PART 2 : BALANCED HOMODYNE DETECTION

Size: px
Start display at page:

Download "PART 2 : BALANCED HOMODYNE DETECTION"

Transcription

1 PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu 1 of 31

2 OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of Light 3. Direct Photodetection and Photon Counting PART 2 4. Balanced Homodyne Detection 5. Ultrafast Photon Number Sampling PART 3 6. Quantum State Tomography 2 of 31

3 DC-BALANCED HOMODYNE DETECTION I Goal -- measure quadrature amplitudes with high Q.E. and temporal-mode selectivity E S = signal field (ω O ), 1-1 photons E L = laser reference field (local oscillator) (ω O ), 1 6 photons E S (t) E 1 = E S + E L PD BS PD dt dt n 1 n 2 N D E L (t) τ d delay θ E 2 = E S - E L N D E ( ) 1 (t τ d ) E ( ) 2 (t τ d ) E 1 ( +) (t) dt E 2 ( +) (t) dt 3 of 31

4 DC-BALANCED HOMODYNE DETECTION II integrator circuit PD dt n 1 dt n 2 N D PD θ 4 of 31

5 DC-BALANCED HOMODYNE DETECTION III Φ S = signal amplitude; Φ L = laser reference amplitude EΦ S (t) S EΦ L (t) L τ d delay θ BS dt dt n 1 n 2 N D ˆ N D = T dt Det d 2 x ( ) Φ ˆ L (x,,t τ d ) Φ ˆ ( +) S (x,,t) + h.c. overlap integral (+) Φ ˆ S (r,t) = i c a ˆ k k v k (r,t) v k (r,t) = C k j u j (r) exp( iω j t) c T dt j wave-packet d 2 x v * k (x,,t) v m (x,,t) = δ Det k m modes 5 of 31

6 DC-BALANCED HOMODYNE DETECTION IV ˆ N D T dt Det d 2 x ˆ Φ L ( ) (x,,t τ d ) a ˆ k v k (x,,t) + h.c. k wave-packet modes Assume that the LO pulse is a strong coherent state of a particular localized wave packet mode: LO phase (+) Φ ˆ L (r,t) α L exp(iθ) v L (r,t) + vacuum ˆ N D (θ) = ˆ a = a ˆ k c k α L ( ˆ a e iθ + T dt ˆ a e iθ ) d 2 x v * L (x,,t τ d ) v k (x,,t) = ˆ Det a k= L The signal field is spatially and temporally gated by the LO field, which has a controlled shape. Where the LO is zero, that portion of the signal is rejected. Only a single temporal-spatial wavepacket mode of the signal is detected. 6 of 31

7 DC-BALANCED HOMODYNE DETECTION V signal : (+) Φ ˆ S (r,t) a ˆ v L (r,t) + a ˆ k k v k (r,t) wave-packet modes quadrature operators: q ˆ = ( a ˆ + a ˆ ) / 2 1/2 p ˆ = ( a ˆ a ˆ ) / i2 1/2 detected quantity: ˆ q θ ˆ N D (θ) α L 2 = ˆ a e iθ + 2 a ˆ e iθ LO phase ˆ q θ ˆ N D (θ) α L 2 = ˆ q cosθ + ˆ p sinθ ˆ ˆ q θ p θ cosθ sinθ q ˆ = sinθ cosθ p ˆ 7 of 31

8 ULTRAFAST OPTICAL SAMPLING Conventional Approach: Ultrafast Time Gating of Light Intensity by NON-LINEAR OPTICAL SAMPLING strong short pump (ω p ) delay sum-frequency (ω p + ω s ) weak signal(ω s ) second-order NL crystal 8 of 31

9 LINEAR OPTICAL SAMPLING I BHD for Ultrafast Time Gating of Quadrature Amplitudes detected quantity: ˆ q θ ˆ N D (θ) α L 2 = ˆ q cosθ + ˆ p sinθ LO phase q ˆ = ( a ˆ + a ˆ ) / 2 1/2 p ˆ = ( a ˆ a ˆ ) / i2 1/2 ˆ a = a ˆ k c k T dt d 2 x v * L (x,,t τ d ) v k (x,,t) = ˆ Det LO signal a k= L t θ 9 of 31

10 LINEAR OPTICAL SAMPLING II Ultrafast Time Gating of Quadrature Amplitudes LO mode: ˆ N D (τ d ) = i c α L * v L (x,,t) α L v L (x) f L (t τ d ) T dt f * L (t τ d ) φ S (t) + h.c. φ S (t) = Det d 2 x v L *(x) ˆ Φ S ( +) (x,,t) if signal is band-limited and LO covers the band, e.g. f L (t) (1/ t)sin(b t / 2) ˆ N D (τ d ) α L* α L * signal LO ν Β/2 ν+β/2 ω f * dω L (ν) ν +B /2 exp( iω τ ν B /2 d ) φ S (ω) + h.c. 2π f * L (ν) φ S (τ d ) + h.c. exact sampling 1 of 31

11 LINEAR OPTICAL SAMPLING III M. E. Anderson, M. Munroe, U. Leonhardt, D. Boggavarapu, D. F. McAlister and M. G. Raymer, Proceedings of Generation, Amplification, and Measurment of Ultrafast Laser Pulses III, pg (OE/LASE, San Jose, Jan. 1996) (SPIE, Vol. 271, 1996). Ultrafast Laser (optical or elect. synch.) Signal Source Spectral Filter Time Delay τ d Phase Adjustment θ Signal Reference (LO) LO Signal Balanced Homodyne Detector n n 1 2 Computer mean quadrature amplitude in sampling window at time t ˆ q θ (t) ψ 11 of 31

12 LINEAR OPTICAL SAMPLING IV 84 nm, 17 fs Sample: Microcavity exciton polariton LO coherent signal θ scan LO delay τ d Balanced Homodyne detector ˆ q θ (t) ψ 12 of 31

13 LINEAR OPTICAL SAMPLING V Mean Quadrature Measurement - sub ps Time Resolution 1 q ˆ θ (t) ψ Sample: Microcavity exciton polariton mean quadrature amplitude <q> at time t < n(t) > g (2) (t,t) Time (ps) LO delay τ d (ps) 1 12 coherent field --> ˆ q θ +π /2 (t) ψ = p ˆ θ (t) ψ 13 of 31

14 LINEAR OPTICAL SAMPLING VI Phase Sweeping for Indirect Sampling of Mean Photon Number and Photon Number Fluctuations detected quantity: ˆ q θ ˆ N D (θ) α L 2 = ˆ q cosθ + ˆ p sinθ Relation with photon-number operator: ˆn = â â = 1 ( 2 ˆq i ˆp )( ˆq + i ˆp ) = ˆq 2 + ˆp Phase-averaged quadrature-squared: 2 q ˆ θ θ = 1 π π q ˆ 2 θ dθ = 1 π π (θ = LO phase) ( q ˆ cosθ + p ˆ sinθ ) 2 dθ = 1 q 2 ˆ 2 + ˆ ( p 2 ) ˆ n = 2 q ˆ θ θ 1 2 ensemble average ˆ n (t) ψ = ˆ q θ 2 (t) θ ψ 1 2 works also for incoherent field (no fixed phase) 14 of 31

15 LINEAR OPTICAL SAMPLING VII Phase Sweeping --> Photon Number Fluctuations detected quantity: n (r ) ψ ˆ q θ ˆ N D (θ) α L 2 = ˆ q cosθ + Richter s formula for Factorial Moments: ˆ p sinθ = [n(n 1)...(n r +1)] p(n) = ( a ˆ ) r ( a ˆ ) r ψ n = = (r!)2 2 r (2r)! 2π Hermite Polynomials: n (1) = ˆ a ˆ a = 1 4 n (2) = ˆ a 2 ˆ a 2 = 2π 2π dθ 2π dθ 2π dθ 2π H 2r ( ˆ q θ ) ψ H (x) =1, H 1 (x) = 2x, H 3 (x) = 4x ˆ q θ 2 2 ψ 2 3 ˆ q θ 4 2 ˆ q θ ψ ˆ n (t) ψ = ˆ q θ 2 (t) θ ψ of 31

16 LINEAR OPTICAL SAMPLING VIII Phase Sweeping --> Photon Number Fluctuations Variance of Photon Number in Sampling Time Window: var(n)=< n 2 > - < n > 2 var(n) = 2π dθ 2π 2 q 3 ˆ 4 θ 2 q ˆ θ q ˆ θ + 4 Second-Order Coherence of Photon Number in Sampling Time Window: g (2) (t,t )=[< n 2 > - < n >]/< n > 2 g (2) (t,t) = 2 corresponds to thermal light, i.e. light produced primarily by spontaneous emission. g (2) (t,t) =1 corresponds to light with Poisson statistics, i.e., light produced by stimulated emission in the presence of gain saturation. 16 of 31

17 LINEAR OPTICAL SAMPLING IX Photon Number Fluctuations if the signal is incoherent, no phase sweeping is required 8MHz 1-5kHz Ti:Sapphire Regen. Amplifier λ/2 Electronic Delay Trigger Pulse Sample LO λ/2 Signal Alt. Source PBS1 Voltage Pulser Computer AD/DA GPIB controller n 1 n 2 Stretcher Charge-Sensitive Pre-Amps Shaper Shaper Photodiodes Balanced Homodyne Detector λ/2 PBS2 M. Munroe 17 of 31

18 LINEAR OPTICAL SAMPLING X Superluminescent Diode (SLD) Optical Amplifier metal cap 6 o 6 µm 3 µm (AR) SiO 2 p-clad layer quantum wells n-clad layer ~ n-gaas substrate ~ p-contact layer undoped, graded confining layers (Sarnoff Labs) Superluminescent Emission M. Munroe 18 of 31

19 LINEAR OPTICAL SAMPLING XI (no cavity) (a) Intensity (a.u.) (a) Output Power (mw) Drive Current (ma) (b) Intensity (a.u.) Wavelength (nm) (b) Wavelength (nm) 88 M. Munroe 19 of 31

20 LINEAR OPTICAL SAMPLING XII SLD in the single-pass configuration 3. <n(t,t)> g (2) (t,t) <n(t)> time (ns) g (2) (t,t) Photon Fluctuation is Thermal-like, within a single time window (15 fs) M. Munroe 2 of 31

21 LINEAR OPTICAL SAMPLING XIII SLD in the double-pass with grating configuration <n(t)> g (2) (t,t) <n(t)> time (ns) g (2) (t,t) Photon Fluctuation is Laser-like, within a single time window (15 fs) M. Munroe 21 of 31

22 Single-Shot Linear Optical Sampling I -- Does not require phase sweeping. Measure both quadratures simultaneously. Dual- DC-Balanced Homodyne Detection LO1 signal 5/5 BHD q q 2 + p 2 = n BHD p π/2 phase shifter LO2 22 of 31

23 Fiber Implementation of Single-shot Linear Optical Sampling Of Photon Number MFL: mode-locked Erbium-doped fiber laser. OF: spectral filter. PC: polarization controller. BD: balanced detector. 23 of 31

24 Measured quadratures (continuous and dashed line) on a 1-Gb/s pulse train. Waveform obtained by postdetection squaring and summing of the two quadratures. 24 of 31

25 Two-Mode DC-HOMODYNE DETECTION I LO is in a Superposition of two wave-packet modes, 1 and 2 signal ˆ Φ L (+) (r,t) = i c α L exp(iθ) v 1 (r,t)cosα + v 2 (r,t)exp( iζ )sinα [ ] Dual temporal modes: Dual LO 1 2 (temporal, spatial, or polarization) BHD Q β = θ ζ Q ˆ = cos(α) [ q ˆ 1 cosθ + p ˆ 1 sinθ ] + sin(α) q ˆ 2 cosβ + [ p ˆ 2 sinβ ] q ˆ 1θ q ˆ 2β quadrature of mode 1 quadrature of mode 2 25 of 31

26 SLD Two-Mode DC-HOMODYNE DETECTION II ultrafast two-time number correlation measurements using dual- LO BHD; super luminescent laser diode (SLD) 1 2 Dual LO signal BHD t 1 t 2 Q two-time secondorder coherence g (2) (t 1,t 2 ) = : n ˆ (t ) n ˆ (t ): 1 2 n ˆ (t 1 ) n ˆ (t 2 ) D. McAlister 26 of 31

27 Two-Mode DC-HOMODYNE DETECTION III Alternative Method using a Single LO. Signal is split and delayed by different times. Polarization rotations can be introduced. source signal LO BHD polarization rotator Q two-pol., two-time second-order coherence (2) (t 1,t 2 ) = : n ˆ (t ) n ˆ (t ): i 1 j 2 n ˆ i (t 1 ) n ˆ j (t 2 ) g i, j A. Funk 27 of 31

28 Two-Mode DC-HOMODYNE DETECTION IV Single-time, two-polarization correlation measurements on emission from a VCSEL -2π phase sweeping and time delay -2π relative phase sweeping E. Blansett 28 of 31

29 Two-Mode DC-HOMODYNE DETECTION V Single-time, twopolarization correlation measurements on emission from a VCSEL at low temp. (1K) (2) (t 1,t 2 ) = : n ˆ i(t 1 ) n ˆ i (t 2 ): n ˆ i (t 1 ) n ˆ i (t 2 ) g i,i (2) (t 1,t 2 ) = : n ˆ (t ) n ˆ (t ): i 1 j 2 n ˆ i (t 1 ) n ˆ j (t 2 ) g i, j uncorrelated E. Blansett 29 of 31

30 Two-Mode DC-HOMODYNE DETECTION VI Single-time, twopolarization correlation measurements on emission from a VCSEL at room temp. (2) (t 1,t 2 ) = : n ˆ i(t 1 ) n ˆ i (t 2 ): n ˆ i (t 1 ) n ˆ i (t 2 ) g i,i (2) (t 1,t 2 ) = : n ˆ (t ) n ˆ (t ): i 1 j 2 n ˆ i (t 1 ) n ˆ j (t 2 ) g i, j anticorrelated Spin-flip --> gain competition 3 of 31

31 SUMMARY: DC-Balanced Homodyne Detection 1. BHD can take advantage of: high QE and ultrafast time gating. 2. BHD can provide measurements of photon mean numbers, as well as fluctuation information (variance, second-order coherence). 3. BHD can selectively detect unique spatial-temporal modes, including polarization states. 31 of 31

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

S. Blair February 15,

S. Blair February 15, S Blair February 15, 2012 66 32 Laser Diodes A semiconductor laser diode is basically an LED structure with mirrors for optical feedback This feedback causes photons to retrace their path back through

More information

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state Lecture 15 Stimulated Emission Devices- Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

Noise Correlations in Dual Frequency VECSEL

Noise Correlations in Dual Frequency VECSEL Noise Correlations in Dual Frequency VECSEL S. De, A. El Amili, F. Bretenaker Laboratoire Aimé Cotton, CNRS, Orsay, France V. Pal, R. Ghosh Jawaharlal Nehru University, Delhi, India M. Alouini Institut

More information

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985 Paper Review IEEE Journal of Quantum Electronics, Feb 1985 Contents Semiconductor laser review High speed semiconductor laser Parasitic elements limitations Intermodulation products Intensity noise Large

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity

Lecture 9. PMTs and Laser Noise. Lecture 9. Photon Counting. Photomultiplier Tubes (PMTs) Laser Phase Noise. Relative Intensity s and Laser Phase Phase Density ECE 185 Lasers and Modulators Lab - Spring 2018 1 Detectors Continuous Output Internal Photoelectron Flux Thermal Filtered External Current w(t) Sensor i(t) External System

More information

Contribution of the Hanbury Brown Twiss experiment to the development of quantum optics

Contribution of the Hanbury Brown Twiss experiment to the development of quantum optics Contribution of the Hanbury Brown Twiss experiment to the development of quantum optics Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege

More information

High quantum efficiency S-20 photocathodes for photon counting applications

High quantum efficiency S-20 photocathodes for photon counting applications High quantum efficiency S-20 photocathodes for photon counting applications D. A. Orlov a,*, J. DeFazio b, S. Duarte Pinto a, R. Glazenborg a and E. Kernen a a PHOTONIS Netherlands BV, Dwazziewegen 2,

More information

arxiv:quant-ph/ v2 7 Nov 2001

arxiv:quant-ph/ v2 7 Nov 2001 Quantum key distribution using non-classical photon number correlations in macroscopic light pulses A.C. Funk and M.G. Raymer Oregon Center for Optics and Department of Physics, University of Oregon, Eugene,

More information

Probing and Driving Molecular Dynamics with Femtosecond Pulses

Probing and Driving Molecular Dynamics with Femtosecond Pulses Miroslav Kloz Probing and Driving Molecular Dynamics with Femtosecond Pulses (wavelengths above 200 nm, energies below mj) Why femtosecond lasers in biology? Scales of size and time are closely rerated!

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS6012W1 SEMESTER 1 EXAMINATION 2012/13 Coherent Light, Coherent Matter Duration: 120 MINS Answer all questions in Section A and only two questions in Section B. Section A carries

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

Niels Bohr Institute Copenhagen University. Eugene Polzik

Niels Bohr Institute Copenhagen University. Eugene Polzik Niels Bohr Institute Copenhagen University Eugene Polzik Ensemble approach Cavity QED Our alternative program (997 - ): Propagating light pulses + atomic ensembles Energy levels with rf or microwave separation

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Quantum optics and squeezed states of light

Quantum optics and squeezed states of light Quantum optics and squeezed states of light Eugeniy E. Mikhailov The College of William & Mary June 15, 2012 Eugeniy E. Mikhailov (W&M) Quantum optics June 15, 2012 1 / 44 From ray optics to semiclassical

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes

Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes Nonlinear ultrafast fiber optic devices based on Carbon Nanotubes Guillermo E. Villanueva, Claudio J. Oton Michael B. Jakubinek, Benoit Simard,, Jaques Albert, Pere Pérez-Millán Outline Introduction CNT-coated

More information

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials International Workshop on Photonics and Applications. Hanoi, Vietnam. April 5-8,24 Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials Lap Van Dao,

More information

Noise in voltage-biased scaled semiconductor laser diodes

Noise in voltage-biased scaled semiconductor laser diodes Noise in voltage-biased scaled semiconductor laser diodes S. M. K. Thiyagarajan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 90089-1111

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Peer Review File Description: Optical frequency (THz) 05. 0 05. 5 05.7

More information

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion R.J. Trew, K.W. Kim, V. Sokolov, and B.D Kong Electrical and Computer Engineering North Carolina State

More information

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Developing Quantum Logic Gates: Spin-Resonance-Transistors Developing Quantum Logic Gates: Spin-Resonance-Transistors H. W. Jiang (UCLA) SRT: a Field Effect Transistor in which the channel resistance monitors electron spin resonance, and the resonance frequency

More information

4. Integrated Photonics. (or optoelectronics on a flatland)

4. Integrated Photonics. (or optoelectronics on a flatland) 4. Integrated Photonics (or optoelectronics on a flatland) 1 x Benefits of integration in Electronics: Are we experiencing a similar transformation in Photonics? Mach-Zehnder modulator made from Indium

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion

Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion Nijil Lal C.K. Physical Research Laboratory, Ahmedabad YouQu-2017 27/02/2017 Outline Single Photon Sources (SPS) Heralded

More information

THz QCL sources based on intracavity difference-frequency mixing

THz QCL sources based on intracavity difference-frequency mixing THz QCL sources based on intracavity difference-frequency mixing Mikhail Belkin Department of Electrical and Computer Engineering The University of Texas at Austin IQCLSW, Sept. 3, 218 Problems with traditional

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona

Lecture 15. Theory of random processes Part III: Poisson random processes. Harrison H. Barrett University of Arizona Lecture 15 Theory of random processes Part III: Poisson random processes Harrison H. Barrett University of Arizona 1 OUTLINE Poisson and independence Poisson and rarity; binomial selection Poisson point

More information

EE 6313 Homework Assignments

EE 6313 Homework Assignments EE 6313 Homework Assignments 1. Homework I: Chapter 1: 1.2, 1.5, 1.7, 1.10, 1.12 [Lattice constant only] (Due Sept. 1, 2009). 2. Homework II: Chapter 1, 2: 1.17, 2.1 (a, c) (k = π/a at zone edge), 2.3

More information

Quantum Measurements and Back Action (Spooky and Otherwise)

Quantum Measurements and Back Action (Spooky and Otherwise) Quantum Measurements and Back Action (Spooky and Otherwise) SM Girvin Yale University Thanks to Michel, Rob, Michael, Vijay, Aash, Simon, Dong, Claudia for discussions and comments on Les Houches notes.

More information

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

FIG. 16: A Mach Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2 Lecture 11: Application: The Mach Zehnder interferometer Coherent-state input Squeezed-state input Mach-Zehnder interferometer with coherent-state input: Now we apply our knowledge about quantum-state

More information

3. Excitation and Detection of Fluorescence

3. Excitation and Detection of Fluorescence 3. Excitation and Detection of Fluorescence In this chapter, we examine key experimental components and methods to observe weakly fluorescing objects. We consider in turn the excitation source, the detectors,

More information

Squeezed Light for Gravitational Wave Interferometers

Squeezed Light for Gravitational Wave Interferometers Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut

More information

2. THE RATE EQUATION MODEL 2.1 Laser Rate Equations The laser rate equations can be stated as follows. [23] dn dt

2. THE RATE EQUATION MODEL 2.1 Laser Rate Equations The laser rate equations can be stated as follows. [23] dn dt VOL. 4, NO., December 4 ISSN 5-77 -4. All rights reserved. Characteristics of Quantum Noise in Semiconductor Lasers Operating in Single Mode Bijoya Paul, Rumana Ahmed Chayti, 3 Sazzad M.S. Imran,, 3 Department

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Erwin Schrödinger and his cat

Erwin Schrödinger and his cat Erwin Schrödinger and his cat How to relate discrete energy levels with Hamiltonian described in terms of continгous coordinate x and momentum p? Erwin Schrödinger (887-96) Acoustics: set of frequencies

More information

An ultrafast quantum random number generator based on quantum phase fluctuations

An ultrafast quantum random number generator based on quantum phase fluctuations An ultrafast quantum random number generator based on quantum phase fluctuations Feihu Xu, Bing Qi, Xiongfeng Ma, He Xu, Haoxuan Zheng, and Hoi-Kwong Lo Center for Quantum Information and Quantum Control,

More information

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015 MEFT / Quantum Optics and Lasers Suggested problems Set 4 Gonçalo Figueira, spring 05 Note: some problems are taken or adapted from Fundamentals of Photonics, in which case the corresponding number is

More information

A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS

A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS Romanian Reports in Physics, Vol. 63, No. 4, P. 1061 1069, 011 A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS H. ARABSHAHI Payame Nour University of Fariman, Department

More information

Stimulated Emission. ! Electrons can absorb photons from medium. ! Accelerated electrons emit light to return their ground state

Stimulated Emission. ! Electrons can absorb photons from medium. ! Accelerated electrons emit light to return their ground state Lecture 15 Stimulated Emission Devices- Lasers! Stimulated emission and light amplification! Einstein coefficients! Optical fiber amplifiers! Gas laser and He-Ne Laser! The output spectrum of a gas laser!

More information

Engineering Medical Optics BME136/251 Winter 2017

Engineering Medical Optics BME136/251 Winter 2017 Engineering Medical Optics BME136/251 Winter 2017 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) Teaching Assistants (Office hours: Every Tuesday at 2pm outside of the

More information

Testing The Existence of Single Photons

Testing The Existence of Single Photons Testing The Existence of Single Photons Quynh Nguyen and Asad Khan Method of Experimental Physics Project, University of Minnesota. (Dated: 12 May 2014) We demonstrated the existence of single photon by

More information

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme Li Hua Yu for DUV-FEL Team National Synchrotron Light Source Brookhaven National Laboratory FEL2004 Outline The DUVFEL

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2//e50054/dc Supplementary Materials for Two-photon quantum walk in a multimode fiber Hugo Defienne, Marco Barbieri, Ian A. Walmsley, Brian J. Smith, Sylvain Gigan

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Alberto Marino Ulrich Vogl Jeremy Clark (U Maryland) Quentin

More information

CHAPTER 3 RESULTS AND DISCUSSION

CHAPTER 3 RESULTS AND DISCUSSION CHAPTER 3 RESULTS AND DISCUSSION 3.1 CHAPTER OUTLINE This chapter presents the data obtained from the investigation of each of the following possible explanations: (1) Experimental artifacts. (2) Direct

More information

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem D.T Palmer and R. Akre Laser Issues for Electron RF Photoinjectors October 23-25, 2002 Stanford Linear Accelerator

More information

Ultrafast Laser Physics

Ultrafast Laser Physics Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 7: Active modelocking Ultrafast Laser Physics ETH Zurich Mode locking by forcing

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION satisfy the condition 31 ω LO,a ω a = ω b ω LO,b. (4) doi: 10.1038/nature07751 Tunable delay of Einstein-Podolsky-Rosen entanglement A. M. Marino 1, R. C. Pooser 1, V. Boyer 1, & P. D. Lett 1 1 Joint Quantum

More information

Quantum Control of States of Light (2) Optimization of information extraction from optical measurements

Quantum Control of States of Light (2) Optimization of information extraction from optical measurements Quantum Control of States of Light (2) Optimization of information extraction from optical measurements C. Fabre Laboratoire Kastler Brossel Université Pierre et Marie Curie-Paris6, ENS Two levels in field

More information

Quantum interference of multimode two-photon pairs with a Michelson interferometer. Abstract

Quantum interference of multimode two-photon pairs with a Michelson interferometer. Abstract Quantum interference of multimode two-photon pairs with a Michelson interferometer Fu-Yuan Wang, Bao-Sen Shi, and Guang-Can Guo Key Laboratory of Quantum Information, University of Science and Technology

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.453 Quantum Optical Communication Date: Thursday, October 13, 016 Lecture Number 10 Fall 016 Jeffrey H.

More information

Path Entanglement. Liat Dovrat. Quantum Optics Seminar

Path Entanglement. Liat Dovrat. Quantum Optics Seminar Path Entanglement Liat Dovrat Quantum Optics Seminar March 2008 Lecture Outline Path entangled states. Generation of path entangled states. Characteristics of the entangled state: Super Resolution Beating

More information

Quantum non-demolition measurements:

Quantum non-demolition measurements: Quantum non-demolition measurements: One path to truly scalable quantum computation Kae Nemoto Tim Spiller Sean Barrett Ray Beausoleil Pieter Kok Bill Munro HP Labs (Bristol) Why should optical quantum

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Scintillation Detectors

Scintillation Detectors Scintillation Detectors J.L. Tain Jose.Luis.Tain@ific.uv.es http://ific.uv.es/gamma/ Instituto de Física Corpuscular C.S.I.C - Univ. Valencia Scintillation detector: SCINTILLATION MATERIAL LIGHT-GUIDE

More information

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin M. Loretz, T. Rosskopf, C. L. Degen Department of Physics, ETH Zurich, Schafmattstrasse 6, 8093 Zurich,

More information

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING

ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING Progress In Electromagnetics Research C, Vol. 8, 121 133, 2009 ANALYSIS OF AN INJECTION-LOCKED BISTABLE SEMICONDUCTOR LASER WITH THE FREQUENCY CHIRPING M. Aleshams Department of Electrical and Computer

More information

Luz e Átomos. como ferramentas para Informação. Quântica. Quântica Ótica. Marcelo Martinelli. Lab. de Manipulação Coerente de Átomos e Luz

Luz e Átomos. como ferramentas para Informação. Quântica. Quântica Ótica. Marcelo Martinelli. Lab. de Manipulação Coerente de Átomos e Luz Luz e Átomos como ferramentas para Informação Quântica Ótica Quântica Inst. de Física Marcelo Martinelli Lab. de Manipulação Coerente de Átomos e Luz Question: Dividing the incident beam in two equal parts,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Squeezed states of light - generation and applications

Squeezed states of light - generation and applications Squeezed states of light - generation and applications Eugeniy E. Mikhailov The College of William & Mary Fudan, December 24, 2013 Eugeniy E. Mikhailov (W&M) Squeezed light Fudan, December 24, 2013 1 /

More information

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX

Abstract... I. Acknowledgements... III. Table of Content... V. List of Tables... VIII. List of Figures... IX Abstract... I Acknowledgements... III Table of Content... V List of Tables... VIII List of Figures... IX Chapter One IR-VUV Photoionization Spectroscopy 1.1 Introduction... 1 1.2 Vacuum-Ultraviolet-Ionization

More information

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

System optimization of a long-range Brillouin-loss-based distributed fiber sensor System optimization of a long-range Brillouin-loss-based distributed fiber sensor Yongkang Dong, 1,2 Liang Chen, 1 and Xiaoyi Bao 1, * 1 Fiber Optics Group, Department of Physics, University of Ottawa,

More information

OPTICAL GAIN AND LASERS

OPTICAL GAIN AND LASERS OPTICAL GAIN AND LASERS 01-02-1 BY DAVID ROCKWELL DIRECTOR, RESEARCH & DEVELOPMENT fsona COMMUNICATIONS MARCH 6, 2001 OUTLINE 01-02-2 I. DEFINITIONS, BASIC CONCEPTS II. III. IV. OPTICAL GAIN AND ABSORPTION

More information

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Copyright 2009 by YASHKIR CONSULTING LTD Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Yuri Yashkir 1 Introduction The

More information

Coherent Combining and Phase Locking of Fiber Lasers

Coherent Combining and Phase Locking of Fiber Lasers Coherent Combining and Phase Locking of Fiber Lasers Moti Fridman, Micha Nixon, Nir Davidson and Asher A. Friesem Weizmann Institute of Science, Dept. of Physics of Complex Systems, Rehovot 76100, Israel.

More information

Squeezed Light Techniques for Gravitational Wave Detection

Squeezed Light Techniques for Gravitational Wave Detection Squeezed Light Techniques for Gravitational Wave Detection July 6, 2012 Daniel Sigg LIGO Hanford Observatory Seminar at TIFR, Mumbai, India G1200688-v1 Squeezed Light Interferometry 1 Abstract Several

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmon Amplification by Stimulated Emission of Radiation By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmons (SPs) Quanta of electron oscillations in a plasma. o Electron gas in

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

EE 472 Solutions to some chapter 4 problems

EE 472 Solutions to some chapter 4 problems EE 472 Solutions to some chapter 4 problems 4.4. Erbium doped fiber amplifier An EDFA is pumped at 1480 nm. N1 and N2 are the concentrations of Er 3+ at the levels E 1 and E 2 respectively as shown in

More information

Distributed feedback semiconductor lasers

Distributed feedback semiconductor lasers Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations

More information

Continuous-variable quantum key distribution with a locally generated local oscillator

Continuous-variable quantum key distribution with a locally generated local oscillator Continuous-variable quantum key distribution with a locally generated local oscillator Bing Qi, Pavel Lougovski, Raphael Pooser, Warren Grice, Miljko Bobrek, Charles Ci Wen Lim, and Philip G. Evans Quantum

More information

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube PN junction photodiodes Authors: Nathaniel. M. Gabor 1,*, Zhaohui Zhong 2, Ken Bosnick 3, Paul L.

More information

Quantum model for Impulsive Stimulated Raman Scattering (ISRS)

Quantum model for Impulsive Stimulated Raman Scattering (ISRS) Quantum model for Impulsive Stimulated Raman Scattering (ISRS) University of Trieste Trieste Junior Quantum Days May 18, 2018 Outline Introduction 1 Introduction 2 3 4 5 INCEPT INhomogenieties and fluctuations

More information

Microfibres for Quantum Optics. Dr Síle Nic Chormaic Quantum Optics Group

Microfibres for Quantum Optics. Dr Síle Nic Chormaic Quantum Optics Group Microfibres for Quantum Optics Dr Síle Nic Chormaic Quantum Optics Group Motivation Strong need to engineer atoms and photons for the development of new technologies quantum technologies Future advances

More information

The Generation of Ultrashort Laser Pulses II

The Generation of Ultrashort Laser Pulses II The Generation of Ultrashort Laser Pulses II The phase condition Trains of pulses the Shah function Laser modes and mode locking 1 There are 3 conditions for steady-state laser operation. Amplitude condition

More information