Ultracold molecules - a new frontier for quantum & chemical physics

Size: px
Start display at page:

Download "Ultracold molecules - a new frontier for quantum & chemical physics"

Transcription

1 Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO

2 Ultracold atomic matter Precise control of a quantum system The most precise measurements, e.g., clock Quantum information Quantum sensors Control: A tool for understanding complexity Strongly correlated many-body quantum systems Superfluidity & Superconductivity Control atomic interactions Regulate atomic motions Quantum magnetism Quantum chemistry

3 Atomic Interactions Short-range collisions 0 interaction strength We can understand & control them!

4 Quantum gas of polar molecules Extend capability to control complex quantum systems Study frontier problems in strongly correlated quantum material, with well-understood microscopics tunable, long-range interactions non-equilibrium quantum dynamics Quantum metrology, E Exotic quantum matter Correlated material, Chemistry

5 energy Ultracold molecules: The challenge KRb two atoms E/k B =6000 K molecule

6 energy Ultracold molecules: The challenge Molecules are complex! two atoms vibration 100 K molecule

7 energy Ultracold molecules: The challenge Molecules are complex! rotation 0.1 K

8 energy Ultracold molecules: The challenge Molecules are complex!

9 energy Ultracold molecules: The challenge Molecules are complex! nuclear spin 38 mk

10 log 10 (density [cm -3 ]) Technology for making cold molecules Carr, DeMille, Krems, Ye, New. J. Phys Quantum gas of molecules 12 Towards quantum regime Laser cooling Evaporative cooling Sympathetic cooling Photo-association Stark, magnetic, optical deceleration Buffer-gas cooling High resolution collisions/reactions Precision test log 10 (T [K])

11 energy Associate ultracold atoms into molecules two atoms 6000 K molecule

12 Make Feshbach molecules Energy V(R) R R R R E binding Large, floppy molecules 0 Interaction tuned by scattering resonance 40 K 87 Rb Magnetic field B > Scattering length a Magnetic field B

13 energy Weakly bound molecules no dipole moment losses 6000 K

14 Coherent two-photon transfer the absolute ground state (entropy-less chemistry) Fully coherent, >90% efficiency 690 nm 970 nm Laser 1 Laser 2 frequency 6000 K Beat note 125 THz 36 nuclear spin states: We populate & control single state S. Ospelkaus et al., Phys. Rev. Lett. 104, (2010).

15 Polar molecules in the quantum regime Temperature ~ 100 nk Density ~10 12 /cm 3 T/T F ~ K Fermions 87 Rb Bosons K.-K. Ni et al., Science 322, 231 (2008). KRb molecules (Dipole ~0.5 Debye)

16 Density (10 12 cm -3 ) Chemistry near absolute zero Trapped molecules in the lowest energy state (electronic, vibrational, rotational, hyperfine) Two-body loss n( t) n( t) 2 T = 200 nk > 1 s lifetime Time (s) KRb + KRb K 2 + Rb 2

17 Cold collisions between identical Fermions (1) Particles behave like waves (2) Angular momentum is quantized s p d 0 1ħ 2ħ (3) Quantum statistics matter Fermions c L = 1, p-wave collisions

18 Energy Ultracold chemistry Ospelkaus et al., Science 327, 853 (2010). At low T, the quantum statistics of fermionic molecules suppresses chemical reaction! debroglie wavelength Rate proportional to T distance between the molecules

19 Energy Ultracold chemistry Ospelkaus et al., Science 327, 853 (2010). Distinguishable molecules do not enjoy the suppression rate is x 100 higher! debroglie wavelength distance between the molecules

20 Anisotropic dipolar collisions K.-K. Ni et al., Nature 464, 1324 (2010). p-wave barrier m L = +1, -1 m L = 0 Collisions under a single partial wave (L = 1 ).

21 2D geometry loss suppression D (cm 3 s -1 ) D D Dipole moment (D) Theory: Büchler, Zoller, Bohn, Julienne M. de Miranda, et al., Controlling the quantum stereodynamics of ultracold bimolecular reactions, Nature Phys. 7, 502 (2011). E

22 3D optical lattice suppressing chemical reaction with quantum Zeno effect Lifetime ~ 20 s Filling ~ 5% τ = 25(2) seconds A. Chotia et al., Phys. Rev. Lett. 108, (2012). B. Zhu et al., Phys. Rev. Lett. 112, (2014).

23 Spin exchange in a lattice of molecules Barnett et al., Phys. Rev. Lett. 96, (2006). Micheli et al., Nature Phys. 2, 341 (2006). Gorshkov et al., Phys. Rev. Lett. 107, (2011). Rotation Spin Long-range dipolar interactions for direct (~khz) spin exchanges - motion & spin decoupled Fully tunable with electromagnetic fields Dipole moment 270 khz 70 khz 2.23 GHz

24 A good system to study many-body quantum localization? D. Huse, G. Shlyapnikov, M. Lukin, E. Demler, Molecules (material) are physically pinned down, but spins (excitations) can be exchanged and mobile! Energy flow in a macro-molecule!

25 Interaction strength for quantum magnetism Flip-flop term The oscillation frequency for a pair of molecules is J /2h.

26 Number (10 3 ) A Dipolar Spin-Lattice Model B. Yan et al., Nature 501, 521 (2013). N=1 > N=0> Start with N=0. Drive a coherent spin superposition. 1 2 Probe spin coherence at T. (Ramsey spectroscopy)

27 Coherent time Contrast Oscillations due to dipolar interactions N=1.77x10 4 N=5x /N scaling T (ms) 1, 1 0, 0 1, 0 0, 0 Oscillation frequencies & decay time both depend on rotational states

28 Contrast Contrast Control dipolar interaction K. Hazzard et al., Phys. Rev. Lett. 113, (2014). 1,-1 1,0 0,0 1, Theory (MACE) Dark squares: 0,0> -> 1,0> Red circles: 0,0> -> 1,-1> (time rescaled by ½). 1,-1 Experiment 1,-1 f = 106 Hz, f/ 2, f/2 1,0 1,0 0.5 J 2 ~ 102 Hz 0 for 0,0> to 1,0> ( J 2 ~ 51 Hz for 0,0> to 1,-1>) One fitting parameter (filling 5-10%) reproduces the experiment

29 Highly filled optical lattice ~5% filling in a 3D lattice Goal: A near zero entropy 3D lattice

30 Creating molecules in a 3D lattice 1. Rb MOTT insulator 2. Add lots of K atoms (tune Rb K interaction energy) 3. Magnetic association & Raman transfer

31 Rb Mott insulator imaged in-situ A superfluid BEC phase transition to a MOTT insulator filling Lattice depth 12 E rec 18 E rec 24 E rec Rb (10 3 ) 2000 Rb 50,000 Rb

32 Imaging of K in momentum & real space Peak Filling Fraction 1.0 K Filling vs Number K Number

33 Rb filling Rb Overlap of Rb and K K Rb & K overlap Rb 10 5 K Vary a KRb before loading lattice 0.8 At a KRb = 0, Rb MI unaffected by K a K-Rb (a 0 )

34 Pairing up K-Rb in lattice without heating Load the lattice at a KRB = 0 Jumping across the resonance dilutes the filling (populating higher bands) Flip to a noninteracting spin state ( 9/2,-7/2>) to avoid resonance when ramping B Flip back to 9/2,-9/2>, then proceed with Feshbach association B K: F =9/2,m F = 9/2> + Rb: F =1,m F =1>

35 KRb Feshbach / Rb A low entropy lattice of molecules Convert > 60% of Rb MOTT Insulator to KRb Image of KRb For BEC of a few 10 3 Rb, the peak filling of Rb ~ To measure KRb, dissociate the molecules & count the numbers of K = Rb Rb (10 4 ) Ground state KRb, ~ 40% filling in 3D lattice (entropy/molecule ~ 1.7 k B ) ~5% filling

36 Special Thanks (KRb team): Bo Yan Steven Moses Bryce Gadway Jacob Covey Former members: Brian Neyenhuis Amodsen Chotia Marcio de Miranda Dajun Wang Silke Ospelkaus Kang-Kuen Ni Avi Pe er Josh Zirbel Theory collaborations: J. L. Bohn, K. Hazzard, P. S. Julienne, S. Kotochigova, M. Lukin, A. M. Rey, P. Zoller

Why ultracold molecules?

Why ultracold molecules? Cold & ultracold molecules new frontiers J. Ye, JILA Michigan Quantum Summer School, Ann Arbor, June 18, 2008 Quantum dipolar gas Precision test QED ee- eehco OH H2O H2CO Quantum measurement Chemical reactions

More information

POLAR MOLECULES NEAR QUANTUM DEGENERACY *

POLAR MOLECULES NEAR QUANTUM DEGENERACY * POLAR MOLECULES NEAR QUANTUM DEGENERACY * JUN YE AND DEBORAH S. JIN JILA, National Institute of Standards and Technology and University of Colorado Department of Physics, University of Colorado, Boulder,

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

arxiv: v1 [physics.atom-ph] 20 Oct 2011

arxiv: v1 [physics.atom-ph] 20 Oct 2011 Long-lived dipolar molecules and Feshbach molecules in a 3D optical lattice Amodsen Chotia, Brian Neyenhuis, Steven A. Moses, Bo Yan, Jacob P. Covey, Michael Foss-Feig, Ana Maria Rey, Deborah S. Jin, and

More information

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University Cold Molecules and Controlled Ultracold Chemistry Jeremy Hutson, Durham University QuAMP Swansea, 11 Sept 2013 Experimentally accessible temperatures What is already possible in ultracold chemistry? Take

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

YbRb A Candidate for an Ultracold Paramagnetic Molecule

YbRb A Candidate for an Ultracold Paramagnetic Molecule YbRb A Candidate for an Ultracold Paramagnetic Molecule Axel Görlitz Heinrich-Heine-Universität Düsseldorf Santa Barbara, 26 th February 2013 Outline 1. Introduction: The Yb-Rb system 2. Yb + Rb: Interactions

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler

Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler Cold Polar Molecules and their Applications for Quantum Information H.P. Büchler Theoretische Physik III, Universität Stuttgart, Germany Outline Introduction to polar molecules - quantum melting transition

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light

Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light Optical Atomic Clock & Absolute-Zero Chemistry Probing Quantum Matter with Precision Light Jun Ye JILA, NIST & University of Colorado MURI 25 th Birthday, Washington DC, Nov. 9, 2011 Many-body quantum

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Quantum correlations and entanglement in far-from-equilibrium spin systems

Quantum correlations and entanglement in far-from-equilibrium spin systems Quantum correlations and entanglement in far-from-equilibrium spin systems Salvatore R. Manmana Institute for Theoretical Physics Georg-August-University Göttingen PRL 110, 075301 (2013), Far from equilibrium

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics Studies of Ultracold Ytterbium and Lithium Anders H. Hansen University of Washington Dept of Physics U. Washington CDO Networking Days 11/18/2010 Why Ultracold Atoms? Young, active discipline Two Nobel

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Physics and Chemistry with Diatomic Molecules Near Absolute Zero. Tanya Zelevinsky & ZLab Columbia University, New York

Physics and Chemistry with Diatomic Molecules Near Absolute Zero. Tanya Zelevinsky & ZLab Columbia University, New York Physics and Chemistry with Diatomic Molecules Near Absolute Zero Tanya Zelevinsky & ZLab Columbia University, New York Pupin Labs @ Columbia E. Fermi I. I. Rabi 10 What is Ultracold? MK kk 7 6 5 4 3 2

More information

Quantum Metrology Optical Atomic Clocks & Many-Body Physics

Quantum Metrology Optical Atomic Clocks & Many-Body Physics Quantum Metrology Optical Atomic Clocks & Many-Body Physics Jun Ye JILA, National Institute of Standards & Technology and University of Colorado APS 4CS Fall 2011 meeting, Tucson, Oct. 22, 2011 Many-body

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium 3-8 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 9 Generation of a synthetic vector potential in ultracold neutral Rubidium SPIELMAN Ian National Institute of Standards and Technology Laser

More information

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate CLEO Europe - IQEC Munich May 14th 013 Olivier GORCEIX Exploring quantum magnetism in a Chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris 13, SPC Villetaneuse - France

More information

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016 Ana Maria Rey Okinawa School in Physics 016: Coherent Quantum Dynamics Okinawa, Japan, Oct 4-5, 016 What can we do with ultra-cold matter? Quantum Computers Lecture II-III Clocks and sensors Synthetic

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin Supersolids Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin This is a lively controversy in condensed matter physics. Experiment says yes. Theory says no, or at best maybe.

More information

Fermi Condensates ULTRACOLD QUANTUM GASES

Fermi Condensates ULTRACOLD QUANTUM GASES Fermi Condensates Markus Greiner, Cindy A. Regal, and Deborah S. Jin JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado,

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases

K two systems. fermionic species mixture of two spin states. K 6 Li mass imbalance! cold atoms: superfluidity in Fermi gases Bad Honnef, 07 July 2015 Impurities in a Fermi sea: Decoherence and fast dynamics impurity physics: paradigms of condensed matter-physics Fermi sea fixed scalar impurity orthogonality catastrophe P.W.

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

PHYS598 AQG Introduction to the course

PHYS598 AQG Introduction to the course PHYS598 AQG Introduction to the course First quantum gas in dilute atomic vapors 87 Rb BEC : Wieman / Cornell group (1995) Logistics A bit about the course material Logistics for the course Website: https://courses.physics.illinois.edu/phys598aqg/fa2017/

More information

An optical frequency comb is generated by use. Internal State Cooling With a Femtosecond Optical Frequency Comb S. MALINOVSKAYA, V. PATEL, T.

An optical frequency comb is generated by use. Internal State Cooling With a Femtosecond Optical Frequency Comb S. MALINOVSKAYA, V. PATEL, T. Internal State Cooling With a Femtosecond Optical Frequency Comb S. MALINOVSKAYA, V. PATEL, T. COLLINS Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

P R L HYSICAL EVIEW ETTERS. Articles published week ending 22 JUNE Volume 98, Number 25. Published by The American Physical Society

P R L HYSICAL EVIEW ETTERS. Articles published week ending 22 JUNE Volume 98, Number 25. Published by The American Physical Society P R L HYSICAL EVIEW ETTERS Articles published week ending Volume 98, Number 25 Member Subscription Copy Library or Other Institutional Use Prohibited Until 2012 Published by The American Physical Society

More information

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline Dipolar Fermi gases Introduction, Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam Outline Experiments with magnetic atoms and polar molecules Topologcal p x +ip y phase in 2D Bilayer systems

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber title 1 team 2 Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber motivation: topological states of matter 3 fermions non-interacting, filled band (single particle physics) topological

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014 The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA NSF Visiting Committee, April 28-29, 2014 Paola Cappellaro Mikhail Lukin Susanne Yelin Eugene Demler CUA Theory quantum control

More information

Interferometric probes of quantum many-body systems of ultracold atoms

Interferometric probes of quantum many-body systems of ultracold atoms Interferometric probes of quantum many-body systems of ultracold atoms Eugene Demler Harvard University Collaborators: Dima Abanin, Thierry Giamarchi, Sarang Gopalakrishnan, Adilet Imambekov, Takuya Kitagawa,

More information

Measurement at the quantum frontier

Measurement at the quantum frontier Measurement at the quantum frontier J. Ye Boulder Summer School, July 24, 2018 Quantum sensing Table-top search for new physics Many-body dynamics Marti et al., PRL (2018). S. Blatt et al., PRL (2008).

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering with Ultracold Atoms < 200 nk Our group: Precision BEC interferometry. Ultracold Mixtures

More information

Laser induced manipulation of atom pair interaction

Laser induced manipulation of atom pair interaction Laser induced manipulation of atom pair interaction St. Falke, Chr. Samuelis, H. Knöckel, and E. Tiemann Institute of Quantum Optics, European Research Training Network Cold Molecules SFB 407 Quantum limited

More information

arxiv: v1 [quant-ph] 21 Apr 2009

arxiv: v1 [quant-ph] 21 Apr 2009 Cold and Ultracold Molecules: Science, Technology, and Applications arxiv:0904.3175v1 [quant-ph] 21 Apr 2009 Lincoln D. Carr Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA

More information

Prospects for application of ultracold Sr 2 molecules in precision measurements

Prospects for application of ultracold Sr 2 molecules in precision measurements Prospects for application of ultracold Sr 2 molecules in precision measurements S. Kotochigova, 1 T. Zelevinsky, 2 and Jun Ye 3 1 Department of Physics, Temple University, Philadelphia, Pennsylvania 19122,

More information

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice

A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice A Quantum Gas Microscope for Detecting Single Atoms in a Hubbard regime Optical Lattice Nature 462, 74 77 (5 November 2009) Team 6 Hyuneil Kim Zhidong Leong Yulia Maximenko Jason Merritt 1 Outline Background

More information

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?"

Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea? Krynica, June 2005 Quantum Optics VI Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Mixtures of ultracold Bose- and Fermi-gases Bright Fermi-Bose solitons

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

synthetic condensed matter systems

synthetic condensed matter systems Ramsey interference as a probe of synthetic condensed matter systems Takuya Kitagawa (Harvard) DimaAbanin i (Harvard) Mikhael Knap (TU Graz/Harvard) Eugene Demler (Harvard) Supported by NSF, DARPA OLE,

More information

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Alexey Gorshkov California Institute of Technology Mikhail Lukin, Eugene Demler, Cenke Xu -

More information

Modeling cold collisions Atoms Molecules

Modeling cold collisions Atoms Molecules Modeling cold collisions Atoms Molecules E. Tiemann, H. Knöckel, A. Pashov* Institute of Quantum Optics *University Sofia, Bulgaria collisional wave function for E 0 A R=0 hk r B adopted from J. Weiner

More information

Fermi gases in an optical lattice. Michael Köhl

Fermi gases in an optical lattice. Michael Köhl Fermi gases in an optical lattice Michael Köhl BEC-BCS crossover What happens in reduced dimensions? Sa de Melo, Physics Today (2008) Two-dimensional Fermi gases Two-dimensional gases: the grand challenge

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Bose-Bose mixtures in confined dimensions

Bose-Bose mixtures in confined dimensions Bose-Bose mixtures in confined dimensions Francesco Minardi Istituto Nazionale di Ottica-CNR European Laboratory for Nonlinear Spectroscopy 22nd International Conference on Atomic Physics Cairns, July

More information

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED Universal Aspects of Dipolar Scattering Christopher Ticknor May 15 at INT 1 Outline of Talk Universal Dipolar Scattering Theory of a long range scattering potential D Universal and tilted dipolar scattering

More information

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt

Probing P & T-violation Beyond the Standard Model. Aaron E. Leanhardt An Electron EDM Search in HfF + : Probing P & T-violation Beyond the Standard Model Aaron E. Leanhardt Experiment: Laura Sinclair, Russell Stutz & Eric Cornell Theory: Ed Meyer & John Bohn JILA, NIST,

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2

Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2 PHYSICAL REVIEW A VOLUME 53, NUMBER 5 MAY 1996 Hyperfine structure in photoassociative spectra of 6 Li 2 and 7 Li 2 E. R. I. Abraham, 1 W. I. McAlexander, 1 H. T. C. Stoof, 2 and R. G. Hulet 1 1 Physics

More information

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions Frontiers in Quantum Simulation with Cold Atoms, Seattle, April 1 st 2015 Leonardo Fallani Department of Physics and Astronomy

More information

Molecules hold a central place in the physical. Cold molecules: Progress in quantum engineering of chemistry and quantum matter

Molecules hold a central place in the physical. Cold molecules: Progress in quantum engineering of chemistry and quantum matter The experimental apparatus and the supporting optical components for the production and manipulation of a quantum gas of polar molecules (KRb). PHOTO: L. DE MARCO REVIEW Cold molecules: Progress in quantum

More information

Quantum simulations, adiabatic transformations,

Quantum simulations, adiabatic transformations, Quantum simulations, adiabatic transformations, and resonating valence bond states Aspen June 2009 Simon Trebst Microsoft Station Q UC Santa Barbara Ulrich Schollwöck Matthias Troyer Peter Zoller High

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Superfluidity and Superconductivity Macroscopic Quantum Phenomena

Superfluidity and Superconductivity Macroscopic Quantum Phenomena Superfluid Bose and Fermi gases Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/11/2013 Universal Themes of Bose-Einstein Condensation Leiden Superfluidity

More information

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas Tarik Yefsah Lawrence Cheuk, Ariel Sommer, Zoran Hadzibabic, Waseem Bakr and Martin Zwierlein July 20, 2012 ENS Why spin-orbit coupling? A

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Atomic clocks are the most accurate time and

More information

A few issues on molecular condensates

A few issues on molecular condensates A few issues on molecular condensates Outline Background Atomic dark state and creating ground molecular BEC Superchemistry and coherent atom-trimer conversion Quantum dynamics of a molecular matterwave

More information

High-Temperature Superfluidity

High-Temperature Superfluidity High-Temperature Superfluidity Tomoki Ozawa December 10, 2007 Abstract With the recent advancement of the technique of cooling atomic gases, it is now possible to make fermionic atom gases into superfluid

More information

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1

FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1 FERMI-HUBBARD PHYSICS WITH ATOMS IN AN OPTICAL LATTICE 1 Tilman Esslinger, Department of Physics, ETH Zurich, Switzerland ABSTRACT The Fermi-Hubbard model is a key concept in condensed matter physics and

More information

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron 1 Dual species quantum gases with tunable interactions mixing vs. phase separation Polarons beyond mean field LHY droplets

More information

Doublon dynamics and polar molecule production. in an optical lattice

Doublon dynamics and polar molecule production. in an optical lattice arxiv:1511.02225v1 [cond-mat.quant-gas] 6 Nov 2015 Doublon dynamics and polar molecule production in an optical lattice Jacob P. Covey 1,2, Steven A. Moses 1,2, Martin Gärttner 1,2, Arghavan Safavi-Naini

More information

Exploring long-range interacting quantum many-body systems with Rydberg atoms

Exploring long-range interacting quantum many-body systems with Rydberg atoms Exploring long-range interacting quantum many-body systems with Rydberg atoms Christian Groß Max-Planck-Institut für Quantenoptik Hannover, November 2015 Motivation: Quantum simulation Idea: Mimicking

More information

Strongly paired fermions

Strongly paired fermions Strongly paired fermions Alexandros Gezerlis TALENT/INT Course on Nuclear forces and their impact on structure, reactions and astrophysics July 4, 2013 Strongly paired fermions Neutron matter & cold atoms

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

arxiv: v3 [cond-mat.quant-gas] 5 May 2015

arxiv: v3 [cond-mat.quant-gas] 5 May 2015 Quantum walk and Anderson localization of rotational excitations in disordered ensembles of polar molecules T. Xu and R. V. Krems 1 arxiv:151.563v3 [cond-mat.quant-gas] 5 May 215 1 Department of Chemistry,

More information

Quantum Information Processing with Ultracold Atoms and Molecules in Optical Lattices

Quantum Information Processing with Ultracold Atoms and Molecules in Optical Lattices Quantum Information Processing with Ultracold Atoms and Molecules in Optical Lattices Mirta Rodríguez Instituto de Estructura de la Materia CSIC, Madrid SPAIN Overview I. Introduction II. III. IV. I. QIP

More information

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014 Dipolar Interactions and Rotons in Ultracold Atomic Quantum Gases Workshop of the RTG 1729 Lüneburg March 13., 2014 Table of contents Realization of dipolar Systems Erbium 1 Realization of dipolar Systems

More information

Strongly Correlated 2D Quantum Phases with Cold Polar Molecules: Controlling the Shape of the Interaction Potential

Strongly Correlated 2D Quantum Phases with Cold Polar Molecules: Controlling the Shape of the Interaction Potential Strongly Correlated 2D Quantum Phases with Cold Polar Molecules: Controlling the Shape of the Interaction Potential The Harvard community has made this article openly available. Please share how this access

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information