Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn

Size: px
Start display at page:

Download "Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate. Frank Vewinger Universität Bonn"

Transcription

1 Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate Frank Vewinger Universität Bonn

2 What are we dealing with? System: Photons ultracold : 300K Box: Curved mirror cavity A few µm long

3 ) Photon BEC: HowTo ) Thermodynamic Properties of Photons 3) Fluctuations & Symmetry Breaking Work done with Julian Schmitt Tobias Damm Jan Klaers (now@eth Zürich) Martin Weitz 3

4 ) Photon BEC: HowTo ) Thermodynamic Properties of Photons 3) Fluctuations & Symmetry Breaking 4

5 dye photon box The box: Dispersion E = ħc n k z + k r ħc n k z + k r k z 7 ᐧλ0/ = πħcq n D 0 + πħcq n R D 0 r + ħc D 0 πqn k r = m 0 c + m 0 Ω r + k r m 0 Photons in the microcavity behave as - Massive particles - Two-dimensional - Harmonically trapped 5 Klaers, Vewinger & Weitz, Nature Physics 6, 5 (00)

6 dye photon box Dye The box: Dispersion E = ħc n k z + k r ħc n k z + k r k z = πħcq n D 0 + πħcq n R D 0 r + ħc D 0 πqn k r = m 0 c + m 0 Ω r + k r m 0 Photons in the microcavity behave as - Massive particles - Two-dimensional - Harmonically trapped ħω ZPL k B T 6 Klaers, Vewinger & Weitz, Nature Physics 6, 5 (00)

7 dye photon box Intensity [a.u.] Dye f(υ) α(υ) TEM 6mn TEM 7mn TEM 8mn ν [THz] Dye reservoir: - Thermalizes gas - Sets chemical potential ħω ZPL k B T e μ γ k BT = w M w M e ħ (ω C Δ) k B T 7 Klaers, Vewinger & Weitz, Nature Physics 6, 5 (00)

8 dye photon box Intensity [a.u.] Dye f(υ) α(υ) TEM 6mn TEM 7mn TEM 8mn ν [THz] Dye reservoir: - Thermalizes gas - Sets chemical potential e μ γ k BT = w M w M e ħ (ω C Δ) k B T 8 Klaers, Vewinger & Weitz, Nature Physics 6, 5 (00)

9 Scales Dye Energy scales Trap frequency Thermal energy Cavity cutoff 50µeV k B T 5meV.eV cutoff Photon mass 0 7 m e Critical particle number N N c k T N B c 300K 3 Critical phase space density n c.3/ µm Klaers, Schmitt, Vewinger & Weitz, Nature 468, 545 (00) See also Marelic & Nyman, PRA 9, (05) 9

10 Scales Dye Energy scales Trap frequency Thermal energy Cavity cutoff 50µeV k B T 5meV.eV cutoff Photon mass 0 7 m e Critical particle number N N c k T N B c 300K 3 Critical phase space density n c.3/ µm Klaers, Schmitt, Vewinger & Weitz, Nature 468, 545 (00) See also Marelic & Nyman, PRA 9, (05) 0

11 Scales Dye Energy scales Trap frequency Thermal energy Cavity cutoff 50µeV k B T 5meV.eV cutoff Photon mass 0 7 m e Critical particle number N N c k T N B c 300K 3 Critical phase space density n c.3/ µm Brute force theory: Appl Phys B 05, 7 33 (0) Klaers, Schmitt, Vewinger & Weitz, Nature 468, 545 (00) See also Marelic & Nyman, PRA 9, (05) Microscopic models: de Leeuw, PRA 88, (03). Kirton/Keeling, PRL,00404 (03) Kopylov et al., PRA 9, (05)

12 Experimental setup

13 Experimental setup 3

14 Experimental setup 4

15 Properties? 5

16 Properties? 6

17 ) Photon BEC: HowTo ) Thermodynamic Properties of Photons 3) Fluctuations & Symmetry Breaking 7

18 Condensate Fraction Signal (a.u.) Condensate fraction n 0 /n k B T T T C Wavelength λ (nm) Temperature T/T c Bose-Einstein distribution T T c = N c N Damm, Schmitt, Nature Comm. 7,340 (06)

19 Internal Energy 5 Energy (U-ħω c ) / Nk B T c 4 3 criticality classical limit (Maxwell-Boltzmann) Temperature T/T c 9

20 Internal Energy Phys. Rev. Lett. 77, (996) Phys. Rev. A 90, (04) 5 Atomic systems Energy (U-ħω c ) / Nk B T c Temperature T/T c 0

21 Specific Heat 5 Specific heat C / Nk B 4 3 cusp singularity at criticality k B in D (equipartition theorem) Temperature T/T c Klünder & Pelster, EPJB 68, 457 (009): C=4.38 k B T, TD limit

22 Specific Heat Phys. Rev. B 68, 7458 (003) Science 335, (0) 5 Liquid 4 He Specific heat C / Nk B 4 3 Fermions ( 6 Li) Temperature T/T c Klünder & Pelster, EPJB 68, 457 (009): C=4.38 k B T, TD limit

23 Entropy per Particle Entropy S / N 5 4 S T = 0 T C T T dt 3 S/N 0 (third law of thermodynamics) Temperature T/T c 3

24 Entropy per Particle Entropy S / N 5 4 S T = 0 T C T T dt 3 S/N 0 (third law of thermodynamics) Temperature T/T c 4

25 ) Photon BEC: HowTo ) Thermodynamic Properties of Photons 3) Fluctuations & Symmetry Breaking 5

26 Coherence of a Bose-Einstein condensate g () (τ) g () (τ) P. W. Anderson (986): "Do two superfluids which have never 'seen' one another possess a relative phase?" F Spontaneous symmetry breaking Phase selection: long-range order Damping of density fluctuations T >Tc Pn T <Tc Pn Andrews et al., Science 75 (997) τ Öttl et al., PRL 95 (005) n 6 4

27 Coherence of a Bose-Einstein condensate g () (τ) g () (τ) P. W. Anderson (986): "Do two superfluids which have never 'seen' one another possess a relative phase?" F Spontaneous symmetry breaking Closed vs. open system Isolation Reservoir n, E 0 n, E 0 Phase selection: long-range order Damping of density fluctuations T >Tc Pn T <Tc Pn Andrews et al., Science 75 (997) τ n Öttl et al., PRL 95 (005) BEC correlations in open environments? 7 4

28 Heat bath and particle reservoir for light Molecules Heat bath M = Photon condensate ΔE,, Δn n T, μ Grand canonical ensemble, Ω T, V, μ if M n Photon number distribution Master equation Pn Statistics crossover Klaers et al., PRL 08 (0) Sob yanin, PRE 85 (0) 8

29 Limiting cases for BEC number statistics g () (τ) g () (τ) M n Grand-canonical ensemble ( ) Canonical ensemble ( M < n ) Bose-Einstein statistics ("flickering" BEC) Poisson statistics ("quiet" BEC) n=0 3, M=0 7 n=0 3, M=0 4 ɸ(t) ɸ(t) quasi-spin n(t) Time, n(t) Time, τc () Autocorrelation Fluctuation level Delay, τ g 0 = g 0 = τ 9

30 Experiment: intensity correlations of BEC Condensate fraction: 4% Time evolution (PMT) Photon statistics 3 6% 8% 4 Reservoir (fixed size) 58% Probability, Pn BEC photons Time, t (ns) Schmitt et al., Phys. Rev. Lett., (04) see also: Physics 7 (04) 30

31 Experiment: intensity correlations of BEC Autocorrelation, g () (τ) Condensate fraction: 4% Time evolution (PMT) Photon statistics 3 6% 8% 4 Reservoir (fixed size) 58% Probability, Pn BEC photons Time, t (ns) τc ().4 ns Crossover from Bose-Einstein ( ) to Poisson statistics ( ) Schmitt et al., Phys. Rev. Lett., (04) see also: Physics 7 (04) Delay, τ (ns) 3

32 Temporal phase evolution Response of condensate phase to statistical fluctuations? 3

33 Temporal phase evolution I(t) Response of condensate phase to statistical fluctuations? Canonical ensemble (, second-order coherence) regular beating without phase jumps Schmitt et al., Phys. Rev. Lett. 6, (06) 33

34 Temporal phase evolution I(t) Response of condensate phase to statistical fluctuations? Canonical Grand-canonical ensemble ensemble ( (, second-order, intensity coherence) fluctuations) Phase jumps (ΓPJ - = 0ns) regular beating without phase jumps Schmitt et al., Phys. Rev. Lett. 6, (06) 34

35 Temporal phase evolution I(t) # phase jumps Response of condensate phase to statistical fluctuations? Canonical Grand-canonical ensemble ensemble ( (, second-order, intensity coherence) fluctuations) Phase jumps Random distribution: U() symmetry Separation of time scales Schmitt et al., Phys. Rev. Lett. 6, (06) (ΓPJ - = 0ns) regular beating without phase jumps 0 π 0 0 t (ns) 35

36 Separation of correlation times Rates (µs - ) Rate of fluctuations & phase jumps (/τc () & ΓPJ) vs. increasing system size Suppressed fluctuations & phase jumps ΓPJ Schmitt et al., Phys. Rev. Lett. 6, (06) Analysis ignores phase diffusion, Lewenstein et al., PRL 77 (996), Imamoḡlu et al., PRL 78 (997), De Leeuw et al., PRA 90 (04), 36

37 Separation of correlation times Rates (µs - ) Rate of fluctuations & phase jumps (/τc () & ΓPJ) vs. increasing system size Suppressed fluctuations & phase jumps ΓPJ Reservoir size 0 0 Schmitt et al., Phys. Rev. Lett. 6, (06) Analysis ignores phase diffusion, Lewenstein et al., PRL 77 (996), Imamoḡlu et al., PRL 78 (997), De Leeuw et al., PRA 90 (04), 37

38 Separation of correlation times Rates (µs - ) Rate of fluctuations & phase jumps (/τc () & ΓPJ) vs. increasing system size Suppressed fluctuations & phase jumps ΓPJ Reservoir size 0 0 Schmitt et al., Phys. Rev. Lett. 6, (06) Analysis ignores phase diffusion, Lewenstein et al., PRL 77 (996), Imamoḡlu et al., PRL 78 (997), De Leeuw et al., PRA 90 (04), 38

39 Separation of correlation times Rates (µs - ) Rate of fluctuations & phase jumps (/τc () & ΓPJ) vs. increasing system size Suppressed fluctuations & phase jumps ΓPJ Reservoir size 0 0 Schmitt et al., Phys. Rev. Lett. 6, (06) Analysis ignores phase diffusion, Lewenstein et al., PRL 77 (996), Imamoḡlu et al., PRL 78 (997), De Leeuw et al., PRA 90 (04), 39

40 Separation of correlation times Rates (µs - ) Rate of fluctuations & phase jumps (/τc () & ΓPJ) vs. increasing system size Suppressed fluctuations & phase jumps ΓPJ (µs - ) ΓPJ Suppression of phase jumps despite bunching! Field Reservoir size 0 0 time giant flickering BEC chaotic light Schmitt et al., Phys. Rev. Lett. 6, (06) Analysis ignores phase diffusion, Lewenstein et al., PRL 77 (996), Imamoḡlu et al., PRL 78 (997), De Leeuw et al., PRA 90 (04), 40

41 ) Photon BEC: HowTo ) Thermodynamic Properties of Photons 3) Fluctuations & Symmetry Breaking 4) Conclusion 4

42 Photon BEC: Summary Photon BEC versatile platform - grand canonical physics - open & closed system dynamics - reservoir effects - mediated interaction - Calorimetry: Textbook properties of the ideal Bose gas Statistics: Tunable from canonical to grand canonical Effective temperature Phase evolution: Fluctuation-induced phase jumps 4

43 Time What s next? Spatial phase coherence Josephson physics with reservoir Arbitrary potentials J = 44 GHz 8 ps Photon BEC Team Erik Busley Christian Kurtscheid Christian Schilz Tobias Damm David Dung Fahri Öztürk Hadiseh Alaeian Julian Schnmitt Frank Vewinger Jan Klärs Martin Weitz Funding 43

44 Time What s next? Spatial phase coherence Josephson physics with reservoir Arbitrary potentials J = 44 GHz 8 ps Photon BEC Team Erik Busley Christian Kurtscheid Christian Schilz Tobias Damm David Dung Fahri Öztürk Hadiseh Alaeian Julian Schnmitt Frank Vewinger Jan Klärs Martin Weitz Funding Thanks for your attention 44

Bose-Einstein condensation of photons in a 'whitewall'

Bose-Einstein condensation of photons in a 'whitewall' Journal of Physics: Conference Series Bose-Einstein condensation of photons in a 'whitewall' photon box To cite this article: Jan Klärs et al 2011 J. Phys.: Conf. Ser. 264 012005 View the article online

More information

arxiv: v2 [cond-mat.quant-gas] 24 Jan 2014

arxiv: v2 [cond-mat.quant-gas] 24 Jan 2014 Observation of Grand-canonical Number Statistics in a Photon Bose-Einstein condensate Julian Schmitt, Tobias Damm, David Dung, Frank Vewinger, Jan Klaers and Martin Weitz Institut für Angewandte Physik,

More information

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition Kerson Huang CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group an Informa

More information

arxiv: v1 [cond-mat.stat-mech] 24 Aug 2012

arxiv: v1 [cond-mat.stat-mech] 24 Aug 2012 arxiv:1208.4888v1 [cond-mat.stat-mech] 24 Aug 2012 Bose-Einstein Condensation in arbitrary dimensions Ajanta Bhowal Acharyya Department of Physics Lady Brabourne College P-1/2, Suhrawardy Avenue Calcutta-700017,

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

Thermoelectricity with cold atoms?

Thermoelectricity with cold atoms? Thermoelectricity with cold atoms? Ch. Grenier, C. Kollath & A. Georges Centre de physique Théorique - Université de Genève - Collège de France Université de Lorraine Séminaire du groupe de physique statistique

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

First-order spatial coherence measurements in a thermalized two-dimensional photonic quantum gas

First-order spatial coherence measurements in a thermalized two-dimensional photonic quantum gas First-order spatial coherence measurements in a thermalized two-dimensional photonic quantum gas Tobias Damm 1, David Dung 1, Frank Vewinger 1, Martin Weitz 1 & Julian Schmitt 1 1 Institut für Angewandte

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

Quantum droplets of a dysprosium BEC

Quantum droplets of a dysprosium BEC Quantum droplets of a dysprosium BEC Igor Ferrier-Barbut Holger Kadau, Matthias Schmitt, Matthias Wenzel, Tilman Pfau 5. Physikalisches Institut,Stuttgart University SFB/TRR 21 1 Can one form a liquid

More information

PHYS 3313 Section 001 Lecture # 24

PHYS 3313 Section 001 Lecture # 24 PHYS 3313 Section 001 Lecture # 24 Wednesday, April 29, Dr. Alden Stradling Equipartition Theorem Quantum Distributions Fermi-Dirac and Bose-Einstein Statistics Liquid Helium Laser PHYS 3313-001, Spring

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2024W1 SEMESTER 2 EXAMINATION 2011/12 Quantum Physics of Matter Duration: 120 MINS VERY IMPORTANT NOTE Section A answers MUST BE in a separate blue answer book. If any blue

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

From cavity optomechanics to the Dicke quantum phase transition

From cavity optomechanics to the Dicke quantum phase transition From cavity optomechanics to the Dicke quantum phase transition (~k; ~k)! p Rafael Mottl Esslinger Group, ETH Zurich Cavity Optomechanics Conference 2013, Innsbruck Motivation & Overview Engineer optomechanical

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

Simulating Quantum Simulators. Rosario Fazio

Simulating Quantum Simulators. Rosario Fazio Simulating Quantum Simulators Rosario Fazio Critical Phenomena in Open Many-Body systems Rosario Fazio In collaboration with J. Jin A. Biella D. Rossini J. Keeling Dalian Univ. SNS - Pisa St. Andrews J.

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Phase Diagram for Magnon Condensate in Yttrium Iron Garnet film

Phase Diagram for Magnon Condensate in Yttrium Iron Garnet film (Accepted by Nature Scientific Reports: Jan. 9, 013) Phase Diagram for Magnon Condensate in Yttrium Iron Garnet film Phase Diagram. We consider a YIG film of thickness d with in-plane magnetic field H

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases

Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases APCTP Focus Program on Quantum Condensation (QC12) Simulation of neutron-rich dilute nuclear matter using ultracold Fermi gases Munekazu Horikoshi Photon Science Center of University of Tokyo Grant-In-Aid

More information

Interference experiments with ultracold atoms

Interference experiments with ultracold atoms Interference experiments with ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Anton Burkov, Robert Cherng, Adilet Imambekov, Serena Fagnocchi, Vladimir Gritsev, Mikhail Lukin,

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Superfluidity and Superconductivity

Superfluidity and Superconductivity Superfluidity and Superconductivity These are related phenomena of flow without resistance, but in very different systems Superfluidity: flow of helium IV atoms in a liquid Superconductivity: flow of electron

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Noise in voltage-biased scaled semiconductor laser diodes

Noise in voltage-biased scaled semiconductor laser diodes Noise in voltage-biased scaled semiconductor laser diodes S. M. K. Thiyagarajan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 90089-1111

More information

Part II Statistical Physics

Part II Statistical Physics Part II Statistical Physics Theorems Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

INO-CNR BEC Center

INO-CNR BEC Center Experiments @ INO-CNR BEC Center The INO-CNR team: CNR Researchers: PostDocs: Tom Bienaimé Giacomo Lamporesi, Gabriele Ferrari PhD students: Simone Serafini (INO), Eleonora Fava, Giacomo Colzi, Carmelo

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

New perspectives on classical field simulations of ultracold Bose gases

New perspectives on classical field simulations of ultracold Bose gases New perspectives on classical field simulations of ultracold Bose gases Piotr Deuar Joanna Pietraszewicz Tomasz Świsłocki Igor Nowicki Karolina Borek Institute of Physics, Polish Academy of Sciences, Warsaw,

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

arxiv: v1 [quant-ph] 4 Oct 2017

arxiv: v1 [quant-ph] 4 Oct 2017 Thermo-optical interactions in a dye-microcavity photon Bose-Einstein condensate Hadiseh Alaeian, 1 Mira Schedensack, 2 Clara Bartels, 1 Daniel Peterseim, 2 and Martin Weitz 1 1 Institut für Angewandte

More information

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Zala Lenarčič, Florian Lange, Achim Rosch University of Cologne theory of weakly driven quantum system role of approximate

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid? Is a system of fermions in the crossover BCS-BEC BEC regime a new type of superfluid? Finite temperature properties of a Fermi gas in the unitary regime Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas

Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Pairing properties, pseudogap phase and dynamics of vortices in a unitary Fermi gas Piotr Magierski (Warsaw University of Technology/ University of Washington, Seattle) Collaborators: Aurel Bulgac (Seattle)

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Part II: Statistical Physics

Part II: Statistical Physics Chapter 7: Quantum Statistics SDSMT, Physics 2013 Fall 1 Introduction 2 The Gibbs Factor Gibbs Factor Several examples 3 Quantum Statistics From high T to low T From Particle States to Occupation Numbers

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I)

The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) The XY model, the Bose Einstein Condensation and Superfluidity in 2d (I) B.V. COSTA UFMG BRAZIL LABORATORY FOR SIMULATION IN PHYSICS A Guide to Monte Carlo Simulations in Statistical Physics by Landau

More information

The non-interacting Bose gas

The non-interacting Bose gas Chapter The non-interacting Bose gas Learning goals What is a Bose-Einstein condensate and why does it form? What determines the critical temperature and the condensate fraction? What changes for trapped

More information

Distributing Quantum Information with Microwave Resonators in Circuit QED

Distributing Quantum Information with Microwave Resonators in Circuit QED Distributing Quantum Information with Microwave Resonators in Circuit QED M. Baur, A. Fedorov, L. Steffen (Quantum Computation) J. Fink, A. F. van Loo (Collective Interactions) T. Thiele, S. Hogan (Hybrid

More information

Quantum Properties of Two-dimensional Helium Systems

Quantum Properties of Two-dimensional Helium Systems Quantum Properties of Two-dimensional Helium Systems Hiroshi Fukuyama Department of Physics, Univ. of Tokyo 1. Quantum Gases and Liquids 2. Bose-Einstein Condensation 3. Superfluidity of Liquid 4 He 4.

More information

5. Systems in contact with a thermal bath

5. Systems in contact with a thermal bath 5. Systems in contact with a thermal bath So far, isolated systems (micro-canonical methods) 5.1 Constant number of particles:kittel&kroemer Chap. 3 Boltzmann factor Partition function (canonical methods)

More information

A stable c-field theory that includes quantum fluctuations

A stable c-field theory that includes quantum fluctuations A stable c-field theory that includes quantum fluctuations Piotr Deuar Institute of Physics, Polish Academy of Sciences, Warsaw, Poland Collaboration: Nick Proukakis University of Newcastle, United Kingdom

More information

BEC meets Cavity QED

BEC meets Cavity QED BEC meets Cavity QED Tilman Esslinger ETH ZürichZ Funding: ETH, EU (OLAQUI, Scala), QSIT, SNF www.quantumoptics.ethz.ch Superconductivity BCS-Theory Model Experiment Fermi-Hubbard = J cˆ ˆ U nˆ ˆ i, σ

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

A Superfluid Universe

A Superfluid Universe A Superfluid Universe Lecture 2 Quantum field theory & superfluidity Kerson Huang MIT & IAS, NTU Lecture 2. Quantum fields The dynamical vacuum Vacuumscalar field Superfluidity Ginsburg Landau theory BEC

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017 Thermal & Statistical Physics Study Questions for the Spring 018 Department Exam December 6, 017 1. a. Define the chemical potential. Show that two systems are in diffusive equilibrium if 1. You may start

More information

Pairing Phases of Polaritons

Pairing Phases of Polaritons Pairing Phases of Polaritons Jonathan Keeling 1 University of St Andrews 6 YEARS Pisa, January 14 Jonathan Keeling Pairing Phases of Polaritons Pisa, January 14 1 / 34 Bose-Einstein condensation: macroscopic

More information

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics, ETH Zürich, Switzerland

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Landau Theory of Fermi Liquids : Equilibrium Properties

Landau Theory of Fermi Liquids : Equilibrium Properties Quantum Liquids LECTURE I-II Landau Theory of Fermi Liquids : Phenomenology and Microscopic Foundations LECTURE III Superfluidity. Bogoliubov theory. Bose-Einstein condensation. LECTURE IV Luttinger Liquids.

More information

Strongly Interacting Fermi Gases: Universal Thermodynamics, Spin Transport, and Dimensional Crossover

Strongly Interacting Fermi Gases: Universal Thermodynamics, Spin Transport, and Dimensional Crossover NewSpin, College Station, 1/16/011 Strongly Interacting ermi Gases: Universal hermodynamics, Spin ransport, and Dimensional Crossover Martin Zwierlein Massachusetts Institute of echnology Center for Ultracold

More information

Physics 172H Modern Mechanics

Physics 172H Modern Mechanics Physics 172H Modern Mechanics Instructor: Dr. Mark Haugan Office: PHYS 282 haugan@purdue.edu TAs: Alex Kryzwda John Lorenz akryzwda@purdue.edu jdlorenz@purdue.edu Lecture 22: Matter & Interactions, Ch.

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

Phys Midterm. March 17

Phys Midterm. March 17 Phys 7230 Midterm March 17 Consider a spin 1/2 particle fixed in space in the presence of magnetic field H he energy E of such a system can take one of the two values given by E s = µhs, where µ is the

More information

STATISTICAL MECHANICS

STATISTICAL MECHANICS STATISTICAL MECHANICS PD Dr. Christian Holm PART 0 Introduction to statistical mechanics -Statistical mechanics: is the tool to link macroscopic physics with microscopic physics (quantum physics). -The

More information

Introduction. Chapter The Purpose of Statistical Mechanics

Introduction. Chapter The Purpose of Statistical Mechanics Chapter 1 Introduction 1.1 The Purpose of Statistical Mechanics Statistical Mechanics is the mechanics developed to treat a collection of a large number of atoms or particles. Such a collection is, for

More information

6. Interference of BECs

6. Interference of BECs 6. Interference of BECs Josephson effects Weak link: tunnel junction between two traps. Josephson oscillation An initial imbalance between the population of the double well potential leads to periodic

More information

Simulation of Quantum Transport in Periodic and Disordered Systems with Ultracold Atoms

Simulation of Quantum Transport in Periodic and Disordered Systems with Ultracold Atoms Simulation of Quantum Transport in Periodic and Disordered Systems with Ultracold Atoms Laurent Sanchez-Palencia Center for Theoretical Physics Ecole Polytechnique, CNRS, Univ. Paris-Saclay F-91128 Palaiseau,

More information

Measuring entanglement in synthetic quantum systems

Measuring entanglement in synthetic quantum systems Measuring entanglement in synthetic quantum systems ψ?? ψ K. Rajibul Islam Institute for Quantum Computing and Department of Physics and Astronomy University of Waterloo research.iqc.uwaterloo.ca/qiti/

More information

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets

Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Bose Einstein condensation of magnons and spin wave interactions in quantum antiferromagnets Talk at Rutherford Appleton Lab, March 13, 2007 Peter Kopietz, Universität Frankfurt collaborators: Nils Hasselmann,

More information

Spinor Bose gases lecture outline

Spinor Bose gases lecture outline Spinor Bose gases lecture outline 1. Basic properties 2. Magnetic order of spinor Bose-Einstein condensates 3. Imaging spin textures 4. Spin-mixing dynamics 5. Magnetic excitations We re here Coupling

More information

PHYS 352 Homework 2 Solutions

PHYS 352 Homework 2 Solutions PHYS 352 Homework 2 Solutions Aaron Mowitz (, 2, and 3) and Nachi Stern (4 and 5) Problem The purpose of doing a Legendre transform is to change a function of one or more variables into a function of variables

More information

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea? Krynica, June 2005 Quantum Optics VI Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Mixtures of ultracold Bose- and Fermi-gases Bright Fermi-Bose solitons

More information

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice Nature 462, 74 77 (5 November 2009) Team 6 Hyuneil Kim Zhidong Leong Yulia Maximenko Jason Merritt 1 Outline Background

More information

PART 2 : BALANCED HOMODYNE DETECTION

PART 2 : BALANCED HOMODYNE DETECTION PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu 1 of 31 OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of

More information

3 Dimensional String Theory

3 Dimensional String Theory 3 Dimensional String Theory New ideas for interactions and particles Abstract...1 Asymmetry in the interference occurrences of oscillators...1 Spontaneously broken symmetry in the Planck distribution law...3

More information

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems

Theory Seminar Uni Marburg. Bose-Einstein Condensation and correlations in magnon systems Theory Seminar Uni Marburg 11 November, 2010 Bose-Einstein Condensation and correlations in magnon systems Peter Kopietz, Universität Frankfurt 1.) Bose-Einstein condensation 2.) Interacting magnons in

More information

Introduction to Modern Quantum Optics

Introduction to Modern Quantum Optics Introduction to Modern Quantum Optics Jin-Sheng Peng Gao-Xiang Li Huazhong Normal University, China Vfe World Scientific» Singapore* * NewJerseyL Jersey* London* Hong Kong IX CONTENTS Preface PART I. Theory

More information

OIST, April 16, 2014

OIST, April 16, 2014 C3QS @ OIST, April 16, 2014 Brian Muenzenmeyer Dissipative preparation of squeezed states with ultracold atomic gases GW & Mäkelä, Phys. Rev. A 85, 023604 (2012) Caballar et al., Phys. Rev. A 89, 013620

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Set 3: Thermal Physics

Set 3: Thermal Physics Set 3: Thermal Physics Equilibrium Thermal physics describes the equilibrium distribution of particles for a medium at temperature T Expect that the typical energy of a particle by equipartition is E kt,

More information

Quantum coherence in semiconductor nanostructures. Jacqueline Bloch

Quantum coherence in semiconductor nanostructures. Jacqueline Bloch Quantum coherence in semiconductor nanostructures Jacqueline Bloch Laboratoire of Photonic and Nanostructures LPN/CNRS Marcoussis Jacqueline.bloch@lpn.cnrs.fr Laboratoire de Photonique et de Nanostructures

More information

Ehud Altman. Weizmann Institute and Visiting Miller Prof. UC Berkeley

Ehud Altman. Weizmann Institute and Visiting Miller Prof. UC Berkeley Emergent Phenomena And Universality In Quantum Systems Far From Thermal Equilibrium Ehud Altman Weizmann Institute and Visiting Miller Prof. UC Berkeley A typical experiment in traditional Condensed Matter

More information

January 2010, Maynooth. Photons. Myungshik Kim.

January 2010, Maynooth. Photons. Myungshik Kim. January 2010, Maynooth Photons Myungshik Kim http://www.qteq.info Contents Einstein 1905 Einstein 1917 Hanbury Brown and Twiss Light quanta In 1900, Max Planck was working on black-body radiation and suggested

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

Fluctuations of Trapped Particles

Fluctuations of Trapped Particles Fluctuations of Trapped Particles M.V.N. Murthy with Muoi Tran and R.K. Bhaduri (McMaster) IMSc Chennai Department of Physics, University of Mysore, Nov 2005 p. 1 Ground State Fluctuations Ensembles in

More information

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover

Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Broad and Narrow Fano-Feshbach Resonances: Condensate Fraction in the BCS-BEC Crossover Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research

More information

Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems. Davide Rossini. Scuola Normale Superiore, Pisa (Italy)

Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems. Davide Rossini. Scuola Normale Superiore, Pisa (Italy) Cluster mean-field approach to the steady-state phase diagram of dissipative spin systems Davide Rossini Scuola Normale Superiore, Pisa (Italy) Quantum simulations and many-body physics with light Orthodox

More information

PART I: PROBLEMS. Thermodynamics and Statistical Physics

PART I: PROBLEMS. Thermodynamics and Statistical Physics Contents PART I: PROBLEMS 4. Thermodynamics and Statistical Physics Introductory Thermodynamics 4.1. Why Bother? (Moscow 4.2. Space Station Pressure (MIT) 4.3. Baron von Münchausen and Intergalactic Travel

More information