Quantum coherence in semiconductor nanostructures. Jacqueline Bloch

Size: px
Start display at page:

Download "Quantum coherence in semiconductor nanostructures. Jacqueline Bloch"

Transcription

1 Quantum coherence in semiconductor nanostructures Jacqueline Bloch Laboratoire of Photonic and Nanostructures LPN/CNRS Marcoussis

2 Laboratoire de Photonique et de Nanostructures Marcoussis A CNRS Laboratory30 km southof Paris 50 permanent researchers Growth facilities Processing facilities Physical studies

3 What are semiconductor nanostructures? e - L x Confine electrons in a volume with dimensions comparable to the De Broglie wavelength (typically 1 nm) Quantum confinement : quantization of the energy levels k = pπ/l Quantum Wells Growth direction 2D Continuum Inter-band transition Intra-band transition Emission

4 What are semiconductor nanostructures? e - L x Confine electrons in a volume with dimensions comparable to the De Broglie wavelength (typically 1 nm) Quantum confinement : quantization of the energy levels k = pπ/l Quantum Dots : 3D confinement TEM G. Patriarche Emission intensity γ 1-10 µev x~ Energie (mev) Discrete quantum states «artificial atom»in a solid state system

5 Optics in microcavities Confine light in small volumes (of the order of λ 3 ) Modify the light matter coupling Interferential mirrors Miroir interférentiel GaAs/AlGaAs Miroir interférentiel Interferential mirrors AlAs n=1 micropillars microdisks Photonic crystal microcavities

6 Quantum coherence in semiconductor nanostructures Control of these quantum emitters, enhance light matter interaction, manipulate single spins - Bose condensates; new optical functionalities - Non-linear optics at the single photon level - Cavity quantum electrodynamics - Quantum information processing - Source of quantum light : quantum cryptography, teleportation

7 GaAs/AlGaAs based structures Semiconductor cavities: a model system to investigate the physics of Bose condensates θ Angle θ (º) K Top DBR Quantum Wells Bottom DBR Emission energy (ev) Microcavity polaritons : mixed exciton-photon states ~ 5meV Upper polariton Lower polariton k in-plane (µm -1 ) Photon Exciton Bosonic quasi-particule (J = +-1) Low effective mass => Large De Broglie wave length => Condensation at high temperature λ T πh = mk BT

8 Bose-Einstein condensation Macroscopic wavefunction λ T πh = mk BT BEC with atoms Cornell s and Wieman s groups: condensation of Rb atoms (1995) Low critical temperatures: < 1 µk T Nature 443, 409 (2006) T = 5 K CdTe Polariton density k y k x Kasprzak et al. Nature, 443, 409 (2006)

9 Typical experimental scheme Far field imaging: k space Near field imaging: real space -0.5 kx Density (µm-1) Far field (d) Energy Flow ky (µm-1) µm Interference with Coherence map a reference beam g(1) Phase dislocations - vortices - solitons kx (µm-1) Resonant injection of polaritons

10 THEORY GROUP at Laboratoire MPQ, Université Paris Diderot Responsable: Prof. Cristiano CIUTI Web page: Google search: Laboratoire MPQ THEORIE Main theoretical activity(semiconductors): - Polariton quantum fluids(photons) - Ultra-strongcouplingin cavityquantum electrodynamics cavité (circuit) Recent review: I. Carusotto& C. Ciuti, Reviews of Modern Physics in press;

11 Alberto Bramati Cavitypolaritons: coherence and spin dynamics Quantum fluid: superfluidity, solitons,.. Spin switch, spin Hall effect Nature Physics 2009 Vortex lattices Nature Physics 2009 Science 2011 Science 2012

12 Jacqueline Bloch Alberto Amo Manipulating Bose condensate in photonic circuits 26 pairs Laboratoire of Photonique and Nanostructures GaAs/GaAlAs microcavities λ/2 cavity 30 pairs Substrate 3x4 GaAs quantum wells Macroscopic propagation and coherence Trapping Ferrier et al. PRL 106, (2011) Galbiati et al. PRL 108, (2012) Wertzet al., Nature Physics6, 860 (2010) Taneseet al. PRL 108, (2012) Wertzet al., PRL to appear

13 Manipulating Bose condensate in photonic circuits Laboratoire of Photonique and Nanostructures What is next? Polariton interferometer Condensation in a periodic potential: Bloch oscillations: H. Flayacet al., Phys. Rev. B 84, (2011) Phys. Rev. B 83, (2011) Propagation, interaction of gap solitons I. Shelykhet al., PRL 102, (2009) Arrays of coupled condensates Bose Hubbard quantum phases Carusotto et al., PRL (2009) Fisher et al., PRB 40, (1989)

14 MPQ Université Paris Diderot Quantum Physics and Devices (QUAD) A. Vasanelli, M. Amanti, S. Barbieri, Y. Todorov, C. Sirtori Building blocks: We develop novel concepts of quantum engineering inmaterialsthatarecurrentlyatthebasisofict. Electron confinement: SemiconductorQWs, band structure engineering Fields of action Photon confinement: plasmonicmicrocavities, highly subwavelength confinement THz quantum cascade laser Electroluminescence from intersubband polaritons S. Barbieriet al. Nature Phot S. Barbieriet al. Nature Phot L. Sapienzaet al., PRL 2008 Y. Todorovet al., PRL 2009 Y. Todorovet al., PRL Integrated quantum cascade laser modulator J. Teissieret al. Opex2012

15 LPQM ENS Cachan Group: Optical propertiesof hybridnanostructures Self-organizedhybridquantum wells: Perovskites (R-NH 3 ) 2 MX 4 a) Photoluminescence Emmanuelle Deleporte (Pr) Jean-Sébastien Lauret(MdC) Strong coupling regime at room temperature Densité optique Tunability PhE-PbI 4 m = 3 m = 2 PhE-PbBr 4 2,40 ev 3,07 ev m = 3 m = 1 m = 2 PhE-PbCl 4 3,65 ev m = 1 Energie (ev) 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0 Energie (ev) Objectives : Study of this new material(electronic properties) Polariton condensation Electrical injection M: Pb;X: I, Br, Cl R: Phényl, Cyclohexane. Publications: Superlattices and Microstructures 47, 10 (2010) Appl. Phys. Lett. 93, (2008); New Journal of Physics10, (2008) New Journal of Physics10, (2008) Appl. Phys. Lett. 90, (2007) Phys. Rev. B74, (2006) Appl. Phys. Lett. 89, (2006)

16 Quantum physicswithsingle quantum dots - Single spin in a quantum dot : a quantum bit - Source of quantum light - Cavity quantum electrodynamics using single quantum dot in a cavity

17 A spin in a Quantum dots : a quantum bit? TEM G. Patriarche electron A single spin : a well «isolated»quantum bit? Spin optical pumping : Science 312, 551 (2006), Phys. Rev. Lett. 99, (2007);Nature (2008) Quantum non demolition spin measurement: Science (2006), Nature Physics 3, 101 (2007) Spin coherence: interaction with nuclei Phys. Rev. Lett. 94, (2005), Phys. Rev. Lett. 102, (2009) Nature Physics, 5(8) 2009, Arxiv arxiv: ,

18

19

20 Quantum dots : a solids tate source of quantum light TEM G. Patriarche Luminescence intensity (a. u.) X T=4 K XX Energy (mev) Single photon emission Science 290, 2282 (2000)

21 Semiconductor quantum dots for the generation of non classical states of light Purpose: Efficient indistinguishable single photon source Entanglement of qubits Applications in quantum information ValiaVoliotis, Richard Hostein Resonant Rabi oscillations: qubit initialization Luminescence (arb. units) 0 π 2π 3π 4π 5π P 1/2 (µw 1/2 ) Coherent control of the qubit: θ ψ = cos 0 θ + sin θ: Rabi frequency Pulse area P Indistinguishable single photon sources? increase of T2/T1 HBT on-resonance δ, φ 300 < T 2 < 600 ps (< 2 T 1 ) 600 < T 1 < 900 ps 1 0 µpl Intensity (arb. units) θ =π/2 «off» «on» φ = 0 φ = π Wavelength (nm) Coincidences ,4-12,2 0,0 12,2 24,4 36,6 Retard (ns) (Collaboration: LPA, LPN) HBT on resonance g (2) (0) = 0.06

22 Quantum optics in single quantum dots Optically-gated resonant emission in single quantum dots H. S. Nguyen et al., Phys. Rev. Lett. 108, (2012) Optically-gated resonant emission Optical gate Resonant laser Intensity (10 3 counts/s) Gate ON Gate OFF δ (µev) g (2) (τ) Carole Diederichs Laboratoire Pierre Aigrain τ (ns) τ (ns) τ (ns) τ (ns) Ultra-coherent single photon source H. S. Nguyen et al., App. Phys. Lett. 99, (2011) Norm. intensity g (1) (τ) E - E L (µev) E - E L (µev) E - E L (µev)

23 A quantum dot in a cavity : A solid state system for quantum information processing Contact : Pascale Senellart and Loic Lanco Laboratoire de Photonique et de Nanostructures Marcoussis, France QD g e- cavity mode τ c Optical loss Artificial atom Single photons source Single spin memory Microcavities Controlling spontaneous emission Mixed light-matter states

24 Full control of a single dot spontaneous emission In-situ lithography PL intensity (a.u.) OFF resonance(50k) τ XX τ XX = 1.15 ns ONresonance(5 K) τ XX τ XX = 130 ps time (ns) On demand Purcell effect Light matter entangled states Dousse et al, PRL 2008 Dousse et al, APL 2009 See Dousse et al, Phys. Rev. Lett 2008, APL 2009 Suffczynskii et al, PRL 2009

25 Ultrabright sources for quantum information processing Few photon optical non-linearity Single photons, Indistinguishable photons Entangled photon pairs 0.90 Dousseet al, Nature 2010, Gazzanoet al, 2012 Pulsed excitation Reflectivity photons Incident photons per pulse 10 4 Loo et al, PRL 2012

26 Toward a solid state quantum network? Teleportation, Spin photon entanglement, entanglement distillation, remote spin entanglement, delayed photon entangler Single photon optical switch Spin based quantum memory Delayed photon entangler V Entangled photon pair source Single photon source

27 Optional course: second semestre Laboratoire Photonique et Nanostructures LPN/CNRS Marcoussis ( Laboratoire Matériaux et Phénomènes Quantiques MPQ/ Université Paris 7 Pascale Senellart Jacqueline Bloch Cristiano Ciuti Carlo Sirtori

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati

Quantum fluid phenomena with Microcavity Polaritons. Alberto Bramati Quantum fluid phenomena with Microcavity Polaritons Alberto Bramati Quantum Optics Team: topics Quantum fluid phenomena in polariton gases An ideal system to study out of equilibrium quantum fluids Obstacle

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

Hydrodynamic solitons in polariton superfluids

Hydrodynamic solitons in polariton superfluids Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Dynamical Condensation of ExcitonPolaritons

Dynamical Condensation of ExcitonPolaritons ICSCE 2008 Dynamical Condensation of ExcitonPolaritons Y. Yamamoto, H. Deng, G. Weihs, C.W. Lai, G. Roumpos and S. Utsunomiya Stanford University and National Institute of Informatics Loeffler, S. Hoefling,

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Supplementary material

Supplementary material SUPPLEMENTARY INFORMATION Supplementary material All-optical control of the quantum flow of a polariton condensate D. Sanvitto 1, S. Pigeon 2, A. Amo 3,4, D. Ballarini 5, M. De Giorgi 1, I. Carusotto 6,

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics, ETH Zürich, Switzerland

More information

arxiv: v3 [cond-mat.mtrl-sci] 3 Dec 2007

arxiv: v3 [cond-mat.mtrl-sci] 3 Dec 2007 using single micropillar GaAs-GaAlAs semiconductor cavities Daniele Bajoni, 1 Pascale Senellart, 1 Esther Wertz, 1 Isabelle Sagnes, 1 Audrey Miard, 1 Aristide Lemaître, 1 and Jacqueline Bloch 1, 1 CNRS-Laboratoire

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

Quantised Vortices in an Exciton- Polariton Condensate

Quantised Vortices in an Exciton- Polariton Condensate 4 th International Conference on Spontaneous Coherence in Excitonic Systems Quantised Vortices in an Exciton- Polariton Condensate Konstantinos G. Lagoudakis 1, Michiel Wouters 2, Maxime Richard 1, Augustin

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/33/634/1167/dc1 Suorting Online Material for Polariton Suerfluids Reveal Quantum Hydrodynamic Solitons A. Amo,* S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto,

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Room Temperature Polariton Lasing in All-Inorganic. Perovskite Nanoplatelets

Room Temperature Polariton Lasing in All-Inorganic. Perovskite Nanoplatelets Supplementary Information for Room Temperature Polariton Lasing in All-Inorganic Perovskite Nanoplatelets Rui Su, Carole Diederichs,, Jun Wang, ǁ Timothy C.H. Liew, Jiaxin Zhao, Sheng Liu, Weigao Xu, Zhanghai

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska

Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices. Marzena Szymanska Part3:Superfluidity: k Flow via obstacles, Persistent Currents & Quantised Vortices Marzena Szymanska Collaborators Theory F. M. Marchetti E. Cancellieri C. Tejedor D. Whittaker Experiment D. Sanvitto,

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

The Solid-State Quantum Network (SSQN)

The Solid-State Quantum Network (SSQN) The Solid-State Quantum Network (SSQN) An ERC CHIST-ERA grant Imperial College London (theory) Bristol That s us! (spin-photon interface) University of Würzburg (fabrication of micropillar samples) CNRS/LPN

More information

Driven-dissipative polariton quantum fluids in and out of equilibrium

Driven-dissipative polariton quantum fluids in and out of equilibrium Driven-dissipative polariton quantum fluids in and out of equilibrium Marzena Szymańska Designer Quantum Systems Out of Equilibrium KITP, November 2016 Acknowledgements Group: A. Zamora G. Dagvadorj In

More information

Exciton photon strong-coupling regime for a single quantum dot in a microcavity.

Exciton photon strong-coupling regime for a single quantum dot in a microcavity. Exciton photon strong-coupling regime for a single quantum dot in a microcavity. Emmanuelle Peter, Pascale Senellart, David Martrou, Aristide Lemaître, Jacqueline Bloch, Julien Hours, Jean-Michel Gérard

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Optically-controlled controlled quantum dot spins for quantum computers

Optically-controlled controlled quantum dot spins for quantum computers Optically-controlled controlled quantum dot spins for quantum computers David Press Yamamoto Group Applied Physics Department Ph.D. Oral Examination April 28, 2010 1 What could a Quantum Computer do? Simulating

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Entangled Photon Generation via Biexciton in a Thin Film

Entangled Photon Generation via Biexciton in a Thin Film Entangled Photon Generation via Biexciton in a Thin Film Hiroshi Ajiki Tokyo Denki University 24,Apr. 2017 Emerging Topics in Optics (IMA, Univ. Minnesota) Entangled Photon Generation Two-photon cascade

More information

+ - Indirect excitons. Exciton: bound pair of an electron and a hole.

+ - Indirect excitons. Exciton: bound pair of an electron and a hole. Control of excitons in multi-layer van der Waals heterostructures E. V. Calman, C. J. Dorow, M. M. Fogler, L. V. Butov University of California at San Diego, S. Hu, A. Mishchenko, A. K. Geim University

More information

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York All optical quantum computation by engineering semiconductor macroatoms Irene D Amico Dept. of Physics, University of York (Institute for Scientific Interchange, Torino) GaAs/AlAs, GaN/AlN Eliana Biolatti

More information

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Journal of the Korean Physical Society, Vol. 42, No., February 2003, pp. 768 773 Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Axel Scherer, T. Yoshie, M. Lončar, J. Vučković

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Theory for strongly coupled quantum dot cavity quantum electrodynamics

Theory for strongly coupled quantum dot cavity quantum electrodynamics Folie: 1 Theory for strongly coupled quantum dot cavity quantum electrodynamics Alexander Carmele OUTLINE Folie: 2 I: Introduction and Motivation 1.) Atom quantum optics and advantages of semiconductor

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Optics and Quantum Optics with Semiconductor Nanostructures. Overview Optics and Quantum Optics with Semiconductor Nanostructures Stephan W. Koch Department of Physics, Philipps University, Marburg/Germany and Optical Sciences Center, University of Arizona, Tucson/AZ Overview

More information

Optical Nonlinearities in Quantum Wells

Optical Nonlinearities in Quantum Wells Harald Schneider Institute of Ion-Beam Physics and Materials Research Semiconductor Spectroscopy Division Rosencher s Optoelectronic Day Onéra 4.05.011 Optical Nonlinearities in Quantum Wells Harald Schneider

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Theory of quantum dot cavity-qed

Theory of quantum dot cavity-qed 03.01.2011 Slide: 1 Theory of quantum dot cavity-qed -- LO-phonon induced cavity feeding and antibunching of thermal radiation -- Alexander Carmele, Julia Kabuss, Marten Richter, Andreas Knorr, and Weng

More information

Cavity QED with quantum dots in microcavities

Cavity QED with quantum dots in microcavities Cavity QED with quantum dots in microcavities Martin van Exter, Morten Bakker, Thomas Ruytenberg, Wolfgang Löffler, Dirk Bouwmeester (Leiden) Ajit Barve, Larry Coldren (UCSB) Motivation and Applications

More information

Fermi polaron-polaritons in MoSe 2

Fermi polaron-polaritons in MoSe 2 Fermi polaron-polaritons in MoSe 2 Meinrad Sidler, Patrick Back, Ovidiu Cotlet, Ajit Srivastava, Thomas Fink, Martin Kroner, Eugene Demler, Atac Imamoglu Quantum impurity problem Nonperturbative interaction

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

Single-mode Polariton Laser in a Designable Microcavity

Single-mode Polariton Laser in a Designable Microcavity Single-mode Polariton Laser in a Designable Microcavity Hui Deng Physics, University of Michigan, Ann Arbor Michigan Team: Bo Zhang Zhaorong Wang Seonghoon Kim Collaborators: S Brodbeck, C Schneider, M

More information

Quantum Optics. Manipulation of «simple» quantum systems

Quantum Optics. Manipulation of «simple» quantum systems Quantum Optics Manipulation of «simple» quantum systems Antoine Browaeys Institut d Optique, Palaiseau, France Quantum optics = interaction atom + quantum field e g ~ 1960: R. Glauber (P. Nobel. 2005),

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III)

Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III) Quantum Computation with Spins and Excitons in Semiconductor Quantum Dots (Part III) Carlo Piermarocchi Condensed Matter Theory Group Department of Physics and Astronomy Michigan State University, East

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

Manipulating Polariton Condensates on a Chip

Manipulating Polariton Condensates on a Chip Manipulating Polariton Condensates on a Chip Pavlos G. Savvidis University of Crete, FORTH-IESL Tbilisi 19.09.12 Acknowledgements Prof. PG Savvidis Dr. Peter Eldridge Dr. Simos Tsintzos PhD Niccolo Somaschi

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures Intensity / a.u. Supplementary figures 110 MAPbI 3 1:1 MaPbI 3-x Cl x 3:1 220 330 0 10 15 20 25 30 35 40 45 2 theta / deg Supplementary Fig. 1 X-ray Diffraction (XRD) patterns of MAPbI3 and MAPbI 3-x Cl

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems

Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Non-equilibrium Bose-Einstein condensation phenomena in microcavity polariton systems Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Michiel Wouters BEC CNR-INFM and Università di Trento,

More information

Réunion erc. Gwendal Fève. Panel PE3 12 mn presentation 12 mn questions

Réunion erc. Gwendal Fève. Panel PE3 12 mn presentation 12 mn questions Réunion erc Gwendal Fève Panel PE3 12 mn presentation 12 mn questions Electron quantum optics in quantum Hall edge channels Gwendal Fève Laboratoire Pierre Aigrain, Ecole Normale Supérieure-CNRS Professor

More information

Single-photon nonlinearity of a semiconductor quantum dot in a cavity

Single-photon nonlinearity of a semiconductor quantum dot in a cavity Single-photon nonlinearity of a semiconductor quantum dot in a cavity D. Sanvitto, F. P. Laussy, F. Bello, D. M. Whittaker, A. M. Fox and M. S. Skolnick Department of Physics and Astronomy, University

More information

Light-Matter Correlations in Polariton Condensates

Light-Matter Correlations in Polariton Condensates Light-Matter Correlations in Polariton Condensates 1) Alexey Kavokin University of Southampton, UK SPIN, CNR, Rome, Italy Alexandra Sheremet Russian Quantum Center, Moscow, Russia Yuriy Rubo Universidad

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Single Photon Generation & Application in Quantum Cryptography

Single Photon Generation & Application in Quantum Cryptography Single Photon Generation & Application in Quantum Cryptography Single Photon Sources Photon Cascades Quantum Cryptography Single Photon Sources Methods to Generate Single Photons on Demand Spontaneous

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information

Non-equilibrium quantum many-body physics with optical systems

Non-equilibrium quantum many-body physics with optical systems Non-equilibrium quantum many-body physics with optical systems Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Many experimental signatures of polariton BEC 1 Narrowing of the momentum distribution

More information

Quantised Vortices in an Exciton-Polariton Fluid

Quantised Vortices in an Exciton-Polariton Fluid 1 Quantised Vortices in an Exciton-Polariton Fluid K. G. Lagoudakis 1, M. Wouters, M. Richard 1, A. Baas 1, I. Carusotto, R. André 3, Le Si Dang 3, B. Deveaud-Pledran 1 1 IPEQ, Ecole Polytechnique Fédérale

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

David Snoke Department of Physics and Astronomy, University of Pittsburgh

David Snoke Department of Physics and Astronomy, University of Pittsburgh The 6 th International Conference on Spontaneous Coherence in Excitonic Systems Closing Remarks David Snoke Department of Physics and Astronomy, University of Pittsburgh ICSCE6, Stanford University, USA

More information

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Growth of III V semiconductor quantum dots C. Schneider, S. Höfling and A. Forchel 1.1 Introduction

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 0.038/NPHYS406 Half-solitons in a polariton quantum fluid behave like magnetic monopoles R. Hivet, H. Flayac, D. D. Solnyshkov, D. Tanese 3, T. Boulier, D. Andreoli, E. Giacobino,

More information

Oscillateur paramétrique optique en

Oscillateur paramétrique optique en C. Ozanam 1, X. Lafosse 2, I. Favero 1, S. Ducci 1, G. Leo 1 1 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire MPQ, CNRS-UMR 7162, Paris, France, 2 Laboratoire de Photonique et Nanostructures,

More information

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Lecture 2. Electron states and optical properties of semiconductor nanostructures Lecture Electron states and optical properties of semiconductor nanostructures Bulk semiconductors Band gap E g Band-gap slavery: only light with photon energy equal to band gap can be generated. Very

More information

Quantum optics with multi-level transitions in semiconductor quantum dots

Quantum optics with multi-level transitions in semiconductor quantum dots Quantum optics with multi-level transitions in semiconductor quantum dots Brian Gerardot Institute of Photonics and Quantum Sciences, SUPA Heriot-Watt University, Edinburgh, UK Confocal Quantum Coherent

More information

Control of excitons and exciton-polariton condensates in acoustic lattices

Control of excitons and exciton-polariton condensates in acoustic lattices Control of excitons and exciton-polariton condensates in acoustic lattices P. V. Santos Surface acoustic waves (SAWs) photons GaAs - + electrons, holes and spins excitons, polaritons polariton condensates

More information

An entangled LED driven quantum relay over 1km

An entangled LED driven quantum relay over 1km An entangled LED driven quantum relay over 1km Christiana Varnava 1,2 R. Mark Stevenson 1, J. Nilsson 1, J. Skiba Szymanska 1, B. Dzurnak 1, M. Lucamarini 1, A. J. Bennett 1,M. B. Ward 1, R. V. Penty 2,I.

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University 1: Bose-Einstein Condensation Department of Physics Umeå University lundh@tp.umu.se April 13, 2011 Umeå 114 000 inhabitants Average age 37.9 years Cultural capital of Europe 2014 400 km ski tracks 180

More information

All-optical control of the quantum flow of a polariton superfluid

All-optical control of the quantum flow of a polariton superfluid All-optical control of the quantum flow of a polariton superfluid D. Sanvitto 1, S. Pigeon 2, A. Amo 3,4, D. Ballarini 5, M. De Giorgi 1, I. Carusotto 6, R. Hivet 3, F. Pisanello 3, V. G. Sala 3, P. S.

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

Room temperature one-dimensional polariton condensate in a ZnO microwire

Room temperature one-dimensional polariton condensate in a ZnO microwire Room temperature one-dimensional polariton condensate in a ZnO microwire Liaoxin Sun, 1,3 Shulin Sun, 1 Hongxing Dong, 1 Wei Xie, 1 M. Richard, 2 Lei Zhou, 1 Zhanghai Chen, 1, a L. S. Dang, 2 Xuechu Shen

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Ultrafast solid-state quantum optics

Ultrafast solid-state quantum optics Ultrafast solid-state quantum optics Department of Physics and Center for Applied Photonics (CAP) Rudolf Bratschitsch University of Konstanz, Germany Outline Solid-state systems for quantum optics Semiconductor

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

what happens if we make materials smaller?

what happens if we make materials smaller? what happens if we make materials smaller? IAP VI/10 ummer chool 2007 Couvin Prof. ns outline Introduction making materials smaller? ynthesis how do you make nanomaterials? Properties why would you make

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Lecture 8 Interband Transitions. Excitons

Lecture 8 Interband Transitions. Excitons Lecture 8 Interband Transitions Excitons Read: FS 4 Purdue University Spring 2016 Prof. Yong P. Chen (yongchen@purdue.edu) Lecture 8 (2/4/2016) Slide 1 Textbook 1: M. Fox Optical Properties of Solids (2

More information

Condensation of Excitons in a Trap

Condensation of Excitons in a Trap Condensation of Excitons in a Trap I (arb. units) Alex High, Jason Leonard, Mikas Remeika, & Leonid Butov University of California at San Diego Micah Hanson & Art Gossard University of California at Santa

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris

Les Puces à Atomes. Jakob Reichel. Laboratoire Kastler Brossel de l E.N.S., Paris Les Puces à Atomes Jakob Reichel Laboratoire Kastler Brossel de l E.N.S., Paris Atom chips: Cold atoms meet the nanoworld ~ 100 nm BEC (~ 10 5 atoms, ~ 100 nk) microstructured surface bulk material ( ~

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada Parte III Sergio E. Ulloa Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University,

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

1) Institut d Electronique Fondamentale, CNRS, Univ. Paris- Sud, Université Paris- Saclay, Bâtiment 220, Rue André Ampère, F Orsay, France

1) Institut d Electronique Fondamentale, CNRS, Univ. Paris- Sud, Université Paris- Saclay, Bâtiment 220, Rue André Ampère, F Orsay, France Supporting information Direct band gap germanium microdisks obtained with silicon nitride stressor layers Moustafa El Kurdi, 1 Mathias Prost, 1 Abdelhamid Ghrib, 1 Sébastien Sauvage, 1 Xavier Checoury,

More information

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK

Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Quantum Memory in Atomic Ensembles BY GEORG BRAUNBECK Table of contents 1. Motivation 2. Quantum memory 3. Implementations in general 4. Implementation based on EIT in detail QUBIT STORAGE IN ATOMIC ENSEMBLES

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Stimulated scattering and lasing of intersubband cavity polaritons

Stimulated scattering and lasing of intersubband cavity polaritons Stimulated scattering and lasing of intersubband cavity polaritons Simone De Liberato, Cristiano Ciuti To cite this version: Simone De Liberato, Cristiano Ciuti. Stimulated scattering and lasing of intersubband

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information