Polariton laser in micropillar cavities

Size: px
Start display at page:

Download "Polariton laser in micropillar cavities"

Transcription

1 Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS, Marcoussis, France Outline 2D GaAs cavities : polariton laser or photon laser? D polariton states in micropillars Polariton laser: D versus 2D OPO with D polariton modes Polariton electrical injection

2 Motivations Cavity polaritons : exciton photon mixed state Strong χ 3 non linearities : OPO (Savvidis PRL2, Stevenson PRL2, C. Diederich Nature2 ) > generation of correlated photon pairs 1.47 upper polariton photon exciton 1.47 lower polariton 4 C. Weisbuch et al., PRL 92 Bosonic statistic : macroscopic occupation of a quantum state BEC (J. Kasprzak Nature2, R. Balili Science27, C. W. Lai Nature27) Polariton laser: Low threshold source of coherent light (S. Christopoulos PRL27, D. Bajoni PRL28) 1 k // (cm )

3 Reports of Bosonic effects in semiconductor microcavities II VI (CdTe) : Non resonant excitation, Low temperature J. Kasprzak Nature2 GaN: Non resonant excitation, 3 K S. Christopoulos PRL27, G. Christmann APL 28 GaAs: Low temperature Non resonant excitation Trap in real space, R. Balili et al., Science 27 Resonant excitation, 2D Deng et al., Science 22, PRL 27 C. W. Lai,et al., Nature 27

4 Polariton relaxation under non resonant excitation cw non resonant Pump: high energy electron hole pairs Energy ) 1 + f ( Bosonic stimulation: Γ relaxation (f+1) f k // (µm ) 2 4 f >>1 : quantum degeneracy; coherence. But we need : Polariton lifetime >> Polariton relaxation time! Relaxation bottleneck

5 Polariton relaxation under non resonant excitation! Relaxation bottleneck, polariton polariton scattering to enhance polariton relaxation Tartakovskii, PRB 2, Senellart PRB 2! Exciton screening at high excitation density : strong coupling > weak coupling R. Houdré, PRB 199, R. Butté PRB 22 Screening of the strong coupling regime, electron hole plasma in the weak coupling regime Vertical Cavity Surface Emitting Laser We need high occupation factors for a moderate total exciton density

6 Large Rabi splitting GaAs microcavity: 2D Large number of quantum wells Total saturation density N x (one QW saturation density) Overcome relaxation bottleneck? 1 1 pairs 2 pairs Energy (m ev) 3 x 4 GaAs QW J. Bloch, APL (1998) HH 1 1 Ω Same structure as Yamamoto et al. Snoke et al. LH HH 1 mev 11 Position (mm)

7 Large Rabi splitting GaAs microcavity: 2D cw Emission at k// Energy at threshold Cavity mode

8 Large Rabi splitting GaAs microcavity: 2D cw Angle resolved photoluminescence δ 1. mev cavity m ode redshifted cavity m ode H H exciton 11 Lower polariton 1 P 2.2 P th P.3 P th..x 1 In plane wavevector (m )

9 Large Rabi splitting GaAs microcavity: 2D cw Angle resolved photoluminescence δ 1. mev cavity m ode redshifted cavity m ode H H exciton 11 Dispersion of a cavity mode Lower polariton 1 P 2.2 P th P.3 P th.. x 1 In plane wavevector (m ) Carrier induced refractive index renormalization Regular photon lasing! Too high carrier density

10 Large Rabi splitting GaAs microcavity: 2D Intensity distribution of the photon laser PL integrated Intensity (arb.u.) δ 1. mev P2.2 P th cw Similarities between photon laser and polariton condensate P.3 P th E E min (m ev) D. Bajoni et al., Phys. Rev. B 7, R213 (27)

11 Large Rabi splitting GaAs microcavity: 2D New generation of samples : higher finesse Q > 12 1 pairs 2 pairs 3 x 4 GaAs QW 2 pairs 3 pairs (mev) Energy 1 1 Energy at threshold Ω HH 1 mev Strong coupling?! Detuning Detuning(meV) (mev) 1 1

12 E Selective probe (emission or excitation) of the polariton states z θ k ( cm émission(θ ) θ k (4 cm 1) ) k ω /c sin(θ ) k

13 Large Rabi splitting GaAs microcavity: 2D New generation of samples : higher finesse m W 3 m W 2 m W m W m W 2 m W 1 m W 12 m W m W 9 mw 8 mw 7 mw mw mw 2 mw 1 mw. m W Energy (m ev) 13 Integrated Intensity (a.u.) Integrated Intensity (a.u.) δ +. mev Pump Power (mw )

14 Large Rabi splitting GaAs microcavity: 2D New generation of samples : higher finesse 1E8 δ +. mev P P th 1E E8 P 1E7 P th P Pth P Pth P.2 Pth x 1E8 P.2 P th 1E x 1x 2x 1 k // (m ) 3x 4x x

15 Large Rabi splitting GaAs microcavity: 2D New generation of samples : higher finesse δ +. mev 9 P P th P P th P,2 P th 8 7 T 4 K Occupancy (a.u.) 13 P Pth P Pth P.2 Pth x 2 4 E E min (mev) 1x 1x 2x 1 k // (m ) 3x 4x x

16 Large Rabi splitting GaAs microcavity: 2D New generation of samples : higher finesse Polariton lifetime >> relaxation time Build up of a large occupancy at k in the strong coupling regime Polariton laser (BEC?) in a GaAs 2D microcavity under NON RESONANT excitation Lateral confinement : D polariton states in the same sample Discussion of 2D versus D for polariton lasing

17 Photon modes in a micropillars Photons confined along z: kz pπ /Lc Photons confined along x and y: refractive index contrast between air and semiconductor kx pxπ /Lx ky pyπ /Ly Ly Lx Lc << Lx,Ly Discrete spectrum : px and py EPx, py size ( µm)... 2 c pπ p xπ p yπ + + n Lc Lx Ly 2

18 Exciton Photon coupling in micropillars Photon modes Exciton enveloppe function : p yπ y p xπ x E p x, p y ( x, y ) sin( ) sin( ) Lx Ly p yπ y p xπ x ψ px, p y ( x, y ) sin( ) sin( ) Lx Ly One to one coupling between exciton and photon modes (for lateral size > 2 µm) Ex px, py g g EC px, py G. Panzarini and L. C. Andreani, PRB, 1799 (1999) > Exciton photon mixed states Discrete polariton states

19 D polariton states in micropillars Fabrication : Electron beam lithography Reactive ion etching 2 pairs 2 2 µm 3 x 4 GaAs QW 3 pairs Cavity wedge > detuning 2 µm

20 D polariton states in micropillars Microphotoluminescence on a single micropillar PL Intensity (arb. units) 3 Discrete Circular pillar Polariton M odes diameter4 µm M1 M2 M3 T K M4 2 Q>12 µm Exciton Emission 1 1 Discrete spectrum of polariton modes

21 Another approach for D polaritons R. Idrissi Kaitouni, et al., PHYSICAL REVIEW B 74, 1311 (2) Ounsi El Daif et al., Applied Phys. Lett. 92, 819 (28)

22 Polariton laser in a micropillar Non resonant optical pumping δ mev PL Intensity (arb. units) 7 µm 2. mw 2 mw 1.2 mw.8 mw.3 mw.1 mw x4 x4 x4 x x Blueshift <. mev Strong coupling regime

23 Polariton laser in a micropillar Non resonant optical pumping PL Intensity (arb. units) 2. mw 2 mw 1.2 mw.8 mw.3 mw.1 mw coupling regime: 4 3 Strong Polariton laser 2 19 x4 x4 x4 x x2 199 µm 7 mw mw 3 mw mw 2. mw 4 PL Intensity (arb. units) δ mev Weak coupling regime: Photon laser Onset of photon lasing at higher excitation power D. Bajoni et al., Phys. Rev. Lett., 4741 (28)

24 Em ission energy (mev) Polariton laser Photon laser µm Measured occupancy Emission integrated intensity (arb. u.) Polariton laser in a micropillar % of the injected electron hole pairs Polariton laser 199 More than polaritons in the same quantum state 198 Photon laser Excitation power (mw ) D. Bajoni et al., Phys. Rev. Lett., 4741 (28) Estimated exciton density : cm 2/QW

25 Em ission energy (mev) Polariton laser Photon laser Photon laser Photon laser : non interacting bosons Polariton laser 199 µm Measured occupancy Emission integrated intensity (arb. u.) Polariton laser in a micropillar Excitation power (mw ) Polariton laser : self interaction responsible for the observed blueshift

26 2 Threshold (x W cm ) Polariton laser in a micropillar Photon laser 1.1 Polariton laser Pillar size (µm ) times lower threshold!!!

27 Polariton laser in a micropillar PL PL intensity intensity (arb. (arb. u.) u.) Centered Centered.8 mw mw.8.7 mw.7 mw. mw mw..2 mw mw.2 1x 1x 7x 7x Edge 4x 3x 2x 1x Diameter µm mw mw mw mw edge excitation: stimulation toward M2, M3 x. 3x 3x Integrated Integrated PL PL intensity intensity xx x Energy (m ev) Energy (m ev) 8 8 M ode1 Mode1 M ode2 Mode2 M ode3 7 7 Mode power (m W ) Excitation Excitation power (m W ) 8 7 Polariton Lasing with mode competition

28 Polariton laser in a micropillar: mode competition Large micropilllar Smaller micropilllar 4 µm 4 3 4x 3x 2x 1x 2 mw 1 mw Power (µw ) Multimode, fragmentation Energy (ev) 1 mw 2 mw x 3x 1 mw Intensity (arb. u.) 7 x Intensity (arb. u.) x 8 Intensity (arb.u.) Integrated intensity (arb. u.) µm 2x 1x. mw Power (µw) Lasing on the ground state. mw 1 mw

29 Mode competition: 2D versus D II VI 2D cavity Laser without power fluctuation: multimode polariton lasing Reduced dimensionality : A unique system for quantum degeneracy in a well controled quantum state

30 OPO with D polaritons Parametric scattering between discrete D polariton modes PL Intensity (arb. Units) Energy conservation: Ei Ep Ep Es Square pillar 4 µm side T4K 1 s 14 Symmetry conservation: P 2 14 i 14 E G. Dasbach et al., PRB 4 R2139 (21) * Pump * 4 ( r )E Pump ' ( r ) Esignal ( r ) Eidler ( r )d r

31 OPO with D polaritons E Px, py Energy conservation: Ei Ep Ep Es c n 2 pπ p xπ p yπ + + Lc Lx Ly (2,2) E + 8 Econf (2,1),(1,2) E + Econf (1,1) E + 2 Econf 2 2 Spectral Equidistance

32 OPO with D polaritons (2,2) Energy conservation: Ei Ep Ep Es (2,1) + (1,2) Symmetry conservation: * 2 * E ( r ) E ( r ) E ( r ) E ( r Pump Pump ' signal idler )d r (1,1)

33 OPO in micropillars 3. µm square T K Intensity (arb. u.) M1 M2 M2 M Energy (m ev) x 7. x M1 Pump M3 P P P P P P 1 m W 9 m W 7 m W 1 m W 2 m W mw. 194 D. Bajoni et al., Applied Phys. Lett. 9, 17 (27)

34 OPO in micropillars 3. µm square T K 7 4 M2 M1 M3 Intensity (arb. u.) Integrated Intensity (a. u.) 1.x 7.x M1 Pump M3 P P P P P P 1 m W 9 m W 7 m W 1 m W 2 m W mw Pum p Power (mw ) First observation of parametric oscillations on a single micropillar 12

35 OPO with microcavity polaritons Idler Signal pump idler 9 signal Pump : 17 Idler at very large angle and weakly coupled to the external field P.G. Savvidis et al. PRL (2) R. M. Stevenson et al. PRL 8 38 (2) Micropillars Multiple cavities (collaboration J. Tignon and A. Bramati) Same intensity for signal and idler

36 Polariton electrical injection D. Bajoni et al., Phys. Rev. B 77, (28)

37 Polariton electrical injection Log(EL intensity) Log(EL intensity) (arb. units) (arb. units) T TKK I1 I1m maa Log(EL intensity) Log(EL intensity) (arb. units) (arb. units) T TKK I7 I7mmAA Cavity mode Angle Angle(degrees) (degrees) Bleaching of the strong coupling Angle Angle(degrees) (degrees)

38 Polariton electrical injection T K Three groups : A. Khalifa et al., Appl. Phys. Lett. 92, 17 (28) T K D. Bajoni et al., Phys. Rev. B 77, (28) T K S. I. Tsintzos et al., Nature (28) T 23 K Further optimisation : polariton laser under electrical injection

39 Summary GaAs cavities : High finesse + Many QWs 7 PL Intensity (arb. units) Polariton lasing (BEC?) under non resonant excitation in 2D and in D x4 x4 x4 x x2 Multimode lasing in 2D and pillars > µm 2. m W 2 mw 1.2 m W.8 m W.3 m W.1 m W Energy (m ev) Small micropillars (< µm): quantum degeneracy of a well controlled polariton state OPO with discrete polariton states.x Lo g(el intensity) (arb. u nits) m W 9 m W 7 m W 1 m W 2 m W mw T K I1 m A T K I7 m A RTN Clermont II Electrical injection of polaritons L og(el intensity) (arb. u nits) x Intensity (arb. u.) 1484 P P P P P P Angle (degrees) Angle (degrees) 2

arxiv: v3 [cond-mat.mtrl-sci] 3 Dec 2007

arxiv: v3 [cond-mat.mtrl-sci] 3 Dec 2007 using single micropillar GaAs-GaAlAs semiconductor cavities Daniele Bajoni, 1 Pascale Senellart, 1 Esther Wertz, 1 Isabelle Sagnes, 1 Audrey Miard, 1 Aristide Lemaître, 1 and Jacqueline Bloch 1, 1 CNRS-Laboratoire

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

Hydrodynamic solitons in polariton superfluids

Hydrodynamic solitons in polariton superfluids Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire

More information

Manipulating Polariton Condensates on a Chip

Manipulating Polariton Condensates on a Chip Manipulating Polariton Condensates on a Chip Pavlos G. Savvidis University of Crete, FORTH-IESL Tbilisi 19.09.12 Acknowledgements Prof. PG Savvidis Dr. Peter Eldridge Dr. Simos Tsintzos PhD Niccolo Somaschi

More information

Room temperature one-dimensional polariton condensate in a ZnO microwire

Room temperature one-dimensional polariton condensate in a ZnO microwire Room temperature one-dimensional polariton condensate in a ZnO microwire Liaoxin Sun, 1,3 Shulin Sun, 1 Hongxing Dong, 1 Wei Xie, 1 M. Richard, 2 Lei Zhou, 1 Zhanghai Chen, 1, a L. S. Dang, 2 Xuechu Shen

More information

Electron-polariton scattering, beneficial and detrimental effects

Electron-polariton scattering, beneficial and detrimental effects phys. stat. sol. (c) 1, No. 6, 1333 1338 (2004) / DOI 10.1002/pssc.200304063 Electron-polariton scattering, beneficial and detrimental effects P. G. Lagoudakis *, 1, J. J. Baumberg 1, M. D. Martin 1, A.

More information

Single-mode Polariton Laser in a Designable Microcavity

Single-mode Polariton Laser in a Designable Microcavity Single-mode Polariton Laser in a Designable Microcavity Hui Deng Physics, University of Michigan, Ann Arbor Michigan Team: Bo Zhang Zhaorong Wang Seonghoon Kim Collaborators: S Brodbeck, C Schneider, M

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati Quantum fluid phenomena with Microcavity Polaritons Alberto Bramati Quantum Optics Team: topics Quantum fluid phenomena in polariton gases An ideal system to study out of equilibrium quantum fluids Obstacle

More information

Stimulated Polariton Scattering in Semiconductor Microcavities: New Physics and Potential Applications

Stimulated Polariton Scattering in Semiconductor Microcavities: New Physics and Potential Applications Stimulated Polariton Scattering in Semiconductor Microcavities: New Physics and Potential Applications By Alexander I. Tartakovskii, Maurice S. Skolnick,* Dmitrii N. Krizhanovskii, Vladimir D. Kulakovskii,

More information

Quantum coherence in semiconductor nanostructures. Jacqueline Bloch

Quantum coherence in semiconductor nanostructures. Jacqueline Bloch Quantum coherence in semiconductor nanostructures Jacqueline Bloch Laboratoire of Photonic and Nanostructures LPN/CNRS Marcoussis Jacqueline.bloch@lpn.cnrs.fr Laboratoire de Photonique et de Nanostructures

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Jul 2002

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 2 Jul 2002 Polarization Control of the Non-linear Emission on Semiconductor Microcavities arxiv:cond-mat/0207064v1 [cond-mat.mes-hall] 2 Jul 2002 M.D. Martín, G. Aichmayr, and L. Viña Departamento de Física de Materiales

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Summary We describe the signatures of exciton-polariton condensation without a periodically modulated potential, focusing on the spatial coherence properties and condensation in momentum space. The characteristics

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Room Temperature Polariton Lasing in All-Inorganic. Perovskite Nanoplatelets

Room Temperature Polariton Lasing in All-Inorganic. Perovskite Nanoplatelets Supplementary Information for Room Temperature Polariton Lasing in All-Inorganic Perovskite Nanoplatelets Rui Su, Carole Diederichs,, Jun Wang, ǁ Timothy C.H. Liew, Jiaxin Zhao, Sheng Liu, Weigao Xu, Zhanghai

More information

Single-photon nonlinearity of a semiconductor quantum dot in a cavity

Single-photon nonlinearity of a semiconductor quantum dot in a cavity Single-photon nonlinearity of a semiconductor quantum dot in a cavity D. Sanvitto, F. P. Laussy, F. Bello, D. M. Whittaker, A. M. Fox and M. S. Skolnick Department of Physics and Astronomy, University

More information

Light-Matter Correlations in Polariton Condensates

Light-Matter Correlations in Polariton Condensates Light-Matter Correlations in Polariton Condensates 1) Alexey Kavokin University of Southampton, UK SPIN, CNR, Rome, Italy Alexandra Sheremet Russian Quantum Center, Moscow, Russia Yuriy Rubo Universidad

More information

This is a repository copy of Asymmetric angular emission in semiconductor microcavities.

This is a repository copy of Asymmetric angular emission in semiconductor microcavities. This is a repository copy of Asymmetric angular emission in semiconductor microcavities. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/1464/ Article: Savvidis, P.G., Baumberg,

More information

Stimulated secondary emission from semiconductor microcavities

Stimulated secondary emission from semiconductor microcavities Downloaded from orbit.dtu.dk on: Apr 10, 2018 Stimulated secondary emission from semiconductor microcavities Østergaard, John Erland; Mizeikis, V.; Langbein, Wolfgang Werner; Jensen, Jacob Riis; Hvam,

More information

Driven-dissipative polariton quantum fluids in and out of equilibrium

Driven-dissipative polariton quantum fluids in and out of equilibrium Driven-dissipative polariton quantum fluids in and out of equilibrium Marzena Szymańska Designer Quantum Systems Out of Equilibrium KITP, November 2016 Acknowledgements Group: A. Zamora G. Dagvadorj In

More information

Parametric polariton amplification in semiconductor microcavities

Parametric polariton amplification in semiconductor microcavities Parametric polariton amplification in semiconductor microcavities Gaëtan Messin, Jean-Philippe Karr, Augustin Baas, Galina Khitrova, Romuald Houdré, Ross Stanley, Ursula Oesterle, Elisabeth Giacobino To

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Exciton photon strong-coupling regime for a single quantum dot in a microcavity.

Exciton photon strong-coupling regime for a single quantum dot in a microcavity. Exciton photon strong-coupling regime for a single quantum dot in a microcavity. Emmanuelle Peter, Pascale Senellart, David Martrou, Aristide Lemaître, Jacqueline Bloch, Julien Hours, Jean-Michel Gérard

More information

QUANTUM CORRELATIONS IN EXCITON SYSTEMS

QUANTUM CORRELATIONS IN EXCITON SYSTEMS INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" SUMMER COURSES 2008 QUANTUM COHERENCE IN SOLID STATE PHYSICS Varenna (Italy) July 1-11, 2008 Course CLXXI QUANTUM CORRELATIONS IN EXCITON SYSTEMS Part 2 Raffaello

More information

Entangled Photon Generation via Biexciton in a Thin Film

Entangled Photon Generation via Biexciton in a Thin Film Entangled Photon Generation via Biexciton in a Thin Film Hiroshi Ajiki Tokyo Denki University 24,Apr. 2017 Emerging Topics in Optics (IMA, Univ. Minnesota) Entangled Photon Generation Two-photon cascade

More information

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices Marzena Szymanska Collaborators Theory F. M. Marchetti E. Cancellieri C. Tejedor D. Whittaker Experiment D. Sanvitto,

More information

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way Contents Part I Concepts 1 The History of Heterostructure Lasers Zhores I. Alferov... 3 1.1 Introduction... 3 1.2 The DHS Concept and Its Application for Semiconductor Lasers. 3 1.3 Quantum Dot Heterostructure

More information

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne Quantum Dot Lasers Ecole Polytechnique Fédérale de Lausanne Outline: Quantum-confined active regions Self-assembled quantum dots Laser applications Electronic states in semiconductors Schrödinger eq.:

More information

Microcavity design for low threshold polariton condensation with ultrashort optical pulse excitation

Microcavity design for low threshold polariton condensation with ultrashort optical pulse excitation Microcavity design for low threshold polariton condensation with ultrashort optical pulse excitation C. Poellmann,1 U. Leierseder,1 E. Galopin,2 A. Lemaître,2 A. Amo,2 J. Bloch,2 R. Huber,1 and J.-M. Ménard1,3,a)

More information

Microcavity polaritons are composite bosons, which are partly

Microcavity polaritons are composite bosons, which are partly From polariton condensates to highly photonic quantum degenerate states of bosonic matter Marc Aßmann a,1, Jean-Sebastian Tempel a, Franziska Veit a, Manfred Bayer a, Arash Rahimi-Iman b, Andreas Löffler

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity

Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity Tien-Chang Lu, 1,* Ying-Yu Lai, 1 Yu-Pin Lan, 1 Si-Wei Huang, 1 Jun-Rong Chen, 1 Yung- Chi Wu, 1 Wen-Feng Hsieh, 1

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

DECAY OF PERTURBATIONS IN A QUANTUM- DOT-OPTICAL MICROCAVITY MODEL

DECAY OF PERTURBATIONS IN A QUANTUM- DOT-OPTICAL MICROCAVITY MODEL Rev. Cub. Fis. 31, 61 (214) ARTÍCULO ORGNAL DECAY OF PERTURBATONS N A QUANTUM- DOT-OPTCAL MCROCAVTY MODEL DECAMENTO DE LAS PERTURBACONES EN UN MODELO DE PUNTO CUÁNTCO ACOPLADO A UNA MCROCAVDAD ÓPTCA A.

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Quadratic nonlinear interaction

Quadratic nonlinear interaction Nonlinear second order χ () interactions in III-V semiconductors 1. Generalities : III-V semiconductors & nd ordre nonlinear optics. The strategies for phase-matching 3. Photonic crystals for nd ordre

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Supplementary Figure 1: Reflectance at low detuning. Reflectance as a function of the pump power for a pump-polariton detuning of 0.10meV.

Supplementary Figure 1: Reflectance at low detuning. Reflectance as a function of the pump power for a pump-polariton detuning of 0.10meV. Supplementary Figure 1: Reflectance at low detuning. Reflectance as a function of the pump power for a pump-polariton detuning of 0.10meV. The pillar is 6µm of diameter and the cavity detuning is δ = 5meV.

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Statistics of the polariton condensate

Statistics of the polariton condensate Statistics of the polariton condensate Paolo Schwendimann and Antonio Quattropani Institute of Theoretical Physics. Ecole Polytechnique Fédérale de Lausanne. CH 1015 Lausanne-EPFL, Switzerland The influence

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

OPTICS II Nanophotonics and quantum optics

OPTICS II Nanophotonics and quantum optics OPTICS II Nanophotonics and quantum optics Bruno GAYRAL bruno.gayral@cea.fr CEA-Grenoble, France «Nanophysique et semiconducteurs» Group 1 Goal Light-matter coupling Some notions, peculiarities of GaN

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Microscopic Modelling of the Optical Properties of Quantum-Well Semiconductor Lasers

Microscopic Modelling of the Optical Properties of Quantum-Well Semiconductor Lasers Microscopic Modelling of the Optical Properties of Quantum-Well Semiconductor Lasers Stephan W. Koch Department of Physics Philipps University, Marburg/Germany OVERVIEW - Outline of Theory - Gain/Absorption

More information

Exciton-polariton condensation in a natural two-dimensional trap

Exciton-polariton condensation in a natural two-dimensional trap Exciton-polariton condensation in a natural two-dimensional trap D. Sanvitto, A. Amo, and L. Viña Departamento de Física de Materiales, Universidad Autonóma, E2849 Madrid, Spain R. André CEA-CNRS, Institut

More information

Exciton Polariton Emission from a Resonantly Excited GaAs Microcavity

Exciton Polariton Emission from a Resonantly Excited GaAs Microcavity Brazilian Journal of Physics, vol. 34, no. 4A, December, 2004 1473 Exciton Polariton Emission from a Resonantly Excited GaAs Microcavity E. A. Cotta, H. P. Ribeiro Filho, F. M. Matinaga, L. A. Cury, M.

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Supplementary material

Supplementary material SUPPLEMENTARY INFORMATION Supplementary material All-optical control of the quantum flow of a polariton condensate D. Sanvitto 1, S. Pigeon 2, A. Amo 3,4, D. Ballarini 5, M. De Giorgi 1, I. Carusotto 6,

More information

Polaritonic Bistability in Semiconductor Microcavities

Polaritonic Bistability in Semiconductor Microcavities Polaritonic Bistability in Semiconductor Microcavities Augustin Baas, Jean-Philippe Karr, Elisabeth Giacobino To cite this version: Augustin Baas, Jean-Philippe Karr, Elisabeth Giacobino. Polaritonic Bistability

More information

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics, ETH Zürich, Switzerland

More information

Spin selective Purcell effect in a quantum dot microcavity system

Spin selective Purcell effect in a quantum dot microcavity system Spin selective urcell effect in a quantum dot microcavity system Qijun Ren, 1 Jian Lu, 1, H. H. Tan, 2 Shan Wu, 3 Liaoxin Sun, 1 Weihang Zhou, 1 Wei ie, 1 Zheng Sun, 1 Yongyuan Zhu, 3 C. Jagadish, 2 S.

More information

Emission Spectra of the typical DH laser

Emission Spectra of the typical DH laser Emission Spectra of the typical DH laser Emission spectra of a perfect laser above the threshold, the laser may approach near-perfect monochromatic emission with a spectra width in the order of 1 to 10

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS

LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS LONG-LIVED QUANTUM MEMORY USING NUCLEAR SPINS Laboratoire Kastler Brossel A. Sinatra, G. Reinaudi, F. Laloë (ENS, Paris) A. Dantan, E. Giacobino, M. Pinard (UPMC, Paris) NUCLEAR SPINS HAVE LONG RELAXATION

More information

Noise in voltage-biased scaled semiconductor laser diodes

Noise in voltage-biased scaled semiconductor laser diodes Noise in voltage-biased scaled semiconductor laser diodes S. M. K. Thiyagarajan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 90089-1111

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected Semiconductor Lasers Comparison with LEDs The light emitted by a laser is generally more directional, more intense and has a narrower frequency distribution than light from an LED. The external efficiency

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

David Snoke Department of Physics and Astronomy, University of Pittsburgh

David Snoke Department of Physics and Astronomy, University of Pittsburgh The 6 th International Conference on Spontaneous Coherence in Excitonic Systems Closing Remarks David Snoke Department of Physics and Astronomy, University of Pittsburgh ICSCE6, Stanford University, USA

More information

Pairing Phases of Polaritons

Pairing Phases of Polaritons Pairing Phases of Polaritons Jonathan Keeling 1 University of St Andrews 6 YEARS Pisa, January 14 Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34 Bose-Einstein condensation: macroscopic

More information

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm.

Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Supplementary Figure 1 Level structure of a doubly charged QDM (a) PL bias map acquired under 90 nw non-resonant excitation at 860 nm. Charging steps are labeled by the vertical dashed lines. Intensity

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Coupling polariton quantum boxes in sub-wavelength grating microcavities

Coupling polariton quantum boxes in sub-wavelength grating microcavities Coupling polariton quantum boxes in sub-wavelength grating microcavities Bo Zhang, Sebastian Brodbeck, Zhaorong Wang, Martin Kamp, Christian Schneider, Sven Höfling, and Hui Deng Citation: Applied Physics

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Unconventional Lasing Mechanisms in Organic Semiconductors

Unconventional Lasing Mechanisms in Organic Semiconductors Unconventional Lasing Mechanisms in Organic Semiconductors Stéphane Kéna-Cohen Postdoctoral Research Fellow Center for Plasmonics and Metamaterials t (Stefan Maier Group) Outline of talk 1. Motivation

More information

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Lecture 2. Electron states and optical properties of semiconductor nanostructures Lecture Electron states and optical properties of semiconductor nanostructures Bulk semiconductors Band gap E g Band-gap slavery: only light with photon energy equal to band gap can be generated. Very

More information

Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal Nanocavity via Unsymmetrical Displacement of Air-Holes

Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal Nanocavity via Unsymmetrical Displacement of Air-Holes The International Journal Of Engineering And Science (Ijes) Volume 2 Issue 2 Pages 146-150 2013 Issn: 2319 1813 Isbn: 2319 1805 Investigation on Mode Splitting and Degeneracy in the L3 Photonic Crystal

More information

How to measure packaging-induced strain in high-brightness diode lasers?

How to measure packaging-induced strain in high-brightness diode lasers? How to measure packaging-induced strain in high-brightness diode lasers? Jens W. Tomm Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie Berlin Max-Born-Str. 2 A, D-12489 Berlin, Germany

More information

Intersubband Response:

Intersubband Response: Intersubband Response: Lineshape,, Coulomb Renormalization, and Microcavity Effects F. T. Vasko Inst. of Semiconductor Physics Kiev, Ukraine In collaboration with: A.V. Korovin and O.E. Raichev (Inst.

More information

Energy Band Calculations for Dynamic Gain Models in Semiconductor Quantum Well Lasers

Energy Band Calculations for Dynamic Gain Models in Semiconductor Quantum Well Lasers Energy Band Calculations for Dynamic Gain Models in School of Electrical and Electronic Engineering University of Nottingham; Nottingham NG7 2RD; UK Email: eexpjb1@nottingham.ac.uk Presentation Outline

More information

+ - Indirect excitons. Exciton: bound pair of an electron and a hole.

+ - Indirect excitons. Exciton: bound pair of an electron and a hole. Control of excitons in multi-layer van der Waals heterostructures E. V. Calman, C. J. Dorow, M. M. Fogler, L. V. Butov University of California at San Diego, S. Hu, A. Mishchenko, A. K. Geim University

More information

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Journal of the Korean Physical Society, Vol. 42, No., February 2003, pp. 768 773 Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Axel Scherer, T. Yoshie, M. Lončar, J. Vučković

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

arxiv: v1 [cond-mat.quant-gas] 21 Apr 2017

arxiv: v1 [cond-mat.quant-gas] 21 Apr 2017 2s exciton-polariton revealed in an external magnetic field B. Piętka 1, M. R. Molas 2, N. Bobrovska 3, M. Król 1, R. Mirek 1, K. Lekenta 1, P. Stępnicki 3, F. Morier-Genoud 4, J. Szczytko 1, B. Deveaud

More information

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Optics and Quantum Optics with Semiconductor Nanostructures. Overview Optics and Quantum Optics with Semiconductor Nanostructures Stephan W. Koch Department of Physics, Philipps University, Marburg/Germany and Optical Sciences Center, University of Arizona, Tucson/AZ Overview

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Spin Dynamics in Single GaAs Nanowires

Spin Dynamics in Single GaAs Nanowires 1 Dr. Max Mustermann Referat Kommunikation & Marketing Verwaltung Spin Dynamics in Single GaAs Nanowires F. Dirnberger, S. Furthmeier, M. Forsch, A. Bayer, J. Hubmann, B. Bauer, J. Zweck, E. Reiger, C.

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012815 TITLE: Resonant Waveguiding and Lasing in Structures with InAs Submonolayers in an AJGaAs Matrix DISTRIBUTION: Approved

More information

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft How exciting! 2016 Berlin, 3-6 August laura.foglia@elettra.eu 1 Current research challenges V Light Harvesting Light Emission Energy

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/33/634/1167/dc1 Suorting Online Material for Polariton Suerfluids Reveal Quantum Hydrodynamic Solitons A. Amo,* S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto,

More information

Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires

Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires Superlattices and Microstructures, Vol. 23, No. 6, 998 Article No. sm96258 Magnetostatic modulation of nonlinear refractive index and absorption in quantum wires A. BALANDIN, S.BANDYOPADHYAY Department

More information

Effects of polariton squeezing on the emission of an atom embedded in a microcavity

Effects of polariton squeezing on the emission of an atom embedded in a microcavity Effects of polariton squeezing on the emission of an atom embedded in a microcavity Paolo Schwendimann and Antonio Quattropani Institute of Physics. Ecole Polytechnique Fédérale de Lausanne. CH 1015 Lausanne-EPFL,

More information

Quantum Dot Lasers. Jose Mayen ECE 355

Quantum Dot Lasers. Jose Mayen ECE 355 Quantum Dot Lasers Jose Mayen ECE 355 Overview of Presentation Quantum Dots Operation Principles Fabrication of Q-dot lasers Advantages over other lasers Characteristics of Q-dot laser Types of Q-dot lasers

More information

Lecture 8 Interband Transitions. Excitons

Lecture 8 Interband Transitions. Excitons Lecture 8 Interband Transitions Excitons Read: FS 4 Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 8 (2/4/2016) Slide 1 Textbook 1: M. Fox Optical Properties of Solids (2

More information

Spin dynamics of cavity polaritons

Spin dynamics of cavity polaritons PERGAMON Solid State Communications 117 (2001) 267±271 Spin dynamics of cavity polaritons www.elsevier.com/locate/ssc M.D. MartõÂn a, L. VinÄa a, *, J.K. Son b, E.E. Mendez b a Departamento de Fisica de

More information

Optical Nonlinearities in Quantum Wells

Optical Nonlinearities in Quantum Wells Harald Schneider Institute of Ion-Beam Physics and Materials Research Semiconductor Spectroscopy Division Rosencher s Optoelectronic Day Onéra 4.05.011 Optical Nonlinearities in Quantum Wells Harald Schneider

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 0.038/NPHYS406 Half-solitons in a polariton quantum fluid behave like magnetic monopoles R. Hivet, H. Flayac, D. D. Solnyshkov, D. Tanese 3, T. Boulier, D. Andreoli, E. Giacobino,

More information

High performance THz quantum cascade lasers

High performance THz quantum cascade lasers High performance THz quantum cascade lasers Karl Unterrainer M. Kainz, S. Schönhuber, C. Deutsch, D. Bachmann, J. Darmo, H. Detz, A.M. Andrews, W. Schrenk, G. Strasser THz QCL performance High output power

More information