Piezoelectric polarization in the radiative centers of GaInN/GaN quantum wells and devices. C. Wetzel, 1 T. Detchprohm, 1 T. Takeuchi, 1;2 H. Amano, 1

Size: px
Start display at page:

Download "Piezoelectric polarization in the radiative centers of GaInN/GaN quantum wells and devices. C. Wetzel, 1 T. Detchprohm, 1 T. Takeuchi, 1;2 H. Amano, 1"

Transcription

1 Piezoelectric polarization in the radiative centers of GaInN/GaN quantum wells and devices. C. Wetzel, T. Detchprohm, T. Takeuchi, ;2 H. Amano, ;2 and I. Akasaki ;2 High Tech Research Center, Meijo University, -5 Shiogamaguchi, Tempaku-ku, Nagoya , Japan 2 Department of Electrical and Electronic Engineering, Meijo University, -5 Shiogamaguchi, Tempaku-ku, Nagoya , Japan Abstract We identify, quantify, and correlate the polarization dipole across the well of device-typical piezoelectric GaInN/GaN heterostructures with the luminescence properties of the well. This quantity reects in the asymmetry of the barrier height on either side of the well. By a detailed comparison of photore- ection, electroreection, low and high excitation density photoluminescence we nd that a very similar splitting occurs in the emission characteristics of the well. We therefore conclude that the electronic band structure within the wells is also to a very large extent controlled by the quantity of the polarization dipole in such polarization heterostructures. PACS: Cr, Bw, 7.7.Ej, Ly Keywords: GaInN/GaN, quantum well, polarization, bandstructure, luminescence, reectance, level splitting Typeset using REVTEX Electronic mail: Wetzel@meijo-u.ac.jp J. Electronic Materials 2 in print

2 I. INTRODUCTION Signicant advances in characterization, processing, and growth have led to the development of group-iii nitrides as a versatile high performance electronic material system. {3 However, at present the interplay of materials physics and system performance is insuciently elucidated. The wide electronic band gap and strong ionic bonding contributions may explain part of the observations, but according to our ndings, 4{8 it is the strong polarization that dominates the optoelectronic properties of the system. Large polarization eects had been observed in piezoresistivity experiments 9 and in theory. Alternate interpretations emphasize the relevance of spatial inhomogeneities, very large alloy uctuations and quantum dot formation as important processes to enhance the luminous eciency. {4 We here present comparative results of photoreection (PR), electroreection (ER), and photoluminescence (PL) in high quality GaInN/GaN quantum wells (QWs) and AlGaInN diode structures to clarify the underlying concepts. II. EXPERIMENTAL A set of two Ga,x In x N/GaN multiple QW structures of ve sequences of well width L z = 3 A and barrier width L b = 6 A was grown by metal organic vapor phase epitaxy on c-plane sapphire, low temperature deposited AlN buer layers, and 2 m GaN epi-layers. The InN-fraction x =:2 and x =:8 was determined by a dynamical rocking analysis of the x-ray diraction. A fourth Ga,x In x N/GaN (x = :2) multiple QW sample (L z = 2 A, L b = 6 A) was Si doped to N D = 2 8 cm,3 in both wells and barriers. Further a device structure consisted of ve Ga,x In x N/GaN (x = :5) L z = 3 A, L b = 6 A QWs embedded in a pn-junction. The n-side underneath the undoped QWs was 3 m GaN doped to N D = 2 8 cm,3. The p-layer was formed by a p-al :2 Ga :8 N layer (6 A) and a p-gan layer (2 A), both doped to N A = 5 9 cm,3. A transparent contact was formed on the top-most p-layer. PR was performed with a Xe white light source and periodic 325 nm modulation at low power densities of 25 mw/cm 2 from a HeCd laser. Low density PL under identical conditions was performed by blocking the white light. High excitation density PL was performed using a pulsed 337 nm N 2 laser at mj energy. For ER a sinusoidal voltage at V amplitude was applied as modulation and a variable bias voltage U b superimposed. All experiments were performed at room temperature. III. RESULTS AND DISCUSSION ER as a function of variable bias voltage in the range of +5 V to - V is shown in Fig.. A sequence of oscillations mark the band gap energy in the GaN barriers and/or the p-contact region (N ) and the lowest level in the QW (N 3 ). As a function of increasing reverse bias voltage the rst shifts to lower energies reecting the increased potential drop along the GaN layer by the Franz-Keldysh eect in the presence of the electric eld. The lowest level in the QW initially shows a strong blue shift and then levels o at around -8V. Additional features in the intermediate energy range indicate a rapid shift towards lower energies along the same bias variation. A detailed discussion of the latter has been given elsewhere. 5 The important 2

3 feature here is the observation of the two phases of N 3, the blue shift and the saturation at nite bias voltage. For increased forward bias electroluminescence appears. The close level correspondence in both modes indicates, that luminescence and ER signal originate in the same level of the QW. A continuous shift of the PL in a similar structure has previously been described by the quantum conned Stark eect in the presence of a large electric eld within the well. 6 The identical eect is now observed here in an absorption type experiment. This correspondence of emission and absorption experiments supports the interpretation, that luminescence is governed by recombination between discrete energy levels rather than tails of any distribution dominated by inhomogeneities. 5;8 The observation of a saturation point of the blue shift clearly marks the at band condition of the well (F w = ). At this eld a large electric eld F b is active in the barriers as evidenced by the red shift of the GaN band gap signal. The actual eld in the well F w is the combination of the polarization component of the QW itself, the built-in potential of the pn-junction, and the externally applied bias. The at band condition in the barriers (F b = ) is expected close to the forward bias voltage U b (F b = ) = E g (GaN)=e =3:4 V. This is consistent with the trend of the GaN band gap signal. This result clearly supports that a nite polarization acts within the well and it produces a eld F w within the wells that is oset from the externally applied bias eld. In the next step we shall quantify the polarization acting within the individual wells. PR in the composition set of samples is presented in Fig. 2. In both samples a strong oscillation is identied in the vicinity of the barrier band gap energy near N and N. These can be identied as Franz-Keldysh-oscillations (FKO) in the joint density of states (DOS) in the presence of a large electric eld F, where charge carriers are free to move along the eld. 7;7 For a eld perpendicular to a set of QW layers this is possible either in the barriers or in the QW region for resonant states above the respective barrier levels. From the interpretation of the FKO period we derive electric eld values in the wells F w = :55 MV/cm (x = :2) and F w = :82 MV/cm (x = :8). we sthe oscillations mark the minimum of the respective DOS in N at an energy below the band gap energy of the barriers. The apparent localization corresponds to the potential step across the well and is induced by the polarization acting across the well. At lower energy we observe several contributions in PR. Clear maxima are identied in the spectra and are labeled N 2 and N 3, respectively. PL performed under identical low UV excitation densities is shown in the same graphs. Due to the identical geometry employed, signal intensities can be compared directly. For both spectra, the PL intensity is one to two orders of magnitude below the PR signal. A possible cross-talk of both signals can therefore be excluded. This was further supported by double modulation experiments. We observe a very close correspondence of the peak positions with the PR maximum in N 3. This shows, that this luminescence band marks a well dened discrete level in the joint DOS. Spectra of high excitation density PL are also shown. Under pulsed high density optical excitation stimulated emission occurs near N 2. The respective shift from N 3 to N 2 has previously been associated with the quantum conned Stark eect. 4 Similar shifts of the luminescence peak and merging with the level of stimulated emission have also been associated with the gradual lling of localized states before the level of highest gain is reached above a certain mobility edge. 8 Our comparison with PR, however, suggests, that a discrete level at this energy (N 2 ) also exists at very low excitation density. Consequently strong focus of interest must be centered around the origin of the level associated with N 2. 3

4 In the next step we compare the respective level splittings N { N, N 2 { N 3, the energy separation of stimulated emission and low excitation density PL, and the quantity F w el z with respect to the InN fraction x (Fig. 3). The polarization dipole is given by PL z = r (F w,f b )el z and for the case L b >> L w can be approximated by r F w el z. We observe a remarkable correspondence of all the values and vanishing discrepancy for the sample with the higher composition, strain, and piezoelectric polarization of x = :8. Apparently the polarization dipole across the QW is not only responsible for asymmetric barrier heights on either side of the QW but furthermore controls the electronic band structure within the depth of the QW. A similar splitting is observed in the PL of the doped sample under pulsed high density excitation density as a function of excitation power (Fig. 4). A pair of two levels with linear response to the excitation power accompany a center line with superlinear dependence indicating stimulated emission for the highest excitation energy. Within the tenfold power variation no change of the respective line positions can be observed. The photo generation of electron-hole pairs apparently is not sucient to appreciably vary the polarization conditions in the wells. This condition is found to be valid up to the highest excitation power applied, where stimulated emission occurs. This observation is in good agreement with recent selfconsistent bandstructure calculations. 9 This is also veried by comparing the polarization charge density 6 of P=e =5 2 cm,2 with the sheet carrier pair density t = N t L z =3 2 cm,2 required to achieve transparency at the expected volume level of N t 9 cm,3. Consequently bipolar injection at the lasing threshold should be insucient to compensate the polarization eect. These experimental values of electric elds and associated polarization charges are signicantly below those that would have been expected from the results of rst principles calculations. Our here determined values are in excellent agreement with values derived from a large set of some 2 samples with variable composition as presented in Refs. 8, 6. Possible sources of discrepancies on the experimental side are the superposition of elds induced by screening charges. Detailed investigations even in highly doped samples, however, show that such an eect can merely amount to some - 2 % of the experimental values. 2 It can not explain a discrepancy F theory =F experiment 7 which is of the order of the static dielectric constant r = :4. The facts that the joint density of state mass is the only material dependent parameter in our interpretation and that it enters in a sublinear power of =2 result in rather small systematic errors in the determination of the actual elds. We see, that the polarization dipole induces a level splitting at the barrier band gap energy introducing a transition at the energy E g (GaN), F w el z below the barrier band gap energy. According to these results a similar process apparently holds for the splitting in the lowest levels of the GaInN QW. Due to the very similar splitting energies, especially in the limit of large x, we draw parallels between N and N 2, and N and N 3, respectively. We therefore propose that similarly to the level splitting at the GaN band gap energy, also the splitting in the well is mainly caused by the polarization dipole induced at the heterointerfaces of the layered system. 4

5 IV. CONCLUSION In conclusion we have identied a close correlation between the polarization dipole induced at the polarization heterointerfaces across the pseudomorphic GaN/GaInN/GaN layer structure and the interband transition scheme at the barrier band gap energy as well as in the QW. We conclude that the quantity of the polarization dipole does not only aect the electronic level scheme at the GaN barrier band gap but also controls the various discrete levels identied in PR, low excitation PL and in stimulated emission under high excitation density. This can be expressed as a piezoelectric bandstructure control within such an AlGaInN polarization heterostructure. ACKNOWLEDGEMENT This work was partly supported by the JSPS Research for the Future Program in the Area of Atomic Scale Surface and Interface Dynamics under the project of Dynamic Process and Control of the Buer Layer at the Interface in a Highly-Mismatched System and the Ministry of Education, Science, Sports and Culture of Japan (contract No. 483). 5

6 REFERENCES I. Akasaki and H. Amano, Jpn. J. Appl. Phys. 36, 5393 (997). 2 I. Akasaki, in Nitride Semiconductors, Eds. F.A. Ponce, S.P. DenBaars, B.K. Meyer, S. Nakamura, and T. Strite, Mat. Res. Soc. Symp. Proc. 482, 3 (998). 3 I. Akasaki and C. Wetzel, Proc. of the IEEE. 85(), 75 (997). 4 T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 36, L 382 (997). 5 C. Wetzel, H. Amano, I. Akasaki, T. Suski, J.W. Ager, E.R. Weber, E.E. Haller, and B.K. Meyer, Mat. Res. Soc. Symp. Proc. 482, 489 (998). 6 C. Wetzel, S. Nitta, T. Takeuchi, S. Yamaguchi, H. Amano, and I. Akasaki, MRS Internet J. Nitride Semicond. Res. 3, 3 (998). 7 C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 38, L 63 (999). 8 C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, J. Appl. Phys. 85, 3786 (999). 9 A.D. Bykhovski, V.V. Kaminski, S. Shur, Q.C. Chen, and M.A. Khan, Appl. Phys. Lett. 68, 88 (996). F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R24 (997). Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, Appl. Phys. Lett. 7, 98 (997). 2 S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 7, 2822 (997). 3 N.A. El-Masry, E.L. Piner, S.X. Liu, and S.M. Bedair, Appl. Phys. Lett. 72, 4(998). 4 T. Wang, D. Nakagawa, M. Lachab, T. Sugahara, and S. Sakai, Appl. Phys. Lett. 74, 328 (999). 5 C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, unpublished 6 T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Appl. Phys. Lett. 73, 69 (998). 7 C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano, and I. Akasaki, in Blue Laser and Light Emitting Diodes II. eds. K. Onabe, K. Hiramatsu, K. Itaya, Y. Nakano, Tokyo, Japan: Ohmsha, 998. p A. Satake, Y. Masumoto, T. Miyajima, T. Asatsuma, F. Nakamura, and M. Ikeda, Phys. Rev. B, 57, R 24 (998). 9 F. della Sala, A. di Carlo, P. Lugli, P.F. Bernardini, V. Fiorentini, R. Scholz, and J.-M. Jancu, Appl. Phys. Lett. 74, 22 (999). 2 C. Wetzel, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. (999) in press. 6

7 Bias Voltage (V) FIGURES Electroreflectance Signal ( -3 ) 8 4 N 3 N Photon Energy (ev) FIG.. Electroreectance signal in an AlGaInN pn-diode as a function of bias voltage. N 3 marks the lowest state in the GaInN QW and shows the quantum conned Stark eect in ER and electroluminescence. For large forward bias luminescence dominates the signal. In this case narrow line features appear due to the inappropriate normalization to the DC reectance. N corresponds to the GaN bandedge in the top p-layer and shows the Franz-Keldysh eect. - Luminescence Intensity (arb. units) x=.8 N PL low x=.2 high N 3 low PL high N Photon Energy (ev) FIG. 2. Comparison of photoreection, low, and high excitation density photoluminescence of GaInN/GaN QWs with dierentwell composition. A splitting of the interband transition involving the barriers into N and N allows to quantify the polarization dipole across the wells. In the depth of the well a very close correspondence occurs between the dierent luminescence levels and the maxima in the PR. The simultaneous occurrence of transitions N 2 and N 3 in PR indicate, that stimulated emission and low excitation density PL arise from two dierent states. N N 2 N N N PR PR P6899A.o 2 PR Signal ( -4 ) -2-7

8 Splitting Energy (ev).3.2. PR N 2 -- N 3 PR N -- N PL high -- low FeLz..5.2 x in Ga -x In x N FIG. 3. Splitting energies of N { N, N 2 { N 3, PL under high and low excitation density, and the polarization dipole respectively versus the InN-fraction x. Values are very similar within both samples and nearly coincide for higher x and F in the x = :8 sample. The splitting energies increase with x and associated piezoelectric eld. P6899A.o Photoluminescence Intensity (rel. units) Photon Energy (ev) FIG. 4. Photoluminescence under variable high density excitation in a doped GaInN/GaN QW structure. Stimulated emission occurs between the two further luminescence lines. The line positions and respective splittings do not vary appreciably despite a variation of the electron-hole pair concentration by a factor of ten. p6499b.c 3.2 8

De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b)

De De. De M Q fix = const PR R/R Intensity (arb. inits) Energy (ev) a) b) PIEZOELECTRIC EFFECTS IN GaInN/GaN HETEROSTRUCTURES AND QUANTUM WELLS C. WETZEL, T. TAKEUCHI, S. YAMAGUCHI, H. KATO, H. AMANO, and I. AKASAKI High Tech Research Center, Meijo University, 1-501 Shiogamaguchi,

More information

2 1. Introduction Not only do signicant ionic contributions in the covalent bonding forces of group-iii nitrides lead to chemically stable and mechani

2 1. Introduction Not only do signicant ionic contributions in the covalent bonding forces of group-iii nitrides lead to chemically stable and mechani Typeset using jjaptex.sty Piezoelectric Polarization in GaInN/GaN Heterostructures and Some Consequences for Device Design Christian WETZEL, Hiroshi AMANO 1 and Isamu AKASAKI 1 High Tech Research

More information

PIEZOELECTRIC LEVEL SPLITTING IN. GaInN/GaN QUANTUM WELLS. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki

PIEZOELECTRIC LEVEL SPLITTING IN. GaInN/GaN QUANTUM WELLS. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki PIEZOELECTRIC LEVEL SPLITTING IN GaInN/GaN QUANTUM WELLS C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki High Tech Research Center and Department of Electrical and Electronic Engineering, Meijo University,

More information

Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures

Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures Spectroscopy in Polarized and Piezoelectric AlGaInN Heterostructures C. Wetzel 1, T. Takeuchi 2, H. Amano 2, and I. Akasaki 2 1 High Tech Research Center, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku,

More information

PIEZOELECTRIC QUANTIZATION IN GaInN THIN FILMS AND MULTIPLE QUANTUM WELL STRUCTURES

PIEZOELECTRIC QUANTIZATION IN GaInN THIN FILMS AND MULTIPLE QUANTUM WELL STRUCTURES PIEZOELECTRIC QUANTIZATION IN GaInN THIN FILMS AND MULTIPLE QUANTUM WELL STRUCTURES Christian Wetzel, Tetsuya Takeuchi, Hiroshi Amano, and Isamu Akasaki High Tech Research Center and Department of Electrical

More information

Discrete Steps in the Capacitance-Voltage Characteristics of GaInN/GaN Light Emitting Diode Structures

Discrete Steps in the Capacitance-Voltage Characteristics of GaInN/GaN Light Emitting Diode Structures Mater. Res. Soc. Symp. Proc. Vol. 831 005 Materials Research Society E3.38.1 Discrete Steps in the Capacitance-Voltage Characteristics of GaInN/GaN Light Emitting Diode Structures Y. Xia 1,, E. Williams

More information

1. Electric Fields in Polarized GaInN/GaN heterostructures

1. Electric Fields in Polarized GaInN/GaN heterostructures IN III-NITRIDE SEMICONDUCTORS: OPTICAL PROPERTIES II, EDITED BY M.O. MANASREH AND H.X. JIANG (TAYLOR & FRANCIS NEW YORK 2002) P. 219-258. 1. Electric Fields in Polarized GaInN/GaN heterostructures 2. C.

More information

Chu-Young Cho 1 and Seong-Ju Park 2,* South Korea *

Chu-Young Cho 1 and Seong-Ju Park 2,* South Korea * Enhanced optical output and reduction of the quantum-confined Stark effect in surface plasmon-enhanced green light-emitting diodes with gold nanoparticles Chu-Young Cho 1 and Seong-Ju Park 2,* 1 Applied

More information

Piezoelectric Effect in GaInN/GaN Heterostructure and Quantum Well Structure. T. Takeuchi, C. Wetzel, H. Amano, and Isamu Akasaki

Piezoelectric Effect in GaInN/GaN Heterostructure and Quantum Well Structure. T. Takeuchi, C. Wetzel, H. Amano, and Isamu Akasaki Piezoelectric Effect in GaInN/GaN Heterostructure and Quantum Well Structure T. Takeuchi, C. Wetzel, H. Amano, and Isamu Akasaki Department of Electrical and Electric Engineering, Meijo University, 1-501

More information

Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes. and

Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes. and Mat. Res. Soc. Symp. Proc. Vol. 680E 2001 Materials Research Society Surface Photovoltage Spectroscopy of InGaN/GaN/AlGaN Multiple Quantum Well Light Emitting Diodes B. Mishori, Martin Muñoz, L. Mourokh,

More information

Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature

Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature Mater. Res. Soc. Symp. Proc. Vol. 955 2007 Materials Research Society 0955-I15-12 Loss of Quantum Efficiency in Green Light Emitting Diode Dies at Low Temperature Yufeng Li 1,2, Wei Zhao 1,2, Yong Xia

More information

M R S Internet Journal of Nitride Semiconductor Research

M R S Internet Journal of Nitride Semiconductor Research M R S Internet Journal of Nitride Semiconductor Research Volume 2, Article 25 Properties of the Biexciton and the Electron-Hole-Plasma in Highly Excited GaN J.-Chr. Holst, L. Eckey, A. Hoffmann, I. Broser

More information

Low-Temperature Cathodoluminescence Mapping of Green, Blue, and UV GaInN/GaN LED Dies

Low-Temperature Cathodoluminescence Mapping of Green, Blue, and UV GaInN/GaN LED Dies Mater. Res. Soc. Symp. Proc. Vol. 955 27 Materials Research Society 955-I15-45 Low-Temperature Cathodoluminescence Mapping of Green, Blue, and UV GaInN/GaN LED Dies Yong Xia 1,2, Theeradetch Detchprohm

More information

Potential and Carrier Distribution in AlGaN Superlattice

Potential and Carrier Distribution in AlGaN Superlattice Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 4 Proceedings of the XXXIV International School of Semiconducting Compounds, Jaszowiec 2005 Potential and Carrier Distribution in AlGaN Superlattice K.P. Korona,

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Development of Dual MQW Region LEDs for General Illumination

Development of Dual MQW Region LEDs for General Illumination Mater. Res. Soc. Symp. Proc. Vol. 831 2005 Materials Research Society E10.3.1 Development of Dual MQW Region LEDs for General Illumination David Brackin Nicol 1, Ali Asghar 1, Martin Strassburg 1,3, My

More information

Band Gap Shift of GaN under Uniaxial Strain Compression

Band Gap Shift of GaN under Uniaxial Strain Compression Mat. Res. Soc. Symp. Proc. ol. 693 2002 Materials Research Society Band Gap Shift of GaN under Uniaxial Strain Compression H. Y. Peng, M. D. McCluskey, Y. M. Gupta, M. Kneissl 1, and N. M. Johnson 1 Institute

More information

Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells. Abstract

Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells. Abstract Fabrication of Efficient Blue Light-Emitting Diodes with InGaN/GaN Triangular Multiple Quantum Wells R. J. Choi, H. W. Shim 2, E. K. Suh 2, H. J. Lee 2, and Y. B. Hahn,2, *. School of Chemical Engineering

More information

Simulation of GaN-based Light-Emitting Devices

Simulation of GaN-based Light-Emitting Devices Simulation of GaN-based Light-Emitting Devices Joachim Piprek Solid-State Lighting and Display Center Materials Department, College of Engineering University of California, Santa Barbara, CA 93106 piprek@ieee.org

More information

Electron leakage effects on GaN-based light-emitting diodes

Electron leakage effects on GaN-based light-emitting diodes Opt Quant Electron (2010) 42:89 95 DOI 10.1007/s11082-011-9437-z Electron leakage effects on GaN-based light-emitting diodes Joachim Piprek Simon Li Received: 22 September 2010 / Accepted: 9 January 2011

More information

Effects of Si doping on optical properties of GaN epitaxial layers

Effects of Si doping on optical properties of GaN epitaxial layers (123) 31 Effects of Si doping on optical properties of GaN epitaxial layers Chiharu SASAKI (Department of Electrical and Electronic Engineering) Tatsuya YAMASHITA (Department of Electrical and Electronic

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 9 th 2016.6.13 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Site for uploading answer sheet Outline today Answer to the question

More information

Ultrafast carrier dynamics in InGaN MQW laser diode

Ultrafast carrier dynamics in InGaN MQW laser diode Invited Paper Ultrafast carrier dynamics in InGaN MQW laser diode Kian-Giap Gan* a, Chi-Kuang Sun b, John E. Bowers a, and Steven P. DenBaars a a Department of Electrical and Computer Engineering, University

More information

POLARIZATION INDUCED EFFECTS IN AlGaN/GaN HETEROSTRUCTURES

POLARIZATION INDUCED EFFECTS IN AlGaN/GaN HETEROSTRUCTURES Vol. 98 (2000) ACTA PHYSICA POLONICA A No. 3 Proceedings of the XXIX International School of Semiconducting Compounds, Jaszowiec 2000 POLARIZATION INDUCED EFFECTS IN AlGaN/GaN HETEROSTRUCTURES O. AMBACHER

More information

Multiband GaN/AlGaN UV Photodetector

Multiband GaN/AlGaN UV Photodetector Vol. 110 (2006) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXV International School of Semiconducting Compounds, Jaszowiec 2006 Multiband GaN/AlGaN UV Photodetector K.P. Korona, A. Drabińska, K.

More information

Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth Epitaxy (IGE)

Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth Epitaxy (IGE) Mater. Res. Soc. Symp. Proc. Vol. 866 2005 Materials Research Society V3.5.1 Excitation-Wavelength Dependent and Time-Resolved Photoluminescence Studies of Europium Doped GaN Grown by Interrupted Growth

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11314 TITLE: Luminescence of the InGaN/GaN Blue Light-Emitting Diodes DISTRIBUTION: Approved for public release, distribution

More information

SOLID-STATE lighting thrives on the efficient energy conversion

SOLID-STATE lighting thrives on the efficient energy conversion IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 10, OCTOBER 2010 2639 Boosting Green GaInN/GaN Light-Emitting Diode Performance by a GaInN Underlying Layer Yong Xia, Wenting Hou, Liang Zhao, Mingwei

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy

Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Traps in MOCVD n-gan Studied by Deep Level Transient Spectroscopy and Minority Carrier Transient Spectroscopy Yutaka Tokuda Department of Electrical and Electronics Engineering, Aichi Institute of Technology,

More information

Performance of High-Power AlInGaN Light Emitting Diodes

Performance of High-Power AlInGaN Light Emitting Diodes phys. stat. sol. (a) 188, No. 1, 15 21 (2001) Performance of High-Power AlInGaN Light Emitting Diodes A.Y. Kim, W. Götz 1 ), D.A. Steigerwald, J.J. Wierer, N.F. Gardner, J. Sun, S.A. Stockman, P.S. Martin,

More information

Spontaneous and piezoelectric polarization effects in III V nitride heterostructures

Spontaneous and piezoelectric polarization effects in III V nitride heterostructures Spontaneous and piezoelectric polarization effects in III V nitride heterostructures E. T. Yu, a) X. Z. Dang, P. M. Asbeck, and S. S. Lau Department of Electrical and Computer Engineering, University of

More information

Wavelength-stable rare earth-free green lightemitting diodes for energy efficiency

Wavelength-stable rare earth-free green lightemitting diodes for energy efficiency Wavelength-stable rare earth-free green lightemitting diodes for energy efficiency Christian Wetzel 1,2,* and Theeradetch Detchprohm 1,2 1 Future Chips Constellation, Rensselaer Polytechnic Institute,

More information

Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at nm

Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at nm Optical Gain Analysis of Strain Compensated InGaN- AlGaN Quantum Well Active Region for Lasers Emitting at 46-5 nm ongping Zhao, Ronald A. Arif, Yik-Khoon Ee, and Nelson Tansu ±, Department of Electrical

More information

Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells

Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells Journal of Physics: Conference Series Electroreflectance investigations of quantum confined Stark effect in GaN quantum wells To cite this article: A Drabinska et al 2010 J. Phys.: Conf. Ser. 253 012009

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

LOCALIZED DONORS IN GaN: SPECTROSCOPY USING LARGE PRESSURES

LOCALIZED DONORS IN GaN: SPECTROSCOPY USING LARGE PRESSURES LOCALIZED DONORS IN GaN: SPECTROSCOPY USING LARGE PRESSURES C. WETZEL *, ***, H. AMANO *, I. AKASAKI *, T. SUSKI **, J.W. AGER ***, E.R. WEBER ***, E.E. HALLER ***, and B.K. MEYER **** * High Tech Research

More information

ρ ρ LED access resistances d A W d s n s p p p W the output window size p-layer d p series access resistance d n n-layer series access resistance

ρ ρ LED access resistances d A W d s n s p p p W the output window size p-layer d p series access resistance d n n-layer series access resistance LED access resistances W the output window size p-layer series access resistance d p n-layer series access resistance d n The n-layer series access resistance R = ρ s n where the resistivity of the n-layer

More information

Simulation Studies of a phosphor-free Monolithic Multi- Wavelength Light-Emitting diode

Simulation Studies of a phosphor-free Monolithic Multi- Wavelength Light-Emitting diode Simulation Studies of a phosphor-free Monolithic Multi- Wavelength Light-Emitting diode Sidra Jabeen 1, Shahzad Hussain 2, and Sana Zainab 1 1 CEME, National University of Sciences and Technology (NUST),

More information

GaInN-based Green Light Emitting Diode for Energy Efficient Solid State Lighting

GaInN-based Green Light Emitting Diode for Energy Efficient Solid State Lighting Journal of Light Emitting Diodes Vol 2 N0 1, April 2010 1 GaInN-based Green Light Emitting Diode for Energy Efficient Solid State Lighting T. Detchprohm and C. Wetzel Abstract In metal organic vapor phase

More information

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY

ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY ANTIMONY ENHANCED HOMOGENEOUS NITROGEN INCORPORATION INTO GaInNAs FILMS GROWN BY ATOMIC HYDROGEN-ASSISTED MOLECULAR BEAM EPITAXY Naoya Miyashita 1, Nazmul Ahsan 1, and Yoshitaka Okada 1,2 1. Research Center

More information

Investigation of strain effect in InGaN/GaN multi-quantum wells

Investigation of strain effect in InGaN/GaN multi-quantum wells Indian Journal of Pure & Applied Physics Vol. 51, January 2013, pp. 39-43 Investigation of strain effect in In/ multi-quantum wells Ya-Fen Wu Department of Electronic Engineering, Ming Chi University of

More information

Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures

Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures JOURNAL OF APPLIED PHYSICS 97, 024511 (2005) Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures S. L. Lu, L. Schrottke, R. Hey, H. Kostial,

More information

Chapter 6: Light-Emitting Diodes

Chapter 6: Light-Emitting Diodes Chapter 6: Light-Emitting Diodes Photoluminescence and electroluminescence Basic transitions Luminescence efficiency Light-emitting diodes Internal quantum efficiency External quantum efficiency Device

More information

Final Report for Army Research Office (ARO) and Dr. John Zavada. Report title:

Final Report for Army Research Office (ARO) and Dr. John Zavada. Report title: Final Report for Army Research Office (ARO) and Dr. John Zavada Report title: GaN light-emitting triodes (LETs) for high-efficiency hole injection and for assessment of the physical origin of the efficiency

More information

doi: /PhysRevLett

doi: /PhysRevLett doi: 10.1103/PhysRevLett.77.494 Luminescence Hole Burning and Quantum Size Effect of Charged Excitons in CuCl Quantum Dots Tadashi Kawazoe and Yasuaki Masumoto Institute of Physics and Center for TARA

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

M R S Internet Journal of Nitride Semiconductor Research

M R S Internet Journal of Nitride Semiconductor Research Page 1 of 6 M R S Internet Journal of Nitride Semiconductor Research Volume 9, Article 7 The Ambient Temperature Effect on Current-Voltage Characteristics of Surface-Passivated GaN-Based Field-Effect Transistors

More information

PHOTOLUMINESCENCE STUDIES OF GaN AND AlGaN LAYERS UNDER HYDROSTATIC PRESSURE

PHOTOLUMINESCENCE STUDIES OF GaN AND AlGaN LAYERS UNDER HYDROSTATIC PRESSURE PHOTOLUMINESCENCE STUDIES OF GaN AND AlGaN LAYERS UNDER HYDROSTATIC PRESSURE C. Wetzel, W. Walukiewicz, E.E. Haller, H. Amano*, and I. Akasaki* Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA *Dept.

More information

ISSN Review. Progress to a Gallium-Arsenide Deep-Center Laser

ISSN Review. Progress to a Gallium-Arsenide Deep-Center Laser Materials 2009, 2, 1599-1635; doi:10.3390/ma2041599 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Progress to a Gallium-Arsenide Deep-Center Laser Janet L. Pan Yale University,

More information

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films

Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films Influence of excitation frequency on Raman modes of In 1-x Ga x N thin films A. Dixit 1,, J. S. Thakur 2, V. M. Naik 3, R. Naik 2 1 Center of Excellence in Energy & ICT, Indian Institute of Technology

More information

Optical and Terahertz Characterization of Be-Doped GaAs/AlAs Multiple Quantum Wells

Optical and Terahertz Characterization of Be-Doped GaAs/AlAs Multiple Quantum Wells Vol. 107 (2005) ACTA PHYSICA POLONICA A No. 2 Proceedings of the 12th International Symposium UFPS, Vilnius, Lithuania 2004 Optical and Terahertz Characterization of Be-Doped GaAs/AlAs Multiple Quantum

More information

doi: /PhysRevB

doi: /PhysRevB doi: 10.1103/PhysRevB.60.16660 PHYSICAL REVIEW B VOLUME 60, NUMBER 24 15 DECEMBER 1999-II Two-dimensional exciton dynamics and gain formation processes in In x Ga 1 x N multiple quantum wells Akihiro Satake

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Investigation of Optical Nonlinearities and Carrier Dynamics in In-Rich InGaN Alloys

Investigation of Optical Nonlinearities and Carrier Dynamics in In-Rich InGaN Alloys Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Investigation of Optical Nonlinearities and Carrier Dynamics in In-Rich InGaN

More information

Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes

Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes Joachim Piprek, Thomas Katona, Stacia Keller, Steve DenBaars, and Shuji Nakamura Solid State Lighting and Display Center University of California

More information

Si in GaN on the nature of the background donor. Abstract

Si in GaN on the nature of the background donor. Abstract Si in GaN on the nature of the background donor C. Wetzel, A.L. Chen, T. Suski, J.W. Ager III, and W. Walukiewicz Lawrence Berkeley National Laboratory, Mailstop 2-200, Berkeley, CA 94720, USA Abstract

More information

Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers

Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers Nuclear Instruments and Methods in Physics Research A 441 (2000) 459}467 Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers Z. He *, W.Li, G.F. Knoll, D.K. Wehe,

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Confocal microphotoluminescence of InGaN-based light-emitting diodes

Confocal microphotoluminescence of InGaN-based light-emitting diodes JOURNAL OF APPLIED PHYSICS 98, 064503 2005 Confocal microphotoluminescence of InGaN-based light-emitting diodes Koichi Okamoto, a Akio Kaneta, Yoichi Kawakami, and Shigeo Fujita Department of Electronic

More information

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact

Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact Optically-Pumped Ge-on-Si Gain Media: Lasing and Broader Impact J. Liu 1, R. Camacho 2, X. Sun 2, J. Bessette 2, Y. Cai 2, X. X. Wang 1, L. C. Kimerling 2 and J. Michel 2 1 Thayer School, Dartmouth College;

More information

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract A spin Esaki diode Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno Laboratory for Electronic Intelligent Systems, Research Institute of Electrical Communication, Tohoku University,

More information

Monte Carlo Based Calculation of Electron Transport Properties in Bulk InAs, AlAs and InAlAs

Monte Carlo Based Calculation of Electron Transport Properties in Bulk InAs, AlAs and InAlAs Bulg. J. Phys. 37 (2010) 215 222 Monte Carlo Based Calculation of Electron Transport Properties in Bulk InAs, AlAs and InAlAs H. Arabshahi 1, S. Golafrooz 2 1 Department of Physics, Ferdowsi University

More information

Emission Spectra of the typical DH laser

Emission Spectra of the typical DH laser Emission Spectra of the typical DH laser Emission spectra of a perfect laser above the threshold, the laser may approach near-perfect monochromatic emission with a spectra width in the order of 1 to 10

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

Naser M. Ahmed *, Zaliman Sauli, Uda Hashim, Yarub Al-Douri. Abstract

Naser M. Ahmed *, Zaliman Sauli, Uda Hashim, Yarub Al-Douri. Abstract Int. J. Nanoelectronics and Materials (009) 89-95 Investigation of the absorption coefficient, refractive index, energy band gap, and film thickness for Al 0. Ga 0.89 N, Al 0.03 Ga 0.97 N, and GaN by optical

More information

GaN-based Devices: Physics and Simulation

GaN-based Devices: Physics and Simulation GaN-based Devices: Physics and Simulation Joachim Piprek NUSOD Institute Collaborators Prof. Shuji Nakamura, UCSB Prof. Steve DenBaars, UCSB Dr. Stacia Keller, UCSB Dr. Tom Katona, now at S-ET Inc. Dr.

More information

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University Practice Final Exam 1 Read the questions carefully Label all figures

More information

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots

Resonantly Excited Time-Resolved Photoluminescence Study of Self-Organized InGaAs/GaAs Quantum Dots R. Heitz et al.: PL Study of Self-Organized InGaAs/GaAs Quantum Dots 65 phys. stat. sol. b) 221, 65 2000) Subject classification: 73.61.Ey; 78.47.+p; 78.55.Cr; 78.66.Fd; S7.12 Resonantly Excited Time-Resolved

More information

Thermoelectric and electrical properties of Si-doped InSb thin films. University, Japan

Thermoelectric and electrical properties of Si-doped InSb thin films. University, Japan 10.1149/1.3109626 The Electrochemical Society Thermoelectric and electrical properties of Si-doped InSb thin films H. Nagata a and S. Yamaguchi a,b a Department of Electrical, Electronic and Information

More information

InGaN/GaN multi-quantum dot light-emitting diodes

InGaN/GaN multi-quantum dot light-emitting diodes InGaN/GaN multi-quantum dot light-emitting diodes * L. W. Ji 1 ( ), C. C. 1 ( ), Diao and Y. 2 ( ) K. Su 1 Department of Electronic Engineering, Kao Yuan Institute of Technology, Lu-Chu 821, Taiwan 2 Institute

More information

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation

Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Ultrafast All-optical Switches Based on Intersubband Transitions in GaN/AlN Multiple Quantum Wells for Tb/s Operation Jahan M. Dawlaty, Farhan Rana and William J. Schaff Department of Electrical and Computer

More information

The origin of the PL photoluminescence Stokes shift in ternary group-iii nitrides: field effects and localization

The origin of the PL photoluminescence Stokes shift in ternary group-iii nitrides: field effects and localization phys. stat. sol. (c) 0, No. 6, 1835 1845 (2003) / DOI 10.1002/pssc.200303137 The origin of the PL photoluminescence Stokes shift in ternary group-iii nitrides: field effects and localization M. Strassburg

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS

ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS ELECTRONIC STRUCTURE OF InAs/GaAs/GaAsSb QUANTUM DOTS Josef HUMLÍČEK a,b, Petr KLENOVSKÝ a,b, Dominik MUNZAR a,b a DEPT. COND. MAT. PHYS., FACULTY OF SCIENCE, Kotlářská 2, 611 37 Brno, Czech Republic b

More information

Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles

Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles Mat. Res. Soc. Symp. Proc. Vol. 737 23 Materials Research Society F1.5.1 Mechanisms of Visible Photoluminescence from Size-Controlled Silicon Nanoparticles Toshiharu Makino *, Nobuyasu Suzuki, Yuka Yamada,

More information

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985 Paper Review IEEE Journal of Quantum Electronics, Feb 1985 Contents Semiconductor laser review High speed semiconductor laser Parasitic elements limitations Intermodulation products Intensity noise Large

More information

Experimental and theoretical study of acceptor activation and transport properties in p-type Al x Ga 1Àx NÕGaN superlattices

Experimental and theoretical study of acceptor activation and transport properties in p-type Al x Ga 1Àx NÕGaN superlattices JOURNAL OF APPLIED PHYSICS VOLUME 88, NUMBER 4 15 AUGUST 2000 Experimental and theoretical study of acceptor activation and transport properties in p-type Al x Ga 1Àx NÕGaN superlattices I. D. Goepfert

More information

Misan University College of Engineering Electrical Engineering Department. Exam: Final semester Date: 17/6/2017

Misan University College of Engineering Electrical Engineering Department. Exam: Final semester Date: 17/6/2017 Misan University College of Engineering Electrical Engineering Department Subject: Electronic I Class: 1 st stage Exam: Final semester Date: 17/6/2017 Examiner: Dr. Baqer. O. TH. Time: 3 hr. Note: Answer

More information

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc.

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc. Quantum and Non-local Transport Models in Crosslight Device Simulators Copyright 2008 Crosslight Software Inc. 1 Introduction Quantization effects Content Self-consistent charge-potential profile. Space

More information

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected Semiconductor Lasers Comparison with LEDs The light emitted by a laser is generally more directional, more intense and has a narrower frequency distribution than light from an LED. The external efficiency

More information

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES Jasprit Singh University of Michigan McGraw-Hill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas Lisbon London Madrid Mexico Milan Montreal

More information

ECE236A Semiconductor Heterostructure Materials Group III Nitride Semiconductors Lecture 17, Nov. 30, 2017

ECE236A Semiconductor Heterostructure Materials Group III Nitride Semiconductors Lecture 17, Nov. 30, 2017 ECE236A Semiconductor Heterostructure Materials Group III Nitride Semiconductors Lecture 17, Nov. 30, 2017 Spontaneous and Piezoelectric Polarization Effects on 2DEG in HFETs Effects of Polarization on

More information

Correlation between Current Collapse Phenomena and Deep-Level Defects in AlGaN/GaN Hetero-Structures Probed by Deep-Level Optical Spectroscopy

Correlation between Current Collapse Phenomena and Deep-Level Defects in AlGaN/GaN Hetero-Structures Probed by Deep-Level Optical Spectroscopy 総合工学第 23 巻 (211) 頁 Correlation between Current Collapse Phenomena and Deep-Level Defects in AlGaN/GaN Hetero-Structures Probed by Deep-Level Optical Spectroscopy Yoshitaka Nakano Abstract: We have investigated

More information

Optical imaging spectroscopy of V-groove quantum wires: from localized to delocalized excitons

Optical imaging spectroscopy of V-groove quantum wires: from localized to delocalized excitons Available online at www.sciencedirect.com Physica E 17 (2003) 164 168 www.elsevier.com/locate/physe Optical imaging spectroscopy of V-groove quantum wires: from localized to delocalized excitons T. Guillet

More information

Introduction to Semiconductor Integrated Optics

Introduction to Semiconductor Integrated Optics Introduction to Semiconductor Integrated Optics Hans P. Zappe Artech House Boston London Contents acknowledgments reface itroduction Chapter 1 Basic Electromagnetics 1 1.1 General Relationships 1 1.1.1

More information

Influence of Quantum-Well Width on the Electroluminescence Properties of AlGaN Deep Ultraviolet Light-Emitting Diodes at Different Temperatures

Influence of Quantum-Well Width on the Electroluminescence Properties of AlGaN Deep Ultraviolet Light-Emitting Diodes at Different Temperatures Tan et al. Nanoscale Research Letters (2018) 13:334 https://doi.org/10.1186/s11671-018-2756-2 NANO EXPRESS Influence of Quantum-Well Width on the Electroluminescence Properties of AlGaN Deep Ultraviolet

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

Correspondence should be addressed to C. K. Wang;

Correspondence should be addressed to C. K. Wang; International Photoenergy Volume 2015, Article ID 135321, 6 pages http://dx.doi.org/10.1155/2015/135321 Research Article Investigating the Effect of Piezoelectric Polarization on GaN-Based LEDs with Different

More information

Pressure and Temperature Dependence of Threshold Current in Semiconductor Lasers Based on InGaAs/GaAs Quantum-Well Systems

Pressure and Temperature Dependence of Threshold Current in Semiconductor Lasers Based on InGaAs/GaAs Quantum-Well Systems Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXVI International School of Semiconducting Compounds, Jaszowiec 2007 Pressure and Temperature Dependence of Threshold Current in Semiconductor

More information

Computer Aided Design of GaN Light-Emitting Diodes. Copyright 2006 Crosslight Software Inc.

Computer Aided Design of GaN Light-Emitting Diodes. Copyright 2006 Crosslight Software Inc. Computer Aided Design of GaN Light-Emitting Diodes Copyright 2006 Crosslight Software Inc. www.crosslight.com 1 2 Contents Available tools and modules. Simulation of IQE droop. Design of superlattice.

More information

Present status and future prospects of Bi-containing semiconductors. M. Yoshimoto and K. Oe Dept. Electronics, Kyoto Institute Technology Japan

Present status and future prospects of Bi-containing semiconductors. M. Yoshimoto and K. Oe Dept. Electronics, Kyoto Institute Technology Japan Present status and future prospects of Bi-containing semiconductors M. Yoshimoto and K. Oe Dept. Electronics, Kyoto Institute Technology Japan Acknowledgement RBS: Prof. K. Takahiro (Kyoto Inst. Tech.),

More information

A PN-type quantum barrier for InGaN/GaN light emitting diodes

A PN-type quantum barrier for InGaN/GaN light emitting diodes A PN-type quantum barrier for InGaN/GaN light emitting diodes Zi-Hui Zhang, 1 Swee Tiam Tan, 1 Yun Ji, 1 Wei Liu, 1 Zhengang Ju, 1 Zabu Kyaw, 1 Xiao Wei Sun 1,2,5 and Hilmi Volkan Demir 1,3,4,* 1 LUMINOUS!

More information

Combined Excitation Emission Spectroscopy of Europium ions in GaN and AlGaN films

Combined Excitation Emission Spectroscopy of Europium ions in GaN and AlGaN films Mater. Res. Soc. Symp. Proc. Vol. 866 2005 Materials Research Society V3.6.1 Combined Excitation Emission Spectroscopy of Europium ions in GaN and AlGaN films V.Dierolf 1, Z. Fleischman 1, and C, Sandmann

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Multi-quantum well nanowire heterostructures for wavelength-controlled lasers Fang Qian 1, Yat Li 1 *, Silvija Gradečak 1, Hong-Gyu Park 1, Yajie Dong 1, Yong Ding 2, Zhong

More information

drift vel. [10 cm/s] electric field [kv/cm] drift vel. [10 cm/s] electric field [kv/cm] T = 300 K GaN GaAs AlN

drift vel. [10 cm/s] electric field [kv/cm] drift vel. [10 cm/s] electric field [kv/cm] T = 300 K GaN GaAs AlN Pyroelectronics: Novel device concepts based on nitride interfaces G. Zandler, J. A. Majewski, and P. Vogl Physik-Department and Walter Schottky Institut, Technische Universitat Munchen, Am Coulombwall,

More information

Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes

Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 6, JUNE 2001 1065 Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes Hyunsoo Kim, Seong-Ju Park, and Hyunsang Hwang Abstract

More information

Schottky Diodes (M-S Contacts)

Schottky Diodes (M-S Contacts) Schottky Diodes (M-S Contacts) Three MITs of the Day Band diagrams for ohmic and rectifying Schottky contacts Similarity to and difference from bipolar junctions on electrostatic and IV characteristics.

More information

(Al,In)GaN laser diodes in spectral, spatial, and time domain: near-field measurements and basic simulations

(Al,In)GaN laser diodes in spectral, spatial, and time domain: near-field measurements and basic simulations (Al,In)GaN laser diodes in spectral, spatial, and time domain: near-field measurements and basic simulations Ulrich Schwarz Department of Experimental and Applied Physics Regensburg University Optical

More information