Pairing Phases of Polaritons

Size: px
Start display at page:

Download "Pairing Phases of Polaritons"

Transcription

1 Pairing Phases of Polaritons Jonathan Keeling 1 University of St Andrews 6 YEARS Pisa, January 14 Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34

2 Bose-Einstein condensation: macroscopic occupation Atoms. 1 7 K Polaritons. K [Anderson et al. Science 95] [Kasprzak et al. Nature, 6] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 / 34

3 Microcavity polaritons "Cavity" Quantum Wells Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

4 Microcavity polaritons "Cavity" Quantum Wells Cavity photons: ω k = ω + c k ω + k /m m 1 4 m e Energy n=4 n=3 n= n=1 Bulk Momentum Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

5 Microcavity polaritons "Cavity" Quantum Wells Cavity photons: ω k = ω + c k ω + k /m m 1 4 m e Energy Photon Exciton In plane momentum Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

6 Microcavity polaritons "Cavity" Quantum Wells Cavity photons: ω k = ω + c k ω + k /m m 1 4 m e Energy Photon Exciton In plane momentum Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

7 Microcavity polaritons θ "Cavity" Quantum Wells Cavity Cavity photons: ω k = ω + c k ω + k /m m 1 4 m e Energy Photon Exciton In plane momentum Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

8 Polariton experiments: occupation and coherence [Kasprzak, et al. Nature, 6] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 4 / 34

9 Polariton experiments: occupation and coherence Sample Coherence map: CCD Beam Splitter Tunable Delay + = Retroreflector [Kasprzak, et al. Nature, 6] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 4 / 34

10 (Some) other polariton condensation experiments Quantised vortices [Lagoudakis et al. Nat. Phys. 8. Science 9, PRL 1; Sanvitto et al. Nat. Phys. 1; Roumpos et al. Nat. Phys. 1 ] Josephson oscillations [Lagoudakis et al. PRL 1] = + Pattern formation/hydrodynamics [Amo et al. Science 11, Nature 9; Wertz et al. Nat. Phys 1] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 5 / 34

11 What can you do beyond BEC (atoms) Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 6 / 34

12 What can you do beyond BEC (atoms) Optical lattices Feshbach resonance strong interactions Image: Bloch group Energy "closed" µb r "open" a/a bg (B-B )/ Degenerate fermions BEC BCS crossover Images: Jin Group, Zweierlein group Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 6 / 34

13 What can you do beyond BEC (atoms) Coupled matter-light systems κ κ z x Pump Spinor condensates, spin-orbit, gauges P3/ 66MHz F =3 F =.5GHz F =1 F = 7THz P1/ F = F =1 1.6eV=39THz=78nm S1/ F= 7GHz F=1 Quenches, thermalisation, dynamics. Image: Weiss group//stamper Kurn group Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 7 / 34

14 What of this can polaritons do? Engineered potentials; lattices Bloch etched micropillars Yamamoto metal lattices Snoke stress traps Krizhanovskii Surface Acoustic Waves TE-TM interaction Spin-Orbit Theory: Malpuech, Rubo Feshbach resonances Theory: Wouters, Carusotto Deveaud, Biexciton resonance Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 8 / 34

15 What of this can polaritons do? Engineered potentials; lattices Bloch etched micropillars Yamamoto metal lattices Snoke stress traps Krizhanovskii Surface Acoustic Waves TE-TM interaction Spin-Orbit Theory: Malpuech, Rubo Feshbach resonances Theory: Wouters, Carusotto Deveaud, Biexciton resonance This talk: Spin structure, pairing phases of bosons Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 8 / 34

16 Outline 1 Introduction Pairing phases of atoms: review 3 Modelling polariton pairing Exciton spin structure Microscopic and effective Hamiltonian 4 Ground state phase diagram Origin of multicritical behaviour Signatures of phases 5 Finite temperature phase diagram Variational MFT Required temperatures, detuning Candidate material systems Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 9 / 34

17 Acknowledgements GROUP: COLLABORATORS: Francesca Marchetti, UAM FUNDING: Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34

18 Outline 1 Introduction Pairing phases of atoms: review 3 Modelling polariton pairing Exciton spin structure Microscopic and effective Hamiltonian 4 Ground state phase diagram Origin of multicritical behaviour Signatures of phases 5 Finite temperature phase diagram Variational MFT Required temperatures, detuning Candidate material systems Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

19 Tuning atomic interactions Open/closed channel different F z states (F=J + I) Magnetic field, E(r ) = const + (µ a µ b )B z Hybridisation by hyperfine coupling Energy "closed" µb r "open" Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34

20 Tuning atomic interactions Open/closed channel different F z states (F=J + I) Magnetic field, E(r ) = const + (µ a µ b )B z Hybridisation by hyperfine coupling Energy "closed" µb Energy "closed" µb r r "open" "open" Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34

21 Tuning atomic interactions Open/closed channel different F z states (F=J + I) Magnetic field, E(r ) = const + (µ a µ b )B z Hybridisation by hyperfine coupling Energy "closed" µb Energy "closed" µb Energy "closed" µb r r r "open" "open" "open" Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34

22 Tuning atomic interactions Open/closed channel different F z states (F=J + I) Magnetic field, E(r ) = const + (µ a µ b )B z Hybridisation by hyperfine coupling Energy "closed" µb Energy "closed" µb Energy "closed" µb r r r "open" "open" "open" E Closed channel (atoms) Open channel Bound state (B-B ) Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34

23 Feshbach resonance B < B Energy "closed" µb r "open" True bound state exists. Open channel a > (repulsive) Resonance a Open channel a < (attractive) Hybridisation with continuum: Fano Feshbach resonance Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

24 Feshbach resonance B < B Energy "closed" µb r "open" True bound state exists. Open channel a > (repulsive) B = B Energy "closed" µb r "open" Resonance a Open channel a < (attractive) Hybridisation with continuum: Fano Feshbach resonance Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

25 Feshbach resonance B < B Energy "closed" µb r "open" True bound state exists. Open channel a > (repulsive) B = B Energy "closed" µb r "open" Resonance a B > B Energy "closed" µb r "open" Open channel a < (attractive) Hybridisation with continuum: Fano Feshbach resonance Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

26 Pairing phases of Fermions Attractive interaction of open channel: BCS condensate. True bound state. Molecule BEC Always pair coherence: No phase transition (for s-wave). BEC-BCS crossover [Eagles, Leggett, Keldysh, Nozières, Randeria,... ] From Randeria, Nat. Phys. News & Views 1 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

27 Pairing phases of Fermions Attractive interaction of open channel: BCS condensate. True bound state. Molecule BEC Always pair coherence: No phase transition (for s-wave). BEC-BCS crossover [Eagles, Leggett, Keldysh, Nozières, Randeria,... ] From Randeria, Nat. Phys. News & Views 1 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

28 Pairing phases of Fermions Attractive interaction of open channel: BCS condensate. True bound state. Molecule BEC Always pair coherence: No phase transition (for s-wave). BEC-BCS crossover [Eagles, Leggett, Keldysh, Nozières, Randeria,... ] From Randeria, Nat. Phys. News & Views 1 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

29 Pairing phases of Fermions Attractive interaction of open channel: BCS condensate. True bound state. Molecule BEC Always pair coherence: No phase transition (for s-wave). BEC-BCS crossover [Eagles, Leggett, Keldysh, Nozières, Randeria,... ] From Randeria, Nat. Phys. News & Views 1 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

30 Pairing phases of Bosons Pair (molecule) coherence,, vs atom coherence ASF, vs both A. Homonuclear/heteronuclear cases distinct, symmetry U(1) Z vs U(1) U(1). T A (B B ) Heteronuclear: Ĥ =... + ˆψ m ˆψ a1 ˆψ a + h.c. If ˆψm, free atomic phase. If ˆψ a1, ˆψ a no free phase. A Homonuclear: Ĥ =... + ˆψ m ˆψ a ˆψa + h.c. If ˆψ m, free atomic sign Z. [Radzihovsky et al. PRL 4, Romans et al. PRL 4, building on Nozières & St James, Timmermanns, Mueller, Thouless... ] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

31 Pairing phases of Bosons Pair (molecule) coherence,, vs atom coherence ASF, vs both A. Homonuclear/heteronuclear cases distinct, symmetry U(1) Z vs U(1) U(1). T A (B B ) Heteronuclear: Ĥ =... + ˆψ m ˆψ a1 ˆψ a + h.c. If ˆψm, free atomic phase. If ˆψ a1, ˆψ a no free phase. A Homonuclear: Ĥ =... + ˆψ m ˆψ a ˆψa + h.c. If ˆψ m, free atomic sign Z. [Radzihovsky et al. PRL 4, Romans et al. PRL 4, building on Nozières & St James, Timmermanns, Mueller, Thouless... ] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

32 Pairing phases of Bosons Pair (molecule) coherence,, vs atom coherence ASF, vs both A. Homonuclear/heteronuclear cases distinct, symmetry U(1) Z vs U(1) U(1). T A (B B ) Heteronuclear: Ĥ =... + ˆψ m ˆψ a1 ˆψ a + h.c. If ˆψm, free atomic phase. If ˆψ a1, ˆψ a no free phase. A Homonuclear: Ĥ =... + ˆψ m ˆψ a ˆψa + h.c. If ˆψ m, free atomic sign Z. [Radzihovsky et al. PRL 4, Romans et al. PRL 4, building on Nozières & St James, Timmermanns, Mueller, Thouless... ] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

33 Pairing phases of Bosons Pair (molecule) coherence,, vs atom coherence ASF, vs both A. Homonuclear/heteronuclear cases distinct, symmetry U(1) Z vs U(1) U(1). T A (B B ) Heteronuclear: Ĥ =... + ˆψ m ˆψ a1 ˆψ a + h.c. If ˆψm, free atomic phase. If ˆψ a1, ˆψ a no free phase. A Homonuclear: Ĥ =... + ˆψ m ˆψ a ˆψa + h.c. If ˆψ m, free atomic sign Z. [Radzihovsky et al. PRL 4, Romans et al. PRL 4, building on Nozières & St James, Timmermanns, Mueller, Thouless... ] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

34 Problems with cold atoms Signatures? Momentum distribution indirect Half vortices T Cold atoms (meta)stability issues Enhanced scattering at resonance First order transitions high densities Vibrationally hot molecules A (B B ) Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

35 Problems with cold atoms Signatures? Momentum distribution indirect Half vortices T Cold atoms (meta)stability issues Enhanced scattering at resonance First order transitions high densities Vibrationally hot molecules A (B B ) Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

36 Problems with cold atoms Signatures? Momentum distribution indirect Half vortices T Cold atoms (meta)stability issues Enhanced scattering at resonance First order transitions high densities Vibrationally hot molecules A (B B ) Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

37 Outline 1 Introduction Pairing phases of atoms: review 3 Modelling polariton pairing Exciton spin structure Microscopic and effective Hamiltonian 4 Ground state phase diagram Origin of multicritical behaviour Signatures of phases 5 Finite temperature phase diagram Variational MFT Required temperatures, detuning Candidate material systems Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

38 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

39 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole E c v J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

40 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

41 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole z Cavity E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

42 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole z Cavity E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

43 Exciton and polariton spin degrees of freedom Photon: two circular polarisation modes Exciton: bound state of electron & hole z Cavity E c v, J=3/ HH v, J=3/ LH v, J=1/ J = 1 ± 1/ hole (p-orbital), J = 1/ electron Spin orbit splits hole bands, 4 states. Quantum well fixes k z of hole states. k Exciton spin states J z = +, +1, 1, Optically active states J z = ±1 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

44 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34 )

45 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34 )

46 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34 )

47 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34 )

48 Exciton-photon model Microscopic model coupled exciton-photon system H = k + σ=±1 σ=±,±1 ( ) k µ ˆX m ˆX kσ kσ + (δ + k ) µ X m C Ω R (Ĉ kσ ˆX kσ + ˆX kσĉkσ)] + ˆX ( σ R + r ) ˆX τ (R r Interaction U XX has exchange structure σ=±1 d rd R σ,σ,τ,τ =±,±1 ) ˆXτ ( R r U XX Ĉ kσĉkσ σ τ τσ (r) ) ˆXσ ( R + r For large Ω R, neglect σ = ± Interaction supports bound states in U+1, 1, 1,+1 XX channel bipolariton NB, bipolariton, bound polaritons, but larger exciton fraction. Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34 )

49 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. E ω X [mev] 6 4 UP C X LP 4 4 k [µm 1 ] X ω ω XX LP ω ω UP ω C ω X ω LP E b ν > δ (Ω R +δ ) 1/ Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 / 34

50 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. E ω X [mev] 6 4 UP C X LP 4 4 k [µm 1 ] X ω ω XX LP ω ω UP ω C ω X ω LP E b ν > δ (Ω R +δ ) 1/ Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 / 34

51 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. X [mev] ω E 6 4 UP C X LP 4 k [µm 1 ] 4 X ω ω XX LP ω ω UP ω C ω X ω LP E b ν = δ (Ω R +δ ) 1/ Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 / 34

52 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψ σ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. E Polariton dispersion m, detuning ν, interactions depend on δ Resonance width, dispersion derived from dressed exciton T matrix. X [mev] ω E 6 4 UP C X LP 4 k [µm 1 ] 4 X ω ω XX LP ω ω UP ω C ω X ω LP E b ν = δ (Ω R +δ ) 1/ Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 / 34

53 Polariton model H = ( ) k m µ k σ=, + d R σ=,,m ( ) ˆψ ˆψ k σk σk + + ν µ ˆψ m ˆψ mk mk m U σσ ˆψ σ ˆψ σ ˆψ σ ˆψσ + U ˆψ ˆψ ˆψ ˆψ + g ( ˆψ ˆψ ˆψ ) m + h.c. ν > Biexciton in continuum m LP /m X E b ~m C /m X δ [mev] ν [mev] ν < Bound biexciton. (Excitonic limit) Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34

54 Outline 1 Introduction Pairing phases of atoms: review 3 Modelling polariton pairing Exciton spin structure Microscopic and effective Hamiltonian 4 Ground state phase diagram Origin of multicritical behaviour Signatures of phases 5 Finite temperature phase diagram Variational MFT Required temperatures, detuning Candidate material systems Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 / 34

55 Phase diagram (ground state, T = ) δ [mev] N.6.4. µ [mev] A PS 1x1 11 n [cm ] A Parameters for GaAs Ω R = 4.4meV, E b = mev. Dashed: Mean-field. Solid: Next order fluctuations Two condensed phases:, ˆψ = ˆψ =, ˆψ m. A σ : ˆψ σ. Small (or ve) δ: ν g, no biexciton physics standard WIDBG. Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

56 Phase diagram (ground state, T = ) δ [mev] N.6.4. µ [mev] A PS 1x1 11 n [cm ] A Parameters for GaAs Ω R = 4.4meV, E b = mev. Dashed: Mean-field. Solid: Next order fluctuations Two condensed phases:, ˆψ = ˆψ =, ˆψ m. A σ : ˆψ σ. Small (or ve) δ: ν g, no biexciton physics standard WIDBG. Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

57 Phase diagram (ground state, T = ) δ [mev] N.6.4. µ [mev] A PS 1x1 11 n [cm ] A Parameters for GaAs Ω R = 4.4meV, E b = mev. Dashed: Mean-field. Solid: Next order fluctuations Two condensed phases:, ˆψ = ˆψ =, ˆψ m. A σ : ˆψ σ. Small (or ve) δ: ν g, no biexciton physics standard WIDBG. Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

58 Mean field ansatz Hamiltonian: Weakly Interacting Bose Gas First ansatz: mean-field theory [Zhou et al. PRA 8] Ψ exp ψ σ ˆψk=,σ. σ=,,m No magnetic field, take ψ = ψ = ψ (real): E = Ψ H Ψ = µψ + ( U + U + U ) ψ 4 + (ν µ)ψ m + U mm ψ4 m + gψ ψ m Minimise E(ψ, ψ m ): first order transitions exist. Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 4 / 34

59 Mean field ansatz Hamiltonian: Weakly Interacting Bose Gas First ansatz: mean-field theory [Zhou et al. PRA 8] Ψ exp ψ σ ˆψk=,σ. σ=,,m No magnetic field, take ψ = ψ = ψ (real): E = Ψ H Ψ = µψ + ( U + U + U ) ψ 4 + (ν µ)ψ m + U mm ψ4 m + gψ ψ m Minimise E(ψ, ψ m ): first order transitions exist. Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 4 / 34

60 Mean field ansatz Hamiltonian: Weakly Interacting Bose Gas First ansatz: mean-field theory [Zhou et al. PRA 8] Ψ exp ψ σ ˆψk=,σ. σ=,,m No magnetic field, take ψ = ψ = ψ (real): E = Ψ H Ψ = µψ + ( U + U + U ) ψ 4 + (ν µ)ψ m + U mm ψ4 m + gψ ψ m Minimise E(ψ, ψ m ): first order transitions exist. Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 4 / 34

61 Phase boundaries (ground state, T = ) δ [mev] N.6.4. µ [mev] A PS 1x1 11 n [cm ] A Small δ: Fluctuations drive N A 1st order (Larkin-Pikin mechanism, coupling gψ ψ m ) Large phase-separation region high densities. First-order BEC transition! Naive resonance δ r = 3.84, tricritical point at (δ, µ) = (δ r, ) replaced by critical end-point at δ > δ r Large δ: -A transition always occurs as U mm renormalises energy. Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 5 / 34

62 Phase boundaries (ground state, T = ) δ [mev] N.6.4. µ [mev] A PS 1x1 11 n [cm ] A Small δ: Fluctuations drive N A 1st order (Larkin-Pikin mechanism, coupling gψ ψ m ) Large phase-separation region high densities. First-order BEC transition! Naive resonance δ r = 3.84, tricritical point at (δ, µ) = (δ r, ) replaced by critical end-point at δ > δ r Large δ: -A transition always occurs as U mm renormalises energy. Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 5 / 34

63 Phase boundaries (ground state, T = ) δ [mev] N.6.4. µ [mev] A PS 1x1 11 n [cm ] A Small δ: Fluctuations drive N A 1st order (Larkin-Pikin mechanism, coupling gψ ψ m ) Large phase-separation region high densities. First-order BEC transition! Naive resonance δ r = 3.84, tricritical point at (δ, µ) = (δ r, ) replaced by critical end-point at δ > δ r Large δ: -A transition always occurs as U mm renormalises energy. Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 5 / 34

64 Phase boundaries (ground state, T = ) δ [mev] N.6.4. µ [mev] A PS 1x1 11 n [cm ] A Small δ: Fluctuations drive N A 1st order (Larkin-Pikin mechanism, coupling gψ ψ m ) Large phase-separation region high densities. First-order BEC transition! Naive resonance δ r = 3.84, tricritical point at (δ, µ) = (δ r, ) replaced by critical end-point at δ > δ r Large δ: -A transition always occurs as U mm renormalises energy. Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 5 / 34

65 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. Next order theory: [Nozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 6 / 34

66 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. Next order theory: [Nozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 6 / 34

67 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. Next order theory: [Nozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 6 / 34

68 Beyond mean-field Fluctuation effects? Polariton fluctuations irrelevant: mu 1 4. Exciton fluctuations important: m m U 1. Next order theory: [Nozières & St James, J. Phys 8] Ψ exp ψ σ ˆψ k=,σ + tanh(θ kγ )ˆb ˆb kγ kγ. σ=,,m k,γ=a,b,m ( ) ˆψ where ˆb km = ˆψ km and k ˆψ = 1 ( 1 1 k 1 1 Variational functional E[ψ, ψ m, θ kγ ] ) ( ˆb ka ˆb kb Can show minimum θ kγ has form tanh(θ kγ ) = β γ + k /m γ Finite only if αγ < β γ Variational function E(ψ, ψ m, α γ, β γ ) ) α γ, Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 6 / 34

69 Outline 1 Introduction Pairing phases of atoms: review 3 Modelling polariton pairing Exciton spin structure Microscopic and effective Hamiltonian 4 Ground state phase diagram Origin of multicritical behaviour Signatures of phases 5 Finite temperature phase diagram Variational MFT Required temperatures, detuning Candidate material systems Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 7 / 34

70 Detecting vs A Phase separation Direct access to polariton phase coherence A: standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) Vortex structure half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Polariton half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 8 / 34

71 Detecting vs A Phase separation Direct access to polariton phase coherence A: standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) Vortex structure half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Polariton half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 8 / 34

72 Detecting vs A Phase separation Direct access to polariton phase coherence A: standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) Vortex structure half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Polariton half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 8 / 34

73 Detecting vs A Phase separation Direct access to polariton phase coherence A: standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) Vortex structure half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Polariton half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 8 / 34

74 Detecting vs A Phase separation Direct access to polariton phase coherence A: standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) : no atomic coherence, but: APD φ APD A g (1) m = ψ (r, t)ψ (r, t)ψ (, )ψ (, ) Adjustable delay APD B not g see time/space labels θ APD Vortex structure half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Polariton half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 8 / 34

75 Detecting vs A Phase separation Direct access to polariton phase coherence A: standard g σ (1) = ψ σ(r, t)ψ σ (, ). (D, QLRO) : no atomic coherence, but: APD φ APD A g (1) m = ψ (r, t)ψ (r, t)ψ (, )ψ (, ) Adjustable delay APD B not g see time/space labels θ APD Vortex structure half vortices, ψ = e im θ, ψ = e im θ, has (m, m ) = (1/, 1/). Polariton half-vortex (m, m ) = (1, ) [Lagoudakis et al. Science 9] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 8 / 34

76 Outline 1 Introduction Pairing phases of atoms: review 3 Modelling polariton pairing Exciton spin structure Microscopic and effective Hamiltonian 4 Ground state phase diagram Origin of multicritical behaviour Signatures of phases 5 Finite temperature phase diagram Variational MFT Required temperatures, detuning Candidate material systems Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 9 / 34

77 Finite T calculation Finite T minimize free energy Use Feynman-Jensen inequality: [ ] F = k B T ln Tre Ĥ/k BT F MF + Ĥ ĤMF MF Where... MF calculated using ρ = e (F MF ĤMF)/k B T Ansatz ĤMF Variational F(ψ, ψ m, α γ, β γ ). Ĥ MF = γ { + 1 Aψ γ (α γ + β γ ) (ˆb γ + ˆb ) γ k (ˆb kγ ˆb kγ ) ( ɛ kγ + β γ α γ ) ( ) } α γ ˆbkγ. ɛ kγ + β γ ˆb kγ Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

78 Finite T calculation Finite T minimize free energy Use Feynman-Jensen inequality: [ ] F = k B T ln Tre Ĥ/k BT F MF + Ĥ ĤMF MF Where... MF calculated using ρ = e (F MF ĤMF)/k B T Ansatz ĤMF Variational F(ψ, ψ m, α γ, β γ ). Ĥ MF = γ { + 1 Aψ γ (α γ + β γ ) (ˆb γ + ˆb ) γ k (ˆb kγ ˆb kγ ) ( ɛ kγ + β γ α γ ) ( ) } α γ ˆbkγ. ɛ kγ + β γ ˆb kγ Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

79 Finite T calculation Finite T minimize free energy Use Feynman-Jensen inequality: [ ] F = k B T ln Tre Ĥ/k BT F MF + Ĥ ĤMF MF Where... MF calculated using ρ = e (F MF ĤMF)/k B T Ansatz ĤMF Variational F(ψ, ψ m, α γ, β γ ). Ĥ MF = γ { + 1 Aψ γ (α γ + β γ ) (ˆb γ + ˆb ) γ k (ˆb kγ ˆb kγ ) ( ɛ kγ + β γ α γ ) ( ) } α γ ˆbkγ. ɛ kγ + β γ ˆb kγ Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

80 Phase diagram, finite temperature δ [mev] N T=.58 K A µ [mev] N PS A x1 11 n [cm ] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

81 Phase diagram, finite temperature δ [mev] δ [mev] N N T=.58 K A T=1.16 K A µ [mev] N N A PS A PS n [cm ] x1 11 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

82 Phase diagram, finite temperature δ [mev] δ [mev] δ [mev] N N N T=.58 K A T=1.16 K A T =.3 K A µ [mev] N N N PS PS PS A A A x1 11 n [cm ] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

83 Phase diagram, finite temperature δ [mev] δ [mev] δ [mev] N N N T=.58 K A T=1.16 K A T =.3 K A µ [mev] N N N PS PS PS A A A x1 11 n [cm ] δ [mev] 5 N PS A n [cm ] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

84 Phase diagram, vs temperature N T=.58 K A N PS A δ [mev] 3 δ=1 mev N PS µ [mev] 11 n [cm ] x1 T [K] 1 N A µ [mev] A 11 x1 n [cm ] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

85 Phase diagram, vs temperature T [K] 1 3 δ=8.3 mev N δ=1 mev A N PS A N PS T=.58 K A N x1 µ [mev] n [cm ] N A PS δ [mev] T [K] 1 N A µ [mev] A 11 x1 n [cm ] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

86 Phase diagram, vs temperature T [K] T [K] δ=6.5 mev N δ=8.3 mev N δ=1 mev N PS A A A N PS A N PS T=.58 K A N x1 µ [mev] n [cm ] N A PS [mev] δ T [K] 1 N A µ [mev] A 11 x1 n [cm ] Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 3 / 34

87 Evolution of triple point Required T, δ for : Triple point Excitonic fraction c = 1 [ ] δ 1 +. δ Ω: Pure exciton δ + Ω GaAs, need low T/high exciton fraction ZnO, easy to attain Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

88 Evolution of triple point Required T, δ for : Triple point Excitonic fraction c = 1 [ ] δ 1 +. δ Ω: Pure exciton δ + Ω δ [mev] GaAs ZnO T [K] GaAs, need low T/high exciton fraction ZnO, easy to attain T [K] excitonic fraction [%] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

89 Evolution of triple point Required T, δ for : Triple point Excitonic fraction c = 1 [ ] δ 1 +. δ Ω: Pure exciton δ + Ω δ [mev] GaAs ZnO T [K] GaAs, need low T/high exciton fraction ZnO, easy to attain T [K] excitonic fraction [%] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

90 Evolution of triple point Required T, δ for : Triple point Excitonic fraction c = 1 [ ] δ 1 +. δ Ω: Pure exciton δ + Ω δ [mev] GaAs ZnO T [K] GaAs, need low T/high exciton fraction ZnO, easy to attain T [K] excitonic fraction [%] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

91 Adjustable delay φ θ APD APD A B Summary Polariton biexciton detuning Feshbach resonance E ω X [mev] 6 4 LP UP C X 4 4 k [µm 1 ] m LP /m X E b ~m C /m X δ [mev] Polaritons can show pairing phase δ [mev] N.6.4. µ [mev] A PS 1x1 11 n [cm ] A T [K] 3 1 δ=1 mev N ν [mev] A µ [mev] N PS A x1 11 n [cm ] easily attainable for ZnO; possible for GaA δ [mev] GaAs ZnO T [K] T [K] excitonic fraction [%] Possible signatures in coherence and vortices APD APD [Marchetti and Keeling, arxiv:138.13] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 34

92 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 38

93 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 38

94 Differences & new opportunities Atoms Metastable, isolated Polaritons Finite lifetime, in semiconductor Fixed mass 1 3 m Tunable mass 1 4 m Couples to light Can be 3D Is part light Always D or less. Spin: S z = S, S + 1,..., S Light polarisations S z = ±1 Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 38

95 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k VMFT for WIDBG: k m ψ k ψ k + U d rψ ψ ψψ Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 38

96 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k VMFT for WIDBG: k m ψ k ψ k + U d rψ ψ ψψ Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 38

97 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k k m ψ k ψ k + U d rψ ψ ψψ VMFT for WIDBG: Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( 3 ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β 1 k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) Density ρ/t VMFT QMC [PRA ] mu=.1, ε c =1 [a.u.] CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ µ/t Temperature, T [a.u.] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 38

98 Variational MFT for WIDBG Test validity. WIDBG Ĥ = k k m ψ k ψ k + U d rψ ψ ψψ VMFT for WIDBG: Ĥ MF = Aψ(α + β)(ˆb + ˆb ) + 1 ) (ˆb ( ) ( 3 ) ɛ k ˆb k + β α ˆbk k. α ɛ k + β 1 k ˆb k Compare to D EOS, ρ(µ) = Tf (µ/t ) Density ρ/t VMFT QMC [PRA ] mu=.1, ε c =1 [a.u.] CF Hartree-Fock-Popov-Bogoluibov method, include Uρ in Σ µ/t Temperature, T [a.u.] Jonathan Keeling Pairing Phases of Polaritons Pisa, January / 38

Pairing Phases of Polaritons

Pairing Phases of Polaritons Pairing Phases of Polaritons Jonathan Keeling University of St Andrews 6 YEARS St Petersburg, March 14 Jonathan Keeling Pairing Phases of Polaritons St Petersburg, March 14 1 / 11 Outline 1 Introduction

More information

Pairing Phases of Polaritons, and photon condensates

Pairing Phases of Polaritons, and photon condensates Pairing Phases of Polaritons, and photon condensates Jonathan Keeling University of St Andrews 6 YEARS ICSCE7, Hakone, April 14 Jonathan Keeling Pairing phases & photons ICSCE7, April 14 1 / 1 Outline

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Driven-dissipative polariton quantum fluids in and out of equilibrium

Driven-dissipative polariton quantum fluids in and out of equilibrium Driven-dissipative polariton quantum fluids in and out of equilibrium Marzena Szymańska Designer Quantum Systems Out of Equilibrium KITP, November 2016 Acknowledgements Group: A. Zamora G. Dagvadorj In

More information

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati Quantum fluid phenomena with Microcavity Polaritons Alberto Bramati Quantum Optics Team: topics Quantum fluid phenomena in polariton gases An ideal system to study out of equilibrium quantum fluids Obstacle

More information

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices Marzena Szymanska Collaborators Theory F. M. Marchetti E. Cancellieri C. Tejedor D. Whittaker Experiment D. Sanvitto,

More information

Hydrodynamic solitons in polariton superfluids

Hydrodynamic solitons in polariton superfluids Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Single-mode Polariton Laser in a Designable Microcavity

Single-mode Polariton Laser in a Designable Microcavity Single-mode Polariton Laser in a Designable Microcavity Hui Deng Physics, University of Michigan, Ann Arbor Michigan Team: Bo Zhang Zhaorong Wang Seonghoon Kim Collaborators: S Brodbeck, C Schneider, M

More information

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008 New Physics with Interacting Cold Atomic Gases California Condensed Matter Theory Meeting UC Riverside November 2, 2008 Ryan Barnett Caltech Collaborators: H.P. Buchler, E. Chen, E. Demler, J. Moore, S.

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Some theory of polariton condensation and dynamics

Some theory of polariton condensation and dynamics Some theory of polariton condensation and dynamics Peter Littlewood, Argonne and U Chicago Richard Brierley, Yale, Cele Creatore, Cambridge Sahinur Reja, Dresden Paul Eastham, Trinity College, Dublin Francesca

More information

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics, ETH Zürich, Switzerland

More information

Quantised Vortices in an Exciton- Polariton Condensate

Quantised Vortices in an Exciton- Polariton Condensate 4 th International Conference on Spontaneous Coherence in Excitonic Systems Quantised Vortices in an Exciton- Polariton Condensate Konstantinos G. Lagoudakis 1, Michiel Wouters 2, Maxime Richard 1, Augustin

More information

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by Supplementary Figure : Bandstructure of the spin-dependent hexagonal lattice. The lattice depth used here is V 0 = E rec, E rec the single photon recoil energy. In a and b, we choose the spin dependence

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover 6th APCWQIS, December 2012 Bilal Tanatar December 6, 2012 Prologue 1 Introduction Prologue Cooling Techniques 2 BCS-BEC Crossover

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Polaritons in some interacting exciton systems

Polaritons in some interacting exciton systems Polaritons in some interacting exciton systems Peter Littlewood, Argonne and U Chicago Richard Brierley (Yale) Cele Creatore (Cambridge) Paul Eastham (Trinity College, Dublin) Francesca Marchetti (Madrid)

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe)

Bose-condensed and BCS fermion superfluid states T ~ nano to microkelvin (coldest in the universe) Deconfined quark-gluon plasmas made in ultrarelativistic heavy ion collisions T ~ 10 2 MeV ~ 10 12 K (temperature of early universe at ~1µ sec) Bose-condensed and BCS fermion superfluid states T ~ nano

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons.

Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons. Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons. Thermodynamics and Signatures of Bose-Condensation of Excitons and Polaritons Jonathan Mark James Keeling Jesus College University

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Sarma phase in relativistic and non-relativistic systems

Sarma phase in relativistic and non-relativistic systems phase in relativistic and non-relativistic systems Tina Katharina Herbst In Collaboration with I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich arxiv:149.5232

More information

Towards a quantitative FRG approach for the BCS-BEC crossover

Towards a quantitative FRG approach for the BCS-BEC crossover Towards a quantitative FRG approach for the BCS-BEC crossover Michael M. Scherer Theoretisch Physikalisches Institut, Jena University in collaboration with Sebastian Diehl, Stefan Flörchinger, Holger Gies,

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

David Snoke Department of Physics and Astronomy, University of Pittsburgh

David Snoke Department of Physics and Astronomy, University of Pittsburgh The 6 th International Conference on Spontaneous Coherence in Excitonic Systems Closing Remarks David Snoke Department of Physics and Astronomy, University of Pittsburgh ICSCE6, Stanford University, USA

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

Quantum Quenches in Chern Insulators

Quantum Quenches in Chern Insulators Quantum Quenches in Chern Insulators Nigel Cooper Cavendish Laboratory, University of Cambridge CUA Seminar M.I.T., November 10th, 2015 Marcello Caio & Joe Bhaseen (KCL), Stefan Baur (Cambridge) M.D. Caio,

More information

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Piotr Magierski (Warsaw University of Technology/ University of Washington, Seattle) Collaborators: Aurel Bulgac (Seattle)

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Bogoliubov theory of the weakly interacting Bose gas

Bogoliubov theory of the weakly interacting Bose gas Chapter 4 Bogoliubov theory of the wealy interacting Bose gas In the presence of BEC, the ideal Bose gas has a constant pressure against variation of volume, so that the system features infinite compressibility.

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Collective excitations of ultracold molecules on an optical lattice. Roman Krems University of British Columbia

Collective excitations of ultracold molecules on an optical lattice. Roman Krems University of British Columbia Collective excitations of ultracold molecules on an optical lattice Roman Krems University of British Columbia Collective excitations of ultracold molecules trapped on an optical lattice Sergey Alyabyshev

More information

Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III)

Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III) Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III) Carlo Piermarocchi Condensed Matter Theory Group Department of Physics and Astronomy Michigan State University, East

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Inclusion of Mean Field Effects in the Two-Mode Model of BECs in a Double Well

Inclusion of Mean Field Effects in the Two-Mode Model of BECs in a Double Well Inclusion of Mean Field Effects in the Two-Mode Model of BECs in a Double Well David Masiello in collaboration with Bill Reinhardt University of Washington, Seattle August 8th, 2005 masiello@u.washington.edu

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft

An imbalanced Fermi gas in 1 + ɛ dimensions. Andrew J. A. James A. Lamacraft An imbalanced Fermi gas in 1 + ɛ dimensions Andrew J. A. James A. Lamacraft 2009 Quantum Liquids Interactions and statistics (indistinguishability) Some examples: 4 He 3 He Electrons in a metal Ultracold

More information

Room temperature one-dimensional polariton condensate in a ZnO microwire

Room temperature one-dimensional polariton condensate in a ZnO microwire Room temperature one-dimensional polariton condensate in a ZnO microwire Liaoxin Sun, 1,3 Shulin Sun, 1 Hongxing Dong, 1 Wei Xie, 1 M. Richard, 2 Lei Zhou, 1 Zhanghai Chen, 1, a L. S. Dang, 2 Xuechu Shen

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases

Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Density Waves and Supersolidity in Rapidly Rotating Atomic Fermi Gases Nigel Cooper T.C.M. Group, Cavendish Laboratory, University of Cambridge Quantum Gases Conference, Paris, 30 June 2007. Gunnar Möller

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Pavel Soldán, Marko T. Cvitaš and Jeremy M. Hutson University of Durham with Jean-Michel

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System

(Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System (Quasi-) Nambu-Goldstone Fermion in Hot QCD Plasma and Bose-Fermi Cold Atom System Daisuke Satow (RIKEN/BNL) Collaborators: Jean-Paul Blaizot (Saclay CEA, France) Yoshimasa Hidaka (RIKEN, Japan) Supersymmetry

More information

Quantum Electrodynamics with Ultracold Atoms

Quantum Electrodynamics with Ultracold Atoms Quantum Electrodynamics with Ultracold Atoms Valentin Kasper Harvard University Collaborators: F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, and J. Berges Motivation for QED (1+1) Theoretical Motivation

More information

Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn

Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate Frank Vewinger Universität Bonn What are we dealing with? System: 0 4 0 5 Photons ultracold : 300K Box: Curved mirror cavity A few

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Collision dynamics of molecules and rotational excitons! in an ultracold gas confined by an optical lattice!

Collision dynamics of molecules and rotational excitons! in an ultracold gas confined by an optical lattice! Collision dynamics of molecules and rotational excitons! in an ultracold gas confined by an optical lattice! Sergey Alyabyshev Chris Hemming Felipe Herrera Zhiying Li UBC Physics Marina Litinskaya Timur

More information

Coherent excitonic matter

Coherent excitonic matter Coherent excitonic matter Peter Littlewood, University of Cambridge pbl21@cam.ac.uk Momentum distribution of cold atoms Momentum distribution of cold exciton-polaritons Rb atom condensate, JILA, Colorado

More information

Giuseppe Morandi and me. PhD In Bologna years : very fruitful and formative period. Collaboration continued for some years after.

Giuseppe Morandi and me. PhD In Bologna years : very fruitful and formative period. Collaboration continued for some years after. Giuseppe Morandi and me PhD In Bologna years 1994-96: very fruitful and formative period. Collaboration continued for some years after. What I have learned from him Follow the beauty (and don t care too

More information

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia Ultracold Molecules and Cold Controlled Chemistry Roman Krems University of British Columbia Sergey Alyabyshev Zhiying Li Timur Tscherbul ultra-cold cold warm hot 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

More information

Quenched BCS superfluids: Topology and spectral probes

Quenched BCS superfluids: Topology and spectral probes Quenched BCS superfluids: Topology and spectral probes Matthew S. Foster, Rice University May 6 th, 2016 Quenched BCS superfluids: Topology and spectral probes M. S. Foster 1, Maxim Dzero 2, Victor Gurarie

More information

Simulating Quantum Simulators. Rosario Fazio

Simulating Quantum Simulators. Rosario Fazio Simulating Quantum Simulators Rosario Fazio Critical Phenomena in Open Many-Body systems Rosario Fazio In collaboration with J. Jin A. Biella D. Rossini J. Keeling Dalian Univ. SNS - Pisa St. Andrews J.

More information

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA

Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Dynamic Density and Spin Responses in the BCS-BEC Crossover: Toward a Theory beyond RPA Lianyi He ( 何联毅 ) Department of Physics, Tsinghua University 2016 Hangzhou Workshop on Quantum Degenerate Fermi Gases,

More information

Optomechanics and spin dynamics of cold atoms in a cavity

Optomechanics and spin dynamics of cold atoms in a cavity Optomechanics and spin dynamics of cold atoms in a cavity Thierry Botter, Nathaniel Brahms, Daniel Brooks, Tom Purdy Dan Stamper-Kurn UC Berkeley Lawrence Berkeley National Laboratory Ultracold atomic

More information

Polariton condensation: A Green s Function approach

Polariton condensation: A Green s Function approach Polariton condensation: A Green s Function approach Jonathan Keeling MathNanoSci Intensive Programme, L Aquila 2010. Contents Contents List of Figures Introduction Books and Review articles......................

More information

Many-body physics 2: Homework 8

Many-body physics 2: Homework 8 Last update: 215.1.31 Many-body physics 2: Homework 8 1. (1 pts) Ideal quantum gases (a)foranidealquantumgas,showthatthegrandpartitionfunctionz G = Tre β(ĥ µ ˆN) is given by { [ ] 1 Z G = i=1 for bosons,

More information

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346

Excitonic Condensation in Systems of Strongly Correlated Electrons. Jan Kuneš and Pavel Augustinský DFG FOR1346 Excitonic Condensation in Systems of Strongly Correlated Electrons Jan Kuneš and Pavel Augustinský DFG FOR1346 Motivation - unconventional long-range order incommensurate spin spirals complex order parameters

More information

Microcavity polaritons are composite bosons, which are partly

Microcavity polaritons are composite bosons, which are partly From polariton condensates to highly photonic quantum degenerate states of bosonic matter Marc Aßmann a,1, Jean-Sebastian Tempel a, Franziska Veit a, Manfred Bayer a, Arash Rahimi-Iman b, Andreas Löffler

More information

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang

Experimental realization of spin-orbit coupled degenerate Fermi gas. Jing Zhang Hangzhou Workshop on Quantum Matter, 2013 Experimental realization of spin-orbit coupled degenerate Fermi gas Jing Zhang State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Intersubband Response:

Intersubband Response: Intersubband Response: Lineshape,, Coulomb Renormalization, and Microcavity Effects F. T. Vasko Inst. of Semiconductor Physics Kiev, Ukraine In collaboration with: A.V. Korovin and O.E. Raichev (Inst.

More information

Collective Dynamics of a Generalized Dicke Model

Collective Dynamics of a Generalized Dicke Model Collective Dynamics of a Generalized Dicke Model J. Keeling, J. A. Mayoh, M. J. Bhaseen, B. D. Simons Harvard, January 212 Funding: Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25 Coupling

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Polariton and photon condensates with organic molecules

Polariton and photon condensates with organic molecules Polariton and photon condensates with organic molecules Jonathan Keeling University of St Andrews 6 YEARS Telluride, July 213 Jonathan Keeling Polariton and photon condensates Telluride, July 213 1 / 37

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information