

More information

Ph.D. Thesis Synopsis

Ph.D. Thesis Synopsis Ph.D. Thesis Synopsis Title : Study of electronic band structure of group III-V semiconductors using optical spectroscopy with linearly and circularly polarized light Student : Ashish Arora Advisor : Sandip

More information

Photoluminescence and Raman Spectroscopy on truncated Nano Pyramids

Photoluminescence and Raman Spectroscopy on truncated Nano Pyramids Photoluminescence and Raman Spectroscopy on truncated Nano Pyramids Physics of low Dimensions, FFF042 Josefin Voigt & Stefano Scaramuzza 10.12.2013, Lund University 1 Introduction In this project truncated

More information

Computer Aided Design of GaN Light-Emitting Diodes. Copyright 2006 Crosslight Software Inc.

Computer Aided Design of GaN Light-Emitting Diodes. Copyright 2006 Crosslight Software Inc. Computer Aided Design of GaN Light-Emitting Diodes Copyright 2006 Crosslight Software Inc. www.crosslight.com 1 2 Contents Available tools and modules. Simulation of IQE droop. Design of superlattice.

More information

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices J. B. Herzog, A. M. Mintairov, K. Sun, Y. Cao, D. Jena, J. L. Merz. University of Notre Dame, Dept. of Electrical

More information

Femtosecond nonlinear coherence spectroscopy of carrier dynamics in porous silicon

Femtosecond nonlinear coherence spectroscopy of carrier dynamics in porous silicon JOURNAL OF APPLIED PHYSICS 98, 083508 2005 Femtosecond nonlinear coherence spectroscopy of carrier dynamics in porous silicon Lap Van Dao a and Peter Hannaford Centre for Atom Optics and Ultrafast Spectroscopy,

More information

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Cliquez et modifiez le titre Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Laboratoire de Physique des Solides Orsay, France June 15, 2016 Workshop Condensed

More information

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft How exciting! 2016 Berlin, 3-6 August laura.foglia@elettra.eu 1 Current research challenges V Light Harvesting Light Emission Energy

More information

Electronic Charge Transport in Sapphire Studied by Optical-Pump/THz-Probe Spectroscopy

Electronic Charge Transport in Sapphire Studied by Optical-Pump/THz-Probe Spectroscopy Electronic Charge Transport in Sapphire Studied by Optical-Pump/THz-Probe Spectroscopy F. Wang, 1 J. Shan, 1,2 E. Knoesel, 1,3 M. Bonn, 4 and T. F. Heinz 1 1 Departments of Physics and Electrical Engineering,

More information

Multilevel Infrared Coupling of Excitons in Quantum-Well Semiconductors

Multilevel Infrared Coupling of Excitons in Quantum-Well Semiconductors IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 36, NO. 11, NOVEMBER 2000 1267 Multilevel Infrared Coupling of Excitons in Quantum-Well Semiconductors S. M. Sadeghi, J. Meyer, T. Tiedje, and M. Beaudoin Abstract

More information

Solar Cell Materials and Device Characterization

Solar Cell Materials and Device Characterization Solar Cell Materials and Device Characterization April 3, 2012 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC Principles and Varieties of Solar Energy (PHYS 4400) and Fundamentals

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Photosynthesis & Solar Power Harvesting

Photosynthesis & Solar Power Harvesting Lecture 23 Semiconductor Detectors - Photodetectors Principle of the pn junction photodiode Absorption coefficient and photodiode materials Properties of semiconductor detectors The pin photodiodes Avalanche

More information

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures Optical Characterization of Self-Assembled Si/SiGe Nano-Structures T. Fromherz, W. Mac, G. Bauer Institut für Festkörper- u. Halbleiterphysik, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-

More information

Spin relaxation in low-dimensional systems

Spin relaxation in low-dimensional systems J. Phys.: Condens. Matter 11 (1999) 5929 5952. Printed in the UK PII: S0953-8984(99)01386-7 Spin relaxation in low-dimensional systems LViña Departamento de Física de Materiales C-IV-510, Universidad Autónoma

More information

Time-Resolved Investigations of Electronic Transport Dynamics in Quantum Cascade Lasers Based on Diagonal Lasing Transition

Time-Resolved Investigations of Electronic Transport Dynamics in Quantum Cascade Lasers Based on Diagonal Lasing Transition Time-Resolved Investigations of Electronic Transport Dynamics in Quantum Cascade Lasers Based on Diagonal Lasing Transition The Harvard community has made this article openly available. Please share how

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information