CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

Size: px
Start display at page:

Download "CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM"

Transcription

1 CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM David Schuster Assistant Professor University of Chicago Chicago Ge Yang Bing Li Michael Geracie Yale Andreas Fragner Rob Schoelkopf Useful cryogenics discussions: Mike Lea / David Rees Princeton Steve Lyon Michigan State Mark Dykman Looking for students/postdocs! (schusterlab.uchicago.edu)

2 Outline Electrons on helium Circuit QED with electrons on helium Decoherence mechanisms and technical challenges Ge and Andy to follow up with experimental progress

3 An electron dimple Low energy electrons get stuck on the surface Force from positive electrode causes a dimple M.W. Cole. Rev. Mod. Phys. 46,

4 An electron on helium See Jackson 4.4 He Electron bound at < 8K + V 1 Re En 2 4e nz 0 2 Levitates 8nm above surface (in vacuum) Clean 2DEG : Mobility = cm 2 /Vs R/ h157ghz Bare electron: m eff = m e, g = 2 <1 ppm 3 He nuclear spins e = a 0 = 7.6 nm QC Proposal w/ vertical states: Dykman, Science 1999

5 Electrons on helium vs. traditional 2DEGs Filament 2DEG 2DEG He Electrodes Top gate GaAs Back gate Ohmic contact Dopant layer Semiconductor Liquid/Superfluid interface No ohmic contacts (DC transport) Mobility = cm 2 /Vs Bulk spin coherence time > 50 ms* Effective mass = 0.99 m e g-factor = 2 Classical 2DEG / Wigner crystal Filament > 1 cm # of electrons well defined He3 nuclear spins < 1ppm Crystalline interface Ohmic contacts (DC transport) Mobility = 3 x 10 7 cm 2 /Vs Single spin coherence time ~100 ms Effective mass = m e g-factor = Quantum 2DEG / QHE Dopants < 100 nm Chemical potential well defined 100% Nuclear spins

6 An electron in an anharmonic potential DC electrodes to define trap for lateral motion Nearly harmonic motion with transitions at a few GHz Anharmonicity from small size of trap (w ~ d ~ 1mm)

7 CCD s for electrons on helium Massive CCD of electrons on helium Control many electrons with just a control inputs Courtesy Lyon group Needed: to load/detect exactly 1 electron/pixel Needed: way to entangle pairs of pixels together

8 Detection of single electrons on helium Electrons transferred 1 at a time from a resevoir into a 10 micron size trap Charge is quantized but no detection of coherent motion or spin Rousseau, et. al. PRB (2009)

9 Cavity QED with circuits and floating electrons 2g = vacuum Rabi freq. k = cavity decay rate g = transverse decay rate Strong coupling: 2g > k, g out transmission line cavity 10 mm 10 GHz in Trapped electron Theory: Blais, Huang, et al., Phys. Rev. A 69, (2004)

10 What can you do with cavity QED? Quantum Optics Measure individual photon # states Produce single photon states Tomography of arbitrary quantum states DIS *, Houck*, et. al., Nature, (2007) Bishop, Chow, et. al., Nature Physics, (2009) Quantum Computing Two qubit gates Quantum algorithms Process tomography Fundamental Cavity QED Measurement of field quantization Create large photon # states DiCarlo, Chow, et. al., Nature, (2009)

11 An electron in a cavity E 0 V0 w Electron motion couples to cavity field Can achieve strong coupling limit of cavity QED Couple to other qubits through cavity bus Cavity-electron coupling V g ex h w 0 ~ 0 ~ 25MHz Predicted decay rate <10 khz Schuster, Dykman, et. al. Phys. Rev. Lett. 105, (2010)

12 Measuring without absorption A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, (2004)

13 Accessing spin: Artificial spin-orbit coupling Electricaly tunable spin-motion coupling! With no flux focusing and current geometry: 100 khz/ma

14 Decoherence due to electrodes Noise on gate electrode: Assume worst case scenario of SET (w 1fF capacitance) charge noise as voltage noise. S V ~10 10 V/Hz 9 7 1/ GHz 10 V ~ 2.5kHz 400mV Johnson noise is even smaller. Odd mode noise should be similar but potential is first order insensitive to odd fields, so should also be smaller. Linearly sensitive to voltage noise, should be similar to flux bias lines, and those seem ok at the microsecond level.

15 Interactions with Helium Electron motion can couple to waves in helium. To cause relaxation, must match Energy and Momentum p h / x 0 Relaxation rate: k p 1 2 h / x k k p h / x ~ k ~ k 0 k k k x y x y z small 400 Hz 400 Hz Dephasing rate: small 50 Hz?? 1/ 2

16 Interactions with Helium 2 What about classical vibrations? Channel is filled by capillary action. Tilting container could change level? We re pretty sensitive to He level ~ 10 MHz/nm Superfluid to the rescue! 1cm t 28nm h 2 / 7 Would need 9mm change in reservoir to get Dt=1nm!

17 Electron Debye Waller Factor Electron-ripplon sideband transitions e g No ripplon transition Phonon + ripplon transition N-1 N N+1 Ripplon While Rabi flopping possible to emit ripplon. Ripplon spectrum has no gap: 3/ 2 k Gives error while driving (not while qubit resting). Solutions: so present at any Rabi frequency. Error may be as bad as 15%... Reduce coupling to ripplons Develop ripplon resistant pulses

18 Motional Decoherence Mechanisms Relaxation through bias electrodes Dephasing from level fluctuations Emission of (two) ripplons Emission of phonons dephasing relaxation

19 Experimental path towards realizing this dream Build an apparatus compatible with both SC resonators/qubits and electrons on helium Good microwave performance (and thermalized down to 20mK) Hermetic to superfluid / low vibrations Create stable superfluid filled trap for electrons Build resonators with capillary channels Develop sensitive helium level meter Characterize fluctuations Trap and detect many (and eventually single electrons) Need electron source (filament, photocathode, field emitter,) Need many electron trap Need to load single electron trap Need to detect and manipulate single electrons

20 State of electrons on helium experiments Helium+Dil-fridge+microwaves Trapping and DC detection of electrons Cavity-Helium coupling (Yang) Cavity-based trapping/detection (Fragner)

21 Conclusions Circuit QED with electrons on helium Rich physics - single electron dynamics, motional and spin coherence, superfluid excitations, etc. Strong coupling limit should be easily reached Good coherence times for motion and spin Making rapid experimental progress Sensitive detection of helium using superconducting cavities Trapping of many electrons Much more to accomplish Next up: Experimental progress!

Circuit QED with electrons on helium:

Circuit QED with electrons on helium: Circuit QED with electrons on helium: What s the sound of one electron clapping? David Schuster Yale (soon to be at U. of Chicago) Yale: Andreas Fragner Rob Schoelkopf Princeton: Steve Lyon Michigan State:

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Quantum computation and quantum optics with circuit QED

Quantum computation and quantum optics with circuit QED Departments of Physics and Applied Physics, Yale University Quantum computation and quantum optics with circuit QED Jens Koch filling in for Steven M. Girvin Quick outline Superconducting qubits overview

More information

Quantum Optics with Electrical Circuits: Circuit QED

Quantum Optics with Electrical Circuits: Circuit QED Quantum Optics with Electrical Circuits: Circuit QED Eperiment Rob Schoelkopf Michel Devoret Andreas Wallraff David Schuster Hannes Majer Luigi Frunzio Andrew Houck Blake Johnson Emily Chan Jared Schwede

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014 Circuit Quantum Electrodynamics Mark David Jenkins Martes cúantico, February 25th, 2014 Introduction Theory details Strong coupling experiment Cavity quantum electrodynamics for superconducting electrical

More information

Circuit Quantum Electrodynamics

Circuit Quantum Electrodynamics Circuit Quantum Electrodynamics David Haviland Nanosturcture Physics, Dept. Applied Physics, KTH, Albanova Atom in a Cavity Consider only two levels of atom, with energy separation Atom drifts through

More information

Commensurability-dependent transport of a Wigner crystal in a nanoconstriction

Commensurability-dependent transport of a Wigner crystal in a nanoconstriction NPCQS2012, OIST Commensurability-dependent transport of a Wigner crystal in a nanoconstriction David Rees, RIKEN, Japan Kimitoshi Kono (RIKEN) Paul Leiderer (University of Konstanz) Hiroo Totsuji (Okayama

More information

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD Hanhee Paik IBM Quantum Computing Group IBM T. J. Watson Research Center, Yorktown Heights, NY USA

More information

Superconducting Qubits

Superconducting Qubits Superconducting Qubits Fabio Chiarello Institute for Photonics and Nanotechnologies IFN CNR Rome Lego bricks The Josephson s Lego bricks box Josephson junction Phase difference Josephson equations Insulating

More information

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits QIP II (FS 2018) Student presentation by Can Knaut Can Knaut 12.03.2018 1 Agenda I. Cavity Quantum Electrodynamics and the Jaynes

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Cavity Quantum Electrodynamics with Superconducting Circuits

Cavity Quantum Electrodynamics with Superconducting Circuits Cavity Quantum Electrodynamics with Superconducting Circuits Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, R. Bianchetti, S. Filipp, J. Fink, A. Fragner, M. Göppl, P. Leek, P. Maurer, L. Steffen,

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University Strongly Driven Semiconductor Double Quantum Dots Jason Petta Physics Department, Princeton University Lecture 3: Cavity-Coupled Double Quantum Dots Circuit QED Charge-Cavity Coupling Towards Spin-Cavity

More information

Condensed Matter Without Matter Quantum Simulation with Photons

Condensed Matter Without Matter Quantum Simulation with Photons Condensed Matter Without Matter Quantum Simulation with Photons Andrew Houck Princeton University Work supported by Packard Foundation, NSF, DARPA, ARO, IARPA Condensed Matter Without Matter Princeton

More information

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit Cavity QED with Superconducting Circuits coherent quantum mechanics with individual photons and qubits...... basic approach:

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Entanglement Control of Superconducting Qubit Single Photon System

Entanglement Control of Superconducting Qubit Single Photon System : Quantum omputing Entanglement ontrol of Superconducting Qubit Single Photon System Kouichi Semba Abstract If we could achieve full control of the entangled states of a quantum bit (qubit) interacting

More information

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Developing Quantum Logic Gates: Spin-Resonance-Transistors Developing Quantum Logic Gates: Spin-Resonance-Transistors H. W. Jiang (UCLA) SRT: a Field Effect Transistor in which the channel resistance monitors electron spin resonance, and the resonance frequency

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007 Generating Single Microwave Photons in a Circuit arxiv:cond-mat/0702648v1 [cond-mat.mes-hall] 27 Feb 2007 A. A. Houck, 1 D. I. Schuster, 1 J. M. Gambetta, 1 J. A. Schreier, 1 B. R. Johnson, 1 J. M. Chow,

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Image courtesy of Keith Schwab http://www.lbl.gov/science-articles/archive/afrd Articles/Archive/AFRD-quantum-logic.html http://www.wmi.badw.de/sfb631/tps/dqd2.gif http://qist.lanl.gov/qcomp_map.shtml

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

Coherent oscillations in a charge qubit

Coherent oscillations in a charge qubit Coherent oscillations in a charge qubit The qubit The read-out Characterization of the Cooper pair box Coherent oscillations Measurements of relaxation and decoherence times Tim Duty, Kevin Bladh, David

More information

Superconducting Resonators and Their Applications in Quantum Engineering

Superconducting Resonators and Their Applications in Quantum Engineering Superconducting Resonators and Their Applications in Quantum Engineering Nov. 2009 Lin Tian University of California, Merced & KITP Collaborators: Kurt Jacobs (U Mass, Boston) Raymond Simmonds (Boulder)

More information

Dynamical Casimir effect in superconducting circuits

Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in superconducting circuits Dynamical Casimir effect in a superconducting coplanar waveguide Phys. Rev. Lett. 103, 147003 (2009) Dynamical Casimir effect in superconducting microwave

More information

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots Christopher Eichler - 29.01. 2016 ScaleQIT Conference, Delft In collaboration with: C. Lang, J. Mlynek, Y. Salathe,

More information

Implementing Quantum walks

Implementing Quantum walks Implementing Quantum walks P. Xue, B. C. Sanders, A. Blais, K. Lalumière, D. Leibfried IQIS, University of Calgary University of Sherbrooke NIST, Boulder 1 Reminder: quantum walk Quantum walk (discrete)

More information

Quantum optics and quantum information processing with superconducting circuits

Quantum optics and quantum information processing with superconducting circuits Quantum optics and quantum information processing with superconducting circuits Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Superconducting quantum bits. Péter Makk

Superconducting quantum bits. Péter Makk Superconducting quantum bits Péter Makk Qubits Qubit = quantum mechanical two level system DiVincenzo criteria for quantum computation: 1. Register of 2-level systems (qubits), n = 2 N states: eg. 101..01>

More information

Strong-coupling Circuit QED

Strong-coupling Circuit QED Departments of Physics and Applied Physics, Yale University Quantum Optics with Electrical Circuits: Strong-coupling Circuit QED Jens Koch Departments of Physics and Applied Physics, Yale University Circuit

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

Quantum Computing with Electrons on Liquid Helium

Quantum Computing with Electrons on Liquid Helium Turk J Phys 27 (2003), 383 393. c TÜBİTAK Quantum Computing with Electrons on Liquid Helium İsmail Dept. of Physics, Case Western Reserve University, Cleveland, OH 44106, USA Received 12.09.2003 Abstract

More information

AFRL-RI-RS-TR

AFRL-RI-RS-TR AFRL-RI-RS-TR-2015-013 HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION

More information

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi 2015 AMO Summer School Quantum Optics with Propagating Microwaves in Superconducting Circuits I Io-Chun, Hoi Outline 1. Introduction to quantum electrical circuits 2. Introduction to superconducting artificial

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Theory of quantum dot cavity-qed

Theory of quantum dot cavity-qed 03.01.2011 Slide: 1 Theory of quantum dot cavity-qed -- LO-phonon induced cavity feeding and antibunching of thermal radiation -- Alexander Carmele, Julia Kabuss, Marten Richter, Andreas Knorr, and Weng

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry

Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry Journal of Low Temperature Physics - QFS2009 manuscript No. (will be inserted by the editor) Transport of Electrons on Liquid Helium across a Tunable Potential Barrier in a Point Contact-like Geometry

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

Circuit QED: A promising advance towards quantum computing

Circuit QED: A promising advance towards quantum computing Circuit QED: A promising advance towards quantum computing Himadri Barman Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India. QCMJC Talk, July 10, 2012 Outline Basics of quantum

More information

Cavity Control in a Single-Electron Quantum Cyclotron

Cavity Control in a Single-Electron Quantum Cyclotron Cavity Control in a Single-Electron Quantum Cyclotron An Improved Measurement of the Electron Magnetic Moment David Hanneke Michelson Postdoctoral Prize Lectures 13 May 2010 The Quantum Cyclotron Single

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system Nathan K. Langford OVERVIEW Acknowledgements Ramiro Sagastizabal, Florian Luthi and the rest of the

More information

Electrical Quantum Engineering with Superconducting Circuits

Electrical Quantum Engineering with Superconducting Circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 Electrical Quantum Engineering with Superconducting Circuits R. Heeres & P. Bertet SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400

More information

Synthesizing arbitrary photon states in a superconducting resonator

Synthesizing arbitrary photon states in a superconducting resonator Synthesizing arbitrary photon states in a superconducting resonator Max Hofheinz, Haohua Wang, Markus Ansmann, R. Bialczak, E. Lucero, M. Neeley, A. O Connell, D. Sank, M. Weides, J. Wenner, J.M. Martinis,

More information

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓 Quantum Optics with Propagating Microwaves in Superconducting Circuits 許耀銓 Outline Motivation: Quantum network Introduction to superconducting circuits Quantum nodes The single-photon router The cross-kerr

More information

Quantum computation with superconducting qubits

Quantum computation with superconducting qubits Quantum computation with superconducting qubits Project for course: Quantum Information Ognjen Malkoc June 10, 2013 1 Introduction 2 Josephson junction 3 Superconducting qubits 4 Circuit and Cavity QED

More information

Introduction to Circuit QED Lecture 2

Introduction to Circuit QED Lecture 2 Departments of Physics and Applied Physics, Yale University Experiment Michel Devoret Luigi Frunzio Rob Schoelkopf Andrei Petrenko Nissim Ofek Reinier Heeres Philip Reinhold Yehan Liu Zaki Leghtas Brian

More information

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor Hendrik Bluhm Andre Kruth Lotte Geck Carsten Degenhardt 1 0 Ψ 1 Quantum Computing

More information

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator : A New Era in Quantum Information Processing Technologies Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator Yuichiro Matsuzaki, Kosuke Kakuyanagi, Hiraku Toida, Hiroshi

More information

Quantum-information processing with circuit quantum electrodynamics

Quantum-information processing with circuit quantum electrodynamics PHYSICAL REVIEW A 75, 339 7 Quantum-information processing with circuit quantum electrodynamics Alexandre Blais, 1, Jay Gambetta, 1 A Wallraff, 1,3 D I Schuster, 1 S M Girvin, 1 M H Devoret, 1 and R J

More information

Introduction to Circuit QED

Introduction to Circuit QED Introduction to Circuit QED Michael Goerz ARL Quantum Seminar November 10, 2015 Michael Goerz Intro to cqed 1 / 20 Jaynes-Cummings model g κ γ [from Schuster. Phd Thesis. Yale (2007)] Jaynes-Cumming Hamiltonian

More information

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010 High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-Cummings Nonlinearity arxiv:4.4323v2 [cond-mat.mes-hall] 9 Oct 2 M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster,

More information

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03

Cavity QED. Driven Circuit QED System. Circuit QED. decay atom: γ radiation: κ. E. Il ichev et al., PRL 03 Decoherence and Relaxation in Driven Circuit QED Systems Alexander Shnirman Arkady Fedorov Julian Hauss Valentina Brosco Stefan André Michael Marthaler Gerd Schön experiments Evgeni Il ichev et al. Univ.

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris

Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris Cavity QED with Rydberg Atoms Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris A three lecture course Goal of lectures Manipulating states of simple quantum systems has become an important

More information

Interaction between surface acoustic waves and a transmon qubit

Interaction between surface acoustic waves and a transmon qubit Interaction between surface acoustic waves and a transmon qubit Ø Introduction Ø Artificial atoms Ø Surface acoustic waves Ø Interaction with a qubit on GaAs Ø Nonlinear phonon reflection Ø Listening to

More information

Quantum computing hardware

Quantum computing hardware Quantum computing hardware aka Experimental Aspects of Quantum Computation PHYS 576 Class format 1 st hour: introduction by BB 2 nd and 3 rd hour: two student presentations, about 40 minutes each followed

More information

Exploring parasitic Material Defects with superconducting Qubits

Exploring parasitic Material Defects with superconducting Qubits Exploring parasitic Material Defects with superconducting Qubits Jürgen Lisenfeld, Alexander Bilmes, Georg Weiss, and A.V. Ustinov Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe,

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station Topological Quantum Computation with Majorana Zero Modes Roman Lutchyn Microsoft Station IPAM, 08/28/2018 Outline Majorana zero modes in proximitized nanowires Experimental and material science progress

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED Commun. Theor. Phys. 56 (011 35 39 Vol. 56, No. 3, September 15, 011 Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED WU

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

The Analysis of Nano-Size Inhomogeneities of Substrate by Surface Electrons over Superfluid Helium Film

The Analysis of Nano-Size Inhomogeneities of Substrate by Surface Electrons over Superfluid Helium Film Journal of Physical Science and Application 6 (5) (2016) 37-41 doi: 10.17265/2159-5348/2016.05.007 D DAVID PUBLISHING The Analysis of Nano-Size Inhomogeneities of Substrate by Yaroslav Yurievich Bezsmolnyy,

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

Electron spin coherence exceeding seconds in high-purity silicon

Electron spin coherence exceeding seconds in high-purity silicon Electron spin coherence exceeding seconds in high-purity silicon Alexei M. Tyryshkin, Shinichi Tojo 2, John J. L. Morton 3, H. Riemann 4, N.V. Abrosimov 4, P. Becker 5, H.-J. Pohl 6, Thomas Schenkel 7,

More information

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group Josephson qubits P. Bertet SPEC, CEA Saclay (France), Quantronics group Outline Lecture 1: Basics of superconducting qubits Lecture 2: Qubit readout and circuit quantum electrodynamics 1) 2) 3) Readout

More information

Dissipation in Transmon

Dissipation in Transmon Dissipation in Transmon Muqing Xu, Exchange in, ETH, Tsinghua University Muqing Xu 8 April 2016 1 Highlight The large E J /E C ratio and the low energy dispersion contribute to Transmon s most significant

More information

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition Shi-Biao Zheng 1, You-Peng Zhong 2, Kai Xu 2, Qi-Jue Wang 2, H. Wang 2, Li-Tuo Shen 1, Chui-Ping

More information

Electron spin qubits in P donors in Silicon

Electron spin qubits in P donors in Silicon Electron spin qubits in P donors in Silicon IDEA League lectures on Quantum Information Processing 7 September 2015 Lieven Vandersypen http://vandersypenlab.tudelft.nl Slides with black background courtesy

More information

nano Josephson junctions Quantum dynamics in

nano Josephson junctions Quantum dynamics in Permanent: Wiebke Guichard Olivier Buisson Frank Hekking Laurent Lévy Cécile Naud Bernard Pannetier Quantum dynamics in nano Josephson junctions CNRS Université Joseph Fourier Institut Néel- LP2MC GRENOBLE

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus Leon Stolpmann, Micro- and Nanosystems Efe Büyüközer, Micro- and Nanosystems Outline 1. 2. 3. 4. 5. Introduction Physical system

More information

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities

Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Collège de France abroad Lectures Quantum information with real or artificial atoms and photons in cavities Serge Haroche, Collège de France & Ecole Normale Supérieure, Paris www.college-de-france.fr A

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000 Final Report Superconducting Qubits for Quantum Computation Contract MDA904-98-C-A821/0000 Project Director: Prof. J. Lukens Co-project Director: Prof. D. Averin Co-project Director: Prof. K. Likharev

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

Let's Build a Quantum Computer!

Let's Build a Quantum Computer! Let's Build a Quantum Computer! 31C3 29/12/2014 Andreas Dewes Acknowledgements go to "Quantronics Group", CEA Saclay. R. Lauro, Y. Kubo, F. Ong, A. Palacios-Laloy, V. Schmitt PhD Advisors: Denis Vion,

More information

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting

Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Qubit-photon interactions in a cavity: Measurement-induced dephasing and number splitting Jay Gambetta, 1 Alexandre Blais, 1,2 D. I. Schuster, 1 A. Wallraff, 1,3 L. Frunzio, 1 J. Majer, 1 M. H. Devoret,

More information

Efficient electron transport on helium with silicon integrated circuits

Efficient electron transport on helium with silicon integrated circuits Efficient electron transport on helium with silicon integrated circuits - - + - - Forrest Bradbury 1 and Maika Takita 1, Kevin Eng 2, Tom M Gurrieri 2, Kathy J Wilkel 2, Stephen A Lyon 1 1 Princeton University

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Conditional Measurements in cavity QED. Luis A. Orozco Joint Quantum Institute Department of Physics

Conditional Measurements in cavity QED. Luis A. Orozco Joint Quantum Institute Department of Physics Conditional Measurements in cavity QED Luis A. Orozco Joint Quantum Institute Department of Physics University of Maryland, College Park, Maryland: Matthew L. Terraciano Rebecca Olson David Norris Jietai

More information

Circuit quantum electrodynamics : beyond the linear dispersive regime

Circuit quantum electrodynamics : beyond the linear dispersive regime Circuit quantum electrodynamics : beyond the linear dispersive regime 1 Jay Gambetta 2 Alexandre Blais 1 1 Département de Physique et Regroupement Québécois sur les matériaux de pointe, 2 Institute for

More information