Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Size: px
Start display at page:

Download "Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles"

Transcription

1 Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner, Norbert Herschbach, Wouter van Drunen Gerhard Birkl and W.E. Institut für Quantenoptik

2 Outline Metastable neon 3 P 2 -Lifetime 3 D 3 3 P 2 2p 6 τ 2 Elastic collisions and scattering length Inelastic collisions and their suppression Evaporative cooling Outlook Population RF-knife (η=e/kt) Energy

3 2p 6 J =0 J =1 J =2 J =3 Neon Naturally occurring Neon-Isotopes 3 D 3 Mass Abundance [%] Nuclear Spin 3p[5/2] / P 0 3s [1/2] 0 1 P 1 3s [1/2] 1 3 P 1 3 P 2 E1 640 nm 3s[3/2] 1 3s[3/2] 2 1 S 0 τ =? 2 M ev Laser-cooling parameters: Wavelength 640 nm Doppler limit 200 µk Recoil limit 2.3 µk Penning-Ionization: Ne*+Ne* Ne + + Ne + e -

4 From atomic physics to BEC Atomic physics Lifetime of the metastable state:? M. Zinner et al., PRA 67, (R) (2003) 640 nm 16,6 ev Collision physics Rates of elastic and inelastic collisions Suppression of Penning-Ionization by spinpolarization: 10 4? Electronic Detection Direct, highly efficient detection of Ne* and Ne + Real-time detection of ions Spatially resolved detection of atoms Bose-Einstein-Condensation Investigation of collective excitations Measurement of higher order correlation functions BEC thermal

5 From atomic physics to BEC Atomic physics Lifetime of the metastable state:? M. Zinner et al., PRA 67, (R) (2003) 640 nm 16,6 ev Collision physics Rates of elastic and inelastic collisions Suppression of Penning-Ionization by spinpolarization: 10 4? Electronic Detection Direct, highly efficient detection of Ne* and Ne + Real-time detection of ions Spatially resolved detection of atoms Bose-Einstein-Condensation Investigation of collective excitations Measurement of higher order correlation functions BEC thermal

6 Experimental Setup

7 Lifetime of the metastable state 3 D 3 3p[5/2] 3 After Loading the MOT 3 P 0 3s [1/2] 0 1 P 1 3s [1/2] 1 3 P 1 3 P 2 E1 640 nm observation of decay by fluorescence 3s[3/2] 1 τ 2 3s[3/2] 2 M ev 1 S 0 2p 6 J =0 J =1 J =2 J =3

8 Fluorescence of 20 Ne in a MOT MOT decay N& = α N β N excitation 47% α -1 = 21.7 s 3 D 3 3 P 2 π 3 π 2 V eff τ 2 Origins of one-body losses α = π 2 τ τ γ p π 3 τ 3 radiative decay Fluorescence [au] p 6 + α background collisions FT finite trap depth 1000 excitation 0.5% α -1 = 14.4 s population of 3 P 2 -state: π 2 population of 3 D 3 -state: π time of MOT decay [s]

9 Background gas collisions: γ p Pressure dependency of MOT decay Offset of pressure gauge: 4(7) mbar 0,14 background gas collisions γ = 5.2(1)*10 7 mbar -1 s -1 Ionization processes: Ne* + X = Ne + X + + e - 0,12 Ion signal on MCP: R ion (t) = c 1 (p) N(t) + c 2 N²(t) α [s -1 ] 0,10 1,0 0,9 0,8 0,08 0,06 background gas collision rate p= mbar p display [10-11 mbar] c 1 [arb. units] 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0, p display [10-11 mbar]

10 Influence of finite trap depth For an infinitely large MOT: trap depth and escape velocity become infinite α [s -1 ] 0,35 0,30 0,08 0,07 π 3 = therefore: let the gradient B approach zero! In practice: Trap depth remains finite due to finite size of laser beams 0,06 0, Gradient [G/cm] No significant dependency of α on B No correction needed for low excitation measurements

11 Lifetime τ 2 of the metastable 3 P 2 -state 0, α p=0 [s -1 ] 0,06 0, α p=0-1 [s] 0, ,0 0,1 0,2 0,3 0,4 0,5 Population in 3 D 3 -state (π 3 ) Error budget: measured α (51) s -1 p=0 extrapolation (37) s -1 π=0 extrapolation (13) s -1 thus: α(p=0, π=0) (64) s -1 τ (14) s

12 From atomic physics to BEC Atomic physics Lifetime of the metastable state: 14.73(14)s M. Zinner et al., PRA 67, (R) (2003) 640 nm 16,6 ev Collision physics Rates of elastic and inelastic collisions Suppression of Penning-Ionization by spinpolarization: 10 4? Electronic Detection Direct, highly efficient detection of Ne* and Ne + Real-time detection of ions Spatially resolved detection of atoms Bose-Einstein-Condensation Investigation of collective excitations Measurement of higher order correlation functions BEC thermal

13 Preparation of spin-polarized atoms Preparation of Magnetically Trapped Atoms Sequence Beam collimation and slowing MOT loading 400 ms N=6x10 8 Compressed MOT σ r =1.3mm spin polarization 78% in m J = µs 2 µs Doppler Cooling PSD = 4.5x10-7 axial: ~200 µk radial: ~450 µk Transfer to MT and adiabatic compression B 0 = 25 G N = 3x µs 8 µs Stern-Gerlach Experiment

14 Doppler-cooling in the magnetic trap σ + -σ + - irradiation in axial direction of magnetic trap 2000 T axial T radial 1500 T [µk] 1000 Axial: Doppler cooling Radial: cooling by reabsorption Optimized parameters: = -0.5 Γ T Doppler = 196 µk t [ms] I = 5x10-3 I sat 50-fold gain in phase space density

15 Elastic collisions

16 Cross-dimensional Relaxation Kinetic energy is not in equilibrium after Doppler-cooling Ne Aspect ratio of the cloud changes σ A= ax σ rad T [µk] T axial T radial t* [s] 1,4 T 1,2 Determination of the relaxation rate A& = γ ( A(t) ) rel A eq A 1,0 0, cm cm t* [s] Mean density: cm -3

17 Cross-dimensional Relaxation γ rel [s -1 ] Ne x x x x x10 16 n v [m -2 s -1 ] Relaxation rate is proportional to density: Description of the relaxation rate γ rel = σ rel n v Connection to elastic collisions σ = σ el v 5 rel rel vrel G. M. Kavoulakis, C. J. Pethick, and H. Smith Phys. Rev. A 61, (2000) T T v Kinetic energy is redistributed by elastic collisions!

18 Cross Section of elastic collisions 10 5 V [mev] r [a 0 ] ( kr + δ ( )) u ( r ) sin k 0 Centrifugal barrier for d-waves: 5,8 mk Regime of s-wave-scattering Interaction potential: Short range: S. Kotochigova et al., PRA 61, (2000) Long range: A. Derevianko und A. Dalgarno, PRA 62, (2000) Cross section: 8π 2 σ el ( k) = 2 0 k sin δ ( ( )) k Effective-range approximation: 2 σ ER = k 2 a 2 + 8π a ( ) 1 2 k r a e

19 Relaxation cross section 2,0x10-16 Unitarity limit 22 Ne: a= 100 a 0 1,5x10-16 a=-6500 a 0 20 Ne:, a= +20 a 0 a= -130 a 0 σ rel [m 2 ] 1,0x ,0x , T [µk] Effective range approximation Numerical calculation (shown) 20 Ne: -105(18) a 0 (or a 0 ) -120(10) a 0 or +20(10) a 0 22 Ne: +150 a 0 < a < a a 0 < a < +300 a 0 (100 a 0 )

20 Inelastic collisions

21 Simple model of Penning-Ionization Ionization with unit probability below a minimal distance Model (Xe*, NIST) σ = π k ( 2l 1) P ( k, ) ion, l + l 2 T P T.. transmission probability V [mev] Ionization P T (l=3) r [a 0 ] l=0 l=1 l=2 l=3 Result: 10-9 β ~ cm 3 s -1 β [cm 3 /s] l=0: s-waves l=1: p-waves l=2: d-waves l=3: f-waves β unpol 0, T [mk]

22 Unpolarized atoms Measurement in MOT N& = α N Consideration of excited atoms S+S collisions: K ss S+P collisions: K sp for small excitation π p : β = K ss + 2 (K SP -K SS ) π p 20 Ne 22 Ne K ss [cm³ s -1 ] 2.5(8) (5) β N 2 V eff Fluorescence [arb. units] β [cm³/s] ,0x10 K = 2.5(8) -9 ss cm 3 /s K sp = 1.0(4) 10-8 cm 3 /s 7,5x ,0x ,5x t [s] K sp [cm³ s -1 ] 1.0(4) (25) ,0 0,000 0,005 0,010 0,015 0,020 0,025 π p

23 Suppression of Penning-Ionization Dominant loss process in MOT Exchange process τ < n=10 9 cm -3 (MOT) - 3s Suppression for spin polarized ensembles + core 2p5 3s - + core 2p5 Limitation of suppression by anisotropic contributions to the interaction during collisions He*: 10 5 BEC Xe*: 1 BEC Ne*? Ne* + Ne* Ne + Ne + + e - S=1 S=1 S=0 S=1/2 S=1/2 S tot = 2 S tot 1

24 Spin polarized atoms N 10 7 T mean [µk] t [s] t' [s] N& = α N β N 2 V eff Heating!

25 Trap loss Analysis: N& = α N β N 2 V eff N(t)-N( 0 ) t 0 N(t')dt' 2 N (t') dt' Veff (t') 0 = α β t N(t')dt' t 0 20 Ne β = 5.3(15) cm 3 s -1 Suppression: 50(20) 22 Ne β = 9.4(24) cm 3 s -1 Suppression: 9(6) 0 N( t') dt' (N(t)-N 0 ) / N(t)dt [s -1 ] 1 [ s ] N( t) N(0) t -0,1-0,2-0,3 1x10 10 t 2 2x10 10 N V ( t') dt' ( t') n(t)n(t)dt / N(t)dt [cm -3 0 ] t 0 eff N( t') dt' 3 [ cm ] 20 Ne

26 Heating Inherent heating due to 2-body-losses 750 & N inelast ( r, t) β n 2 ( r, t) 22 Ne: β = 10,2(27) cm 3 s -1 T& T = 1 4 β n 700 other mechanisms collisions with background gas secondary collisions T mean [µk] Ne: β heat = 5.6(15) cm 3 s -1 β loss = 5.3(15) cm 3 s Ne: β heat = 10.2(27) cm 3 s β loss = 9.4 (24) cm 3 s t' [s]

27 Evaporative cooling Population RF-knife (η=e/kt) Inelastic collisions Elastic collisions Energy

28 Conditions for evaporative cooling Good-to-bad ratio γ R = el γ loss Efficiency parameter ( ln ρ ) ( lnn) = d Φ χ d 20 Ne: R~ Ne: R~ Ne is better suited for evaporative cooling than 20 Ne! χ 1,0 0,5 0,0 R=10 R=30 R=50-0,5-1, η Cut-off parameter η=e Trap /k B T

29 Experimental realization 1500 Ramp: from 80 MHz to 44 MHz Trap depth: from 5.5 mk to 1.2 mk Initial cut-off parameter: η=4,5 T [µk] T ax T rad T variable duration of RF-irradiation 750 Observation: T x10 10 t Rampe [ms] n x10 10 Phase space density? n 0 [cm -3 ] 1.00x x x t Rampe [ms]

30 Increase in phase space density Phase space density Evaporation protocol RF [MHz] E Trap [mk] η Ramp # Ramp # Ramp # N Start Ramp #1 Ramp #2 Ramp #3 Initial conditions Final conditions N = 5 x 10 7 n 0 = 1,3 x cm -3 T = 1.2 mk ρ = 1.6 x 10-8 N = 5 x 10 5 n 0 = 5 x 10 9 cm -3 T = 130 µk ρ = 1.9 x 10-7 Efficiency of evaporative cooling χ 0.6

31 Prospects for BEC Ne* as compared to Bose-condensed species: very high loss rates high rates of elastic collisions Numerical simulation of optimized evaporative cooling phase space density β = cm 3 s -1 β = cm 3 s -1 β = cm 3 s N phase space density N a = 100 a0 a = 310 a0 a = 1000 a0

32 Summary Results Penning ionization (unpolarized, 20 Ne) K ss = 2.5(8) cm³ s -1 K sp = 1.0(4) 10-8 cm³ s -1 Penning ionization (unpolarized, 22 Ne) K ss = 8(5) cm³ s -1 K sp = 5.9(25) 10-9 cm³ s -1 Two-body losses (spin-polarized) 20 Ne: β = 5.3(15) cm 3 s Ne: β = 9.4(24) cm 3 s -1 Suppression of Penning ionization 20 Ne: ~ Ne: ~ 9 Elastic collisions 20 Ne: a = +20(10) a 0 or -110(20) a 0 22 Ne: +70 a 0 < a < a 0 Evaporative cooling Phase space density x 10 Efficiency χ~0,6 Lifetime of the 3 P 2 -state ( 20 Ne): 14.73(14) s M. Zinner et al., PRA 67, (R) (2003)

33 Outlook Continue experiments on evaporative cooling of 22 Ne to highest possible phase space density Ion rate measurements with the MCP Investigation of collision properties, especially influence of external (magnetic) fields Manipulation of Interactions? Transfer into an optical dipole trap Photo-association spectroscopy

34

35

36 Collisions in cold gases Interaction potential Elastic Collisions Scattering length a: σ = 2 el, T 0 8π a V [mev] l=0-14 l=1-16 l=2-18 l= r [a 0 ] Potential depth: ~20 mev Long-range potential: C + V LR ( r) = r 2m r 2 6 h l( l 1) motor of evaporative cooling Stability of a BEC Scattering resonances Inelastic Collisions Loss parameter β: N& N inel = 2 σ inel σ inel, T 0 n brake of evaporative cooling Heating Penning-Ionization Influence of spin-polarization v rel T = 1 k β n

37 Numerical calculation of scattering phases Interaction potential S. Kotochigova et al., PRA 61, (2000) A. Derevianko und A. Dalgarno, PRA 62, (2000) Numerical determination of the s-wave radial wavefunction gives δ 0 δ 0 0,5 π 0,0 π -0,5 π -1,0 π -1,5 π -340 a a 0-58 a a a a 0 u l ( kr + δ ( )) ( r ) sin k 0-2,0 π 0,00 0,02 0,04 0,06 0,08 0, π k [a 0-1 ] Cross section 8π 2 σ el ( k) = 2 0 k sin δ ( ( k) ) δ π -0.5 π a= -342,1 a 0 a= -104,3 a 0 a= - 58,0 a 0 a= + 44,3 a π a= +101,1 a 0 a= +301,1 a k [a 0-1 ]

38 Relaxation cross sections σ [m²] a= -100 a 0 : σ el σ rel a= +100 a 0 : σ el σ rel T [µk]

39 Inelastic collisions of metastable neon MT MOT discharge (310K) Sheverev et al. J. Appl. Ph. 92, 3454 (2002) Suppression 20 Ne: 50(20) 22 Ne: 9(6)

40 Decay rate vs. Gradient II Parameters: = -0.17Γ, s=5 π 3 = ,07 α [s -1 ] 0,06 0,05 0,04 0,03 0,02 0 < L M < Gradient [G/cm] Problems: Theories hold for small saturation Models discussed fail to explain the data quantitatively Ionizing background collisions

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5 Lecture Trapping of neutral atoms Evaporative cooling Foot 9.6, 10.1-10.3, 10.5 34 Why atom traps? Limitation of laser cooling temperature (sub)-doppler (sub)-recoil density light-assisted collisions reabsorption

More information

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22

Quantum Mechanica. Peter van der Straten Universiteit Utrecht. Peter van der Straten (Atom Optics) Quantum Mechanica January 15, / 22 Quantum Mechanica Peter van der Straten Universiteit Utrecht Peter van der Straten (Atom Optics) Quantum Mechanica January 15, 2013 1 / 22 Matrix methode Peter van der Straten (Atom Optics) Quantum Mechanica

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

ULTRACOLD METASTABLE HELIUM-4 AND HELIUM-3 GASES

ULTRACOLD METASTABLE HELIUM-4 AND HELIUM-3 GASES ULTRACOLD METASTABLE HELIUM-4 AND HELIUM-3 GASES W. VASSEN, T. JELTES, J.M. MCNAMARA, A.S. TYCHKOV, W. HOGERVORST Laser Centre Vrije Universiteit Amsterdam, The Netherlands K.A.H. VAN LEEUWEN Dept. of

More information

Prospects for Bose-Einstein condensation of metastable neon atoms

Prospects for Bose-Einstein condensation of metastable neon atoms Prospects for Bose-Einstein condensation of metastable neon atoms Citation for published version (APA): Beijerinck, H. C. W., Vredenbregt, E. J. D., Stas, R. J. W., Doery, M. R., & Tempelaars, J. G. C.

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Ultracold atoms and molecules

Ultracold atoms and molecules Advanced Experimental Techniques Ultracold atoms and molecules Steven Knoop s.knoop@vu.nl VU, June 014 1 Ultracold atoms laser cooling evaporative cooling BEC Bose-Einstein condensation atom trap: magnetic

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

Ytterbium quantum gases in Florence

Ytterbium quantum gases in Florence Ytterbium quantum gases in Florence Leonardo Fallani University of Florence & LENS Credits Marco Mancini Giacomo Cappellini Guido Pagano Florian Schäfer Jacopo Catani Leonardo Fallani Massimo Inguscio

More information

Laser induced manipulation of atom pair interaction

Laser induced manipulation of atom pair interaction Laser induced manipulation of atom pair interaction St. Falke, Chr. Samuelis, H. Knöckel, and E. Tiemann Institute of Quantum Optics, European Research Training Network Cold Molecules SFB 407 Quantum limited

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Study on Bose-Einstein Condensation of Positronium

Study on Bose-Einstein Condensation of Positronium Study on Bose-Einstein Condensation of Positronium K. Shu 1, T. Murayoshi 1, X. Fan 1, A. Ishida 1, T. Yamazaki 1,T. Namba 1,S. Asai 1, K. Yoshioka 2, M. Kuwata-Gonokami 1, N. Oshima 3, B. E. O Rourke

More information

.O. Demokritov niversität Münster, Germany

.O. Demokritov niversität Münster, Germany Quantum Thermodynamics of Magnons.O. Demokritov niversität Münster, Germany Magnon Frequency Population BEC-condensates http://www.uni-muenster.de/physik/ap/demokritov/ k z k y Group of NonLinea Magnetic

More information

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics Studies of Ultracold Ytterbium and Lithium Anders H. Hansen University of Washington Dept of Physics U. Washington CDO Networking Days 11/18/2010 Why Ultracold Atoms? Young, active discipline Two Nobel

More information

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti Multipath Interferometer on an AtomChip Francesco Saverio Cataliotti Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate Experiment: Joseph D. Whalen, F. Camargo, R. Ding, T. C. Killian, F. B. Dunning Theory: J. Pérez Ríos, S. Yoshida, J.

More information

Laser MEOP of 3 He: Basic Concepts, Current Achievements, and Challenging Prospects

Laser MEOP of 3 He: Basic Concepts, Current Achievements, and Challenging Prospects Polarization in Noble Gases, October 8-13, 2017 Laser MEOP of 3 He: Basic Concepts, Current Achievements, and Challenging Prospects Pierre-Jean Nacher Geneviève Tastevin Laboratoire Kastler-Brossel ENS

More information

POSITRON ACCUMULATOR SCHEME for AEGIS

POSITRON ACCUMULATOR SCHEME for AEGIS POSITRON ACCUMULATOR SCHEME for AEGIS A. S. Belov, S. N. Gninenko INR RAS, Moscow 1 What positron beam is requiered for AEGIS? Number of antihydrogen atoms produced with AEGIS scheme: N Hbar ~ ce n H-

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

A Chromium BEC in strong RF fields

A Chromium BEC in strong RF fields Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France A Chromium BEC in strong RF fields Benjamin Pasquiou, Gabriel Bismut, Paolo Pedri, Bruno Laburthe- Tolra, Etienne Maréchal,

More information

Laser Cooling of Thulium Atoms

Laser Cooling of Thulium Atoms Laser Cooling of Thulium Atoms N. Kolachevsky P.N. Lebedev Physical Institute Moscow Institute of Physics and Technology Russian Quantum Center D. Sukachev E. Kalganova G.Vishnyakova A. Sokolov A. Akimov

More information

Les Houches 2009: Metastable Helium Atom Laser

Les Houches 2009: Metastable Helium Atom Laser Les Houches 2009: Metastable Helium Atom Laser Les Houches, Chamonix, February 2005 Australian Research Council Centre of Excellence for Quantum-Atom Optics UQ Brisbane SUT Melbourne ANU Canberra Snowy

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

Standing Sound Waves in a Bose-Einstein Condensate

Standing Sound Waves in a Bose-Einstein Condensate Standing Sound Waves in a Bose-Einstein Condensate G.A.R. van Dalum Debye Institute - Universiteit Utrecht Supervisors: P. van der Straten, A. Groot and P.C. Bons July 17, 2012 Abstract We study two different

More information

Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap

Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap PRAMANA c Indian Academy of Sciences Vol. 82, No. 2 journal of February 2014 physics pp. 419 423 Optimization of transfer of laser-cooled atom cloud to a quadrupole magnetic trap SPRAM, S K TIWARI, S R

More information

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS

LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION SPECTROSCOPY AND QUANTUM SENSORS Brief Review Modern Physics Letters B, Vol. 20, No. 21 (2006) 1287 1320 c World Scientific Publishing Company LASER COOLING AND TRAPPING OF ATOMIC STRONTIUM FOR ULTRACOLD ATOMS PHYSICS, HIGH-PRECISION

More information

arxiv:quant-ph/ v2 5 Feb 2001

arxiv:quant-ph/ v2 5 Feb 2001 Understanding the production of dual BEC with sympathetic cooling G. Delannoy, S. G. Murdoch, V. Boyer, V. Josse, P. Bouyer and A. Aspect Groupe d Optique Atomique Laboratoire Charles Fabry de l Institut

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium 3-8 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 9 Generation of a synthetic vector potential in ultracold neutral Rubidium SPIELMAN Ian National Institute of Standards and Technology Laser

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

YbRb A Candidate for an Ultracold Paramagnetic Molecule

YbRb A Candidate for an Ultracold Paramagnetic Molecule YbRb A Candidate for an Ultracold Paramagnetic Molecule Axel Görlitz Heinrich-Heine-Universität Düsseldorf Santa Barbara, 26 th February 2013 Outline 1. Introduction: The Yb-Rb system 2. Yb + Rb: Interactions

More information

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor

Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell Science 14 Jul 1995; Vol. 269, Issue 5221, pp. 198-201 DOI:

More information

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate CLEO Europe - IQEC Munich May 14th 013 Olivier GORCEIX Exploring quantum magnetism in a Chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris 13, SPC Villetaneuse - France

More information

Lecture 10. Lidar Effective Cross-Section vs. Convolution

Lecture 10. Lidar Effective Cross-Section vs. Convolution Lecture 10. Lidar Effective Cross-Section vs. Convolution q Introduction q Convolution in Lineshape Determination -- Voigt Lineshape (Lorentzian Gaussian) q Effective Cross Section for Single Isotope --

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Magnetic resonance in Dense Atomic Hydrogen Gas

Magnetic resonance in Dense Atomic Hydrogen Gas Magnetic resonance in Dense Atomic Hydrogen Gas S. Vasiliev University of Turku, Finland Turku Magnetic resonance in Dense Atomic Hydrogen Gas Sergey Vasiliev University of Turku H group at Turku: Janne

More information

Atomic Physics (Phys 551) Final Exam Solutions

Atomic Physics (Phys 551) Final Exam Solutions Atomic Physics (Phys 551) Final Exam Solutions Problem 1. For a Rydberg atom in n = 50, l = 49 state estimate within an order of magnitude the numerical value of a) Decay lifetime A = 1 τ = 4αω3 3c D (1)

More information

Superfluidity in interacting Fermi gases

Superfluidity in interacting Fermi gases Superfluidity in interacting Fermi gases Quantum many-body system in attractive interaction Molecular condensate BEC Cooper pairs BCS Thomas Bourdel, J. Cubizolles, L. Khaykovich, J. Zhang, S. Kokkelmans,

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Why ultracold molecules?

Why ultracold molecules? Cold & ultracold molecules new frontiers J. Ye, JILA Michigan Quantum Summer School, Ann Arbor, June 18, 2008 Quantum dipolar gas Precision test QED ee- eehco OH H2O H2CO Quantum measurement Chemical reactions

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Natal 2016 1 1 OUTLINE Classical SASE and spiking Semi-classical FEL theory: quantum purification Fully quantum

More information

The World s Smallest Extreme Laboratories:

The World s Smallest Extreme Laboratories: The World s Smallest Extreme Laboratories: Probing QED with Highly Charged Ions. Joan Marler Clemson University Outline About HCIs About Ion trapping Precision spectroscopy with HCIs Highly Charged Ions

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Ultra-Cold Plasma: Ion Motion

Ultra-Cold Plasma: Ion Motion Ultra-Cold Plasma: Ion Motion F. Robicheaux Physics Department, Auburn University Collaborator: James D. Hanson This work supported by the DOE. Discussion w/ experimentalists: Rolston, Roberts, Killian,

More information

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons. 10.3.1.1 Excitation and radiation of spectra 10.3.1.1.1 Plasmas A plasma of the type occurring in spectrochemical radiation sources may be described as a gas which is at least partly ionized and contains

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications - Bose-Einstein Condensation SDSMT, Physics 203 Fall Introduction Historic Remarks 2 Bose-Einstein Condensation Bose-Einstein Condensation The Condensation Temperature 3 The observation

More information

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays

Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays Bounds on sterile neutrino using full kinematic reconstruction of radioactive decays F. Bezrukov MPI für Kernphysik, Heidelberg, Germany 11-12-2008 Kaffeepalaver Outline Outline 1 Implications for light

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

Titelmasterformat durch Klicken bearbeiten

Titelmasterformat durch Klicken bearbeiten Towards a Space Optical Clock with 88 Sr Titelmasterformat durch Klicken bearbeiten Influence of Collisions on a Lattice Clock U. Sterr Ch. Lisdat J. Vellore Winfred T. Middelmann S. Falke F. Riehle ESA

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications - Bose-Einstein Condensation SDSMT, Physics 204 Fall Introduction Historic Remarks 2 Bose-Einstein Condensation Bose-Einstein Condensation The Condensation Temperature 3 The observation

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998

Atom lasers. FOMO summer school 2016 Florian Schreck, University of Amsterdam MIT 1997 NIST Munich Yale 1998 Atom lasers MIT 1997 Yale 1998 NIST 1999 Munich 1999 FOMO summer school 2016 Florian Schreck, University of Amsterdam Overview What? Why? Pulsed atom lasers Experiments with atom lasers Continuous atom

More information

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers Colloquium of the Research Training Group 1729, Leibniz University Hannover, Germany, November 8, 2012 Arno Rauschenbeutel Vienna Center

More information

Observation of Feshbach resonances in ultracold

Observation of Feshbach resonances in ultracold Observation of Feshbach resonances in ultracold Rb and 133 Cs mixtures at high magnetic field Rubidium Caesium Hung-Wen, Cho Motivation Bialkali molecules in the ground state have a large permanent electric

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Supplementary Information

Supplementary Information 1 Supplementary Information 3 Supplementary Figures 4 5 6 7 8 9 10 11 Supplementary Figure 1. Absorbing material placed between two dielectric media The incident electromagnetic wave propagates in stratified

More information

arxiv: v1 [physics.atom-ph] 2 Jun 2014

arxiv: v1 [physics.atom-ph] 2 Jun 2014 Reservoir spectroscopy of 5s5p P 5snd D,, transitions in strontium arxiv:46.49v [physics.atom-ph] Jun 4 Simon Stellmer,, and Florian Schreck, 4 Institut für Quantenoptik und Quanteninformation (IQOQI),

More information

The amazing story of Laser Cooling and Trapping

The amazing story of Laser Cooling and Trapping The amazing story of Laser Cooling and Trapping following Bill Phillips Nobel Lecture http://www.nobelprize.org/nobel_prizes/physics/ laureates/1997/phillips-lecture.pdf Laser cooling of atomic beams 1

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Atomic clocks are the most accurate time and

More information

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8. Zheng-Tian Lu Argonne National Laboratory University of Chicago Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of Nuclear Physics Helium Atom fm Å e - Ionization

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

Compound and heavy-ion reactions

Compound and heavy-ion reactions Compound and heavy-ion reactions Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 March 23, 2011 NUCS 342 (Lecture 24) March 23, 2011 1 / 32 Outline 1 Density of states in a

More information

Atom Quantum Sensors on ground and in space

Atom Quantum Sensors on ground and in space Atom Quantum Sensors on ground and in space Ernst M. Rasel AG Wolfgang Ertmer Quantum Sensors Division Institut für Quantenoptik Leibniz Universität Hannover IQ - Quantum Sensors Inertial Quantum Probes

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Photon-atom scattering

Photon-atom scattering Photon-atom scattering Aussois 005 Part Ohad Assaf and Aharon Gero Technion Photon-atom scattering Complex system: Spin of the photon: dephasing Internal atomic degrees of freedom (Zeeman sublevels): decoherence

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

A new experimental apparatus for quantum atom optics

A new experimental apparatus for quantum atom optics A new experimental apparatus for quantum atom optics Andreas Hüper, Jiao Geng, Ilka Kruse, Jan Mahnke, Wolfgang Ertmer and Carsten Klempt Institut für Quantenoptik, Leibniz Universität Hannover Outline

More information

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 16. Statistical thermodynamics 1: the concepts

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 16. Statistical thermodynamics 1: the concepts Atkins / Paula Physical Chemistry, 8th Edition Chapter 16. Statistical thermodynamics 1: the concepts The distribution of molecular states 16.1 Configurations and weights 16.2 The molecular partition function

More information

Contents Ultracold Fermi Gases: Properties and Techniques Index

Contents Ultracold Fermi Gases: Properties and Techniques Index V Contents 1 Ultracold Fermi Gases: Properties and Techniques 1 Selim Jochim 1.1 Introduction 1 1.2 Ultracold Fermions in a Trap 2 1.2.1 Ideal Fermi Gas 3 1.3 Preparing an Ultracold Fermi Gas 6 1.4 Interactions

More information

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser Allen Mills, Jr., University of California Riverside in collaboration with David Cassidy and Harry Tom (UCR) Rod Greaves

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMION ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Abstract: The most accurate time and frequency

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Møller Polarimetry for PV Experiments at 12 GeV

Møller Polarimetry for PV Experiments at 12 GeV Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller Polarimetry 1 Møller Polarimetry for PV Experiments at 12 GeV E.Chudakov 1 1 JLab MOLLER Review Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Production of BECs. JILA June 1995 (Rubidium)

Production of BECs. JILA June 1995 (Rubidium) Production of BECs BEC @ JILA June 995 (Rubidium) Jens Appmeier EMMI Seminar 8.04.008 Defining the Goal: How cold is ultracold? T 300 K Room Temperature.7 K CMB Temperature ~ mk 3 He becomes superfluid

More information

Quantum correlations and atomic speckle

Quantum correlations and atomic speckle Quantum correlations and atomic speckle S. S. Hodgman R. G. Dall A. G. Manning M. T. Johnsson K. G. H. Baldwin A. G. Truscott ARC Centre of Excellence for Quantum-Atom Optics, Research School of Physics

More information

A novel 2-D + magneto-optical trap configuration for cold atoms

A novel 2-D + magneto-optical trap configuration for cold atoms A novel 2-D + magneto-optical trap configuration for cold atoms M. Semonyo 1, S. Dlamini 1, M. J. Morrissey 1 and F. Petruccione 1,2 1 Quantum Research Group, School of Chemistry & Physics, University

More information

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5.

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5. Week 13 PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal,2018 These notes are provided for the students of the class above only. There is no warranty for correctness, please

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Single Atom wants to meet Single Photon Controlled Processes with Neutral Atoms

Single Atom wants to meet Single Photon Controlled Processes with Neutral Atoms Single Atom wants to meet Single Photon Controlled Processes with Neutral Atoms Collège de France Paris, Fevriér 26, 2002 Universität Bonn D. Meschede, Institut für Angewandte Physik Single Atoms Crew

More information

Achieving steady-state Bose-Einstein condensation

Achieving steady-state Bose-Einstein condensation PHYSICAL REVIEW A VOLUME 57, NUMBER 3 MARCH 1998 Achieving steady-state Bose-Einstein condensation J. Williams, R. Walser, C. Wieman, J. Cooper, and M. Holland JILA and Department of Physics, University

More information

Approaching Bose-Einstein condensation of metastable neon: Over 10 9 trapped atoms

Approaching Bose-Einstein condensation of metastable neon: Over 10 9 trapped atoms PHYSICAL REVIEW A, VOLUME 65, 023410 Approaching Bose-Einstein condensation of metastable neon: Over 10 9 trapped atoms S. J. M. Kuppens, J. G. C. Tempelaars, V. P. Mogendorff, B. J. Claessens, H. C. W.

More information

Forca-G: A trapped atom interferometer for the measurement of short range forces

Forca-G: A trapped atom interferometer for the measurement of short range forces Forca-G: A trapped atom interferometer for the measurement of short range forces Bruno Pelle, Quentin Beaufils, Gunnar Tackmann, Xiaolong Wang, Adèle Hilico and Franck Pereira dos Santos Sophie Pelisson,

More information

Møller Polarimetry for PV Experiments at 12 GeV

Møller Polarimetry for PV Experiments at 12 GeV Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller Polarimetry 1 Møller Polarimetry for PV Experiments at 12 GeV E.Chudakov 1 1 JLab MOLLER Review Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller

More information

Determining α from Helium Fine Structure

Determining α from Helium Fine Structure Determining α from Helium Fine Structure How to Measure Helium Energy Levels REALLY Well Lepton Moments 2006 June 18, 2006 Daniel Farkas and Gerald Gabrielse Harvard University Physics Dept Funding provided

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information