Spin Dynamics in Single GaAs Nanowires

Size: px
Start display at page:

Download "Spin Dynamics in Single GaAs Nanowires"

Transcription

1 1 Dr. Max Mustermann Referat Kommunikation & Marketing Verwaltung Spin Dynamics in Single GaAs Nanowires F. Dirnberger, S. Furthmeier, M. Forsch, A. Bayer, J. Hubmann, B. Bauer, J. Zweck, E. Reiger, C. Schüller, T. Korn and D. Bougeard Institute for Experimental and Applied Physics, University of Regensburg, Germany

2 2 Motivation Spin-FET in 1D Majorana fermions SOI and spin dynamics

3 3 Motivation GaAs nanowires: hexagonal wurtzite phase can be stabilized GaAs nanowires: due to large surface-area-to-volume ratio Spin-FET in 1D Majorana fermions SOI and spin dynamics

4 4 Motivation GaAs nanowires: hexagonal wurtzite phase can be stabilized GaAs nanowires: due to large surface-area-to-volume ratio Zincblende: Spin-FET in 1D Majorana fermions SOI and spin dynamics

5 5 Motivation GaAs nanowires: hexagonal wurtzite phase can be stabilized GaAs nanowires: due to large surface-area-to-volume ratio Wurtzite: Zincblende: Spin-FET in 1D Majorana fermions SOI and spin dynamics

6 6 Motivation Optical Orientation with circularly polarized light: Δm j = ±1 Zincblende:

7 7 Motivation Optical Orientation with circularly polarized light: Δm j = ±1 Wurtzite: Zincblende:

8 8 Motivation Optical Orientation with circularly polarized light: Δm j = ±1 Wurtzite: Non-invasive optical approach: Spin relaxation dynamics Spin-orbit interaction }?

9 9 Outline Demonstration of optical spin injection in a single nanowire Spin dynamics in wurtzite GaAs nanowires Spin-orbit interaction and the role of the core-shell interface

10 10 Optical spin injection into single freestanding wurtzite GaAs nanowires 2 µm Stacking-fault-free, pure wurtzite crystal structure: 4 5 µm length, nm diameter Furthmeier et al., APL 105, (2014)

11 11 Optical spin injection into single freestanding wurtzite GaAs nanowires 2 µm Stacking-fault-free, pure wurtzite crystal structure: 4 5 µm length, nm diameter Furthmeier et al., APL 105, (2014) Deposition of AlGaAs passivation shell to disable the dominant nonradiative recombination at the bare GaAs surface

12 12 Optical spin injection into single freestanding wurtzite GaAs nanowires 2 µm Optical axis wurtzite c-axis No linear polarization effects Stacking-fault-free, pure wurtzite crystal structure: 4 5 µm length, nm diameter Furthmeier et al., APL 105, (2014) Deposition of AlGaAs passivation shell to disable the dominant nonradiative recombination at the bare GaAs surface

13 13 Optical spin orientation in GaAs nanowires Excitation and detection with same (I + ) and opposite (I ) helicity P C = I + I I + + I

14 14 Optical spin orientation in GaAs nanowires Excitation and detection with same (I + ) and opposite (I ) helicity P C = I + I I + + I PL Intensity (arb. u.) T = 4.2 K B = 0 Carbon defects (substrate) Spin I + Spin I P C = I + I I + + I ~50% Emission Energy (ev) Detected degrees of circular polarization up to 50%

15 15 Hanle Experiment B

16 C 16 Hanle Experiment T = 4.2 K B P S (arb. u.) Magnetic Field (T)

17 C 17 Hanle Experiment T = 4.2 K B P S (arb. u.) C Magnetic Field (T) ω L : Larmor frequency τ* : spin decay time

18 18 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S (B ) ~ exp( t/τ s ) cos(ω L t ) B = 300 mt P S (arb. u.) B = 200 mt B = Time (ns)

19 19 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S (B ) ~ exp( t/τ s ) cos(ω L t ) B = 300 mt P S (arb. u.) B = 200 mt B = Time (ns)

20 20 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S (B ) ~ exp( t/τ s ) cos(ω L t ) B = 300 mt P S (arb. u.) B = 200 mt B = Time (ns) Exponential decay yields the spin relaxation time τ s (B ) Larmor frequency ω L delivers the electron g-factor via ω L (B) = g e μ B ħ B

21 25 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S (B ) ~ exp( t/τ s ) cos(ω L t ) B = 300 mt 1.6 P S (arb. u.) B = 200 mt B = 0 Spin relaxation time S (ns) Time (ns) Magnetic field (mt)

22 26 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S (B ) ~ exp( t/τ s ) cos(ω L t ) B = 300 mt 1.6 P S (arb. u.) B = 200 mt B = 0 Spin relaxation time S (ns) τ s drops with B Time (ns) Magnetic field (mt)

23 27 Spin dynamics in wurtzite GaAs nanowires counterintuitive compared to related bulk wurtzite semiconductors Bulk wurtzite GaN Nanowire wurtzite GaAs Spin relaxation time S (ns) τ S τ S 0 Buß et al., APL 95, (2009) Magnetic field (mt)

24 SOI and the role of the core-shell interface 28

25 SOI and the role of the core-shell interface 29

26 30 SOI and the role of the core-shell interface Large GaAs/AlGaAs core shell interface

27 31 SOI and the role of the core-shell interface Large GaAs/AlGaAs core shell interface Strong Rashba-like spin orbit fields due to natural interface asymmetry (NIA)

28 32 SOI and the role of the core-shell interface Large GaAs/AlGaAs core shell interface Strong Rashba-like spin orbit fields due to natural interface asymmetry (NIA)

29 SOI and the role of the core-shell interface 33

30 C 34 Summary First optical spin injection in a single nanowire Hanle Measurement P S (arb. u.) Magnetic Field (T) B = 400 mt Spin dynamics in wurtzite GaAs nanowires Spin relaxation time τ s ~ 1.5 ns Magnetic field: τ s drops Model: Rashba fields due to large GaAs/AlGaAs core shell interface P S (arb. u.) B = 300 mt B = 200 mt B = 0 florian.dirnberger@ur.de Time (ns)

31 C 35 Summary First optical spin injection in a single nanowire Hanle Measurement P S (arb. u.) Magnetic Field (T) Spin dynamics in wurtzite GaAs nanowires Spin relaxation time τ s ~ 1.5 ns Magnetic field: τ s drops Model: Rashba fields due to large GaAs/AlGaAs core shell interface florian.dirnberger@ur.de

32 36 Outlook Nanowire Quantum Wire

33 37 Outlook Nanowire Quantum Wire Looking for further evidence: Shrinking the nanowire diameter towards quantum sizes

34 38 Many thanks to Stephan Furthmeier Moritz Forsch Andreas Bayer Joachim Hubmann Benedikt Bauer Josef Zweck Elisabeth Reiger Christian Schüller Tobias Korn Dominique Bougeard the DFG for financial support via SFB 689 You for your attention!

35 39

36 40 Outline Optical spin orientation in wurtzite GaAs nanowires Proof for optical spin injection in a single wurtzite GaAs nanowire Spin dynamics in wurtzite GaAs nanowires Spin relaxation: Model

37 41 Purely wurtzite GaAs nanowires with MBE growth Typical GaAs nanowire sample Pure wurtzite structure Pure wurtzite wires: 4 8 µm length, nm diameter Deposition of AlGaAs passivation shell to disable the dominant nonradiative recombination at the bare GaAs surface

38 42 Optical spin injection in wurtzite GaAs requires: Circularly polarized light Direction of polarization c-axis Lying nanowires: Optical selection rules lead to different absorption coefficients Depolarization of circular excitation and detection

39 43 Optical spin injection in wurtzite GaAs nanowires Circularly polarized light Direction of polarization wurtzite c-axis

40 44 Optical spin injection in wurtzite GaAs nanowires Circularly polarized light Direction of polarization wurtzite c-axis Probing freestanding nanowires Optical axis c-axis No linear polarization effects

41 45 Probing freestanding nanowires μ-photoluminescence in confocal configuration λ/4 c-axis ħω circ Excitation and detection with same ( ) and opposite ( ) helicity P C = I I I + I

42 46 Probing freestanding nanowires P C = I Co I Contra I Co + I Contra λ/4 c-axis

43 Sample preparation for investigation of single nanowires 47

44 48 Sample preparation for investigation of single nanowires Reduction of wire density by ultrasonic bath dip

45 49 Sample preparation for investigation of single nanowires Creating patterns on the samples for the identification of single wires

46 50 Investigation of single freestanding nanowires free exciton substrate 2D scans allow identification of single nanowires

47 51 Optical spin injection P C = I Co I Contra Excitation and detection with same (Co) and opposite (Contra) helicity I Co + I Contra cb ħω circ hh lh

48 52 Crystal structure of GaAs nanowires 3D and 2D: only cubic zinc-blende Nanowires: unique access to the hexagonal wurtzite phase Properties of wurtzite GaAs not known exactly: - Band gap? - Effective masses? exciton binding energy? - Conduction band symmetry? - Spin dynamics / Landé factor g?

49 Crystal Structure & Electronic Properties 53 Electronic Structure of heterocrystalline Nanowires Most of the nanowires contain zinc-blende and wurtzite Type II (staggered) band alignment -> excitons bound to the ZB-WZ interfaces E phot = E gap - E X - ΔE VB

50 Crystal Structure & Electronic Properties 54 Electronic Structure of heterocrystalline Nanowires Most of the nanowires contain zinc-blende and wurtzite Type II (staggered) band alignment -> excitons bound to the ZB-WZ interfaces E phot = E gap - E X - ΔE VB Short segments of ZB / WZ -> Quantum confinement E phot = E gap - E X - ΔE VB + E conf, electron + E conf, hole

51 Crystal Structure & Electronic Properties 55 Luminescence Spectra of mixed Crystal Nanowires Broad emission below the free exciton peak Lowest energy gives lower bound of valence band offset: E phot, min = ev > E g - ΔE VB - E X -> ΔE VB > 60 mev (Calculations: mev) No free exciton signal

52 56 Luminescence of purely wurtzite GaAs nanowires T = 4.2 K free exciton PL Intensity (arb. u.) substrate Emission Energy (ev) (Nearly) defect-free wurtzite structure Sharp free exciton emission peak at ~ ev, slightly larger than in zinc-blende (E = ev)

53 57 Luminescence of purely wurtzite GaAs nanowires PL Intensity (arb. u.) R ~ 10 ns Time (ns) Monoexponential decay Long exciton lifetimes up to 10 ns, significantly longer than the pure spin dephasing times T 2 ~ 1 ns

54 58 Optical spin injection in wurtzite GaAs nanowires T = 4.2 K P C = I I I + I ~50% PL Intensity (arb. u.) C-GaAs substrate Spin Spin Emission Energy (ev) Detected degrees of circular polarization up to 50%

55 59 Hanle - Experiment B P S (arb. u.) Magnetic Field (T)

56 60 Hanle - Experiment B P S (arb. u.) Magnetic Field (T)

57 61 Hanle - Experiment B P S (arb. u.) Magnetic Field (T)

58 62 Hanle - Experiment P S B ~ (ω L τ )² P S (arb. u.) FWHM ~ 1/(ω L τ ) ω L = g e μ B ħ B 1 τ = τ R T Magnetic Field (T)

59 63 Hanle - Experiment SPG (arb. units) * novalue * 210ps * 420ps * 520ps * 730ps * 610ps T = 50K T = 40K T = 30K T = 20K T = 10K Magnetic Field (T) T = 4.5K

60 Hanle Experiment 64

61 65 Hanle Experiment T = 4.2 K P S (arb. u.) Magnetic Field (T)

62 66 Hanle Experiment T = 4.2 K P S (arb. u.) P S B ~ (ω L τ )² Magnetic Field (T) ω L : Larmor frequency τ : spin decay time

63 67 Outline Optical spin orientation in wurtzite GaAs nanowires Proof for optical spin injection in a single wurtzite GaAs nanowire Spin dynamics in wurtzite GaAs nanowires g-factor spin decay time Spin relaxation: Model

64 68 Time-resolved photoluminescence B > 0 P S (arb. u.) ~ exp t τ cos ω L t Time (ns)

65 69 Time-resolved photoluminescence B > 0 P S (arb. u.) Time (ns)

66 70 Time-resolved photoluminescence B > 0 P S (arb. u.) Time (ns) ħω circ

67 71 Time-resolved photoluminescence B > 0 P S (arb. u.) Time (ns) ħω circ ħω circ

68 72 Time-resolved photoluminescence B > 0 P S (arb. u.) Time (ns) ħω circ ħω circ ħω circ

69 73 Spin dynamics in wurtzite GaAs nanowires T = 4.2 K B = 300 mt P S (arb. u.) Time (ns)

70 74 Spin dynamics in wurtzite GaAs nanowires T = 4.2 K B = 300 mt P S (arb. u.) ~ exp t τ cos ω L t Time (ns)

71 75 Spin dynamics in wurtzite GaAs nanowires B = 400 mt P S B ~ exp t τ cos ω L t B = 300 mt P S (arb. u.) B = 200 mt B = Time (ns) Exponential decay yields the spin decay time τ (B) Larmor frequency ω L delivers the electron g-factor via ω L (B) = g e μ B ħ B

72 76 Spin dynamics in wurtzite GaAs nanowires Larmor frequency (1/ns) Magnetic Field (mt)

73 77 Spin dynamics in wurtzite GaAs nanowires Larmor frequency (1/ns) Magnetic Field (mt) ω L = g e μ B ħ B g e ~ Absolute value of the g-factor in wurtzite GaAs nanowires is g e For comparison: g-factor in bulk zinc-blende GaAs is g e = 0.44 ~ 0. 25

74 78 Spin dynamics in wurtzite GaAs nanowires T = 4.2 K B = 400 mt P S (arb. u.) ~ exp t τ Time (ns)

75 Spin dynamics in wurtzite GaAs nanowires 79

76 80 Outline Optical spin orientation in wurtzite GaAs nanowires Proof for optical spin injection in a single wurtzite GaAs nanowire Spin dynamics in wurtzite GaAs nanowires g-factor spin decay time Spin relaxation: Model bulk wurtzite semiconductors wurtzite GaAs nanowires

77 81 Spin relaxation in bulk wurtzite semiconductors Dominant spin relaxation mechanism: Dyakonov-Perel k-dependent spin-orbit fields cause precession of the electron spins and lead to ensemble dephasing

78 82 Spin relaxation in bulk wurtzite semiconductors Spin orbit interaction: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0

79 83 Spin relaxation in bulk wurtzite semiconductors Spin orbit interaction: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0 k 3 -dependent term due to bulk inversion asymmetry, which also describes the spin-splitting in bulk zinc-blende semiconductors

80 84 Spin relaxation in bulk wurtzite semiconductors Spin orbit interaction: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0 k-linear contribution due to an intrinsic wurtzite structure inversion asymmetry

81 85 Spin relaxation in bulk wurtzite semiconductors Spin orbit interaction: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0 k-linear contribution due to an intrinsic wurtzite structure inversion asymmetry τ z = 1 2 τ x = 1 2 τ y

82 86 Spin relaxation in bulk wurtzite semiconductors Spin relaxation due to Dyakonov-Perel scattering: B = 0 τ S 0 = τ z τ z = 1 2 τ x = 1 2 τ y

83 87 Spin relaxation in bulk wurtzite semiconductors Spin relaxation due to Dyakonov-Perel scattering: B 0 x Spin precession τ eff = 1 τz τ y 1 = 4 3 τ S 0 τ z = 1 2 τ x = 1 2 τ y

84 Buß et al., APL 95, (2009) 88 Spin relaxation in bulk wurtzite semiconductors Spin relaxation due to Dyakonov-Perel scattering: Spin dynamics in bulk wurtzite GaN τ eff = 1 τz τ y 1 = 4 3 τ S 0

85 89 Spin relaxation in wurtzite GaAs nanowires Spin relaxation due to Dyakonov-Perel scattering: Bulk wurtzite GaN Nanowire wurtzite GaAs Buß et al., APL 95, (2009) τ z = 1 2 τ x = 1 2 τ y

86 90 Spin relaxation in wurtzite GaAs nanowires Spin relaxation due to Dyakonov-Perel scattering: Bulk wurtzite GaN Nanowire wurtzite GaAs Buß et al., APL 95, (2009) τ z = 1 2 τ x = 1 2 τ y τ z = 5τ x = 5τ y

87 91 Spin relaxation in wurtzite GaAs nanowires Spin relaxation due to Dyakonov-Perel scattering: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0 +

88 92 Spin relaxation in wurtzite GaAs nanowires Spin relaxation due to Dyakonov-Perel scattering: Ω k = 2 ħ γ e bk z 2 k 2 k y k x 0 + α e k y k x 0 + Suggestion: Rashba contribution due to structure inversion asymme at the large GaAs/AlGaAs core-shell interface

89 93 Spin relaxation in wurtzite GaAs nanowires Suggestion: Rashba fields due to GaAs/AlGaAs core-shell interface

90 94 Summary T = 4.2 K First optical spin injection in a single nanowire P S (arb. u.) Hanle Measurement Magnetic Field (T)

91 95 Summary T = 4.2 K First optical spin injection in a single nanowire P S (arb. u.) Hanle Measurement Magnetic Field (T) Spin dynamics in wurtzite GaAs nanowires g-factor: g e ~ 0.23 Spin decay time τ ~ 1.3 ns Magnetic field: τ drops Rasha fields due to large GaAs/AlGaAs core-shell interface? P S (arb. u.) B = 400 mt B = 300 mt B = 200 mt B = Time (ns)

92 96 Summary T = 4.2 K First optical spin injection in a single nanowire P S (arb. u.) Hanle Measurement Magnetic Field (T) Spin dynamics in wurtzite GaAs nanowires g-factor: g e ~ 0.25 Spin decay time τ ~ 1.3 ns Magnetic field: τ drops Rasha fields due to large GaAs/AlGaAs core-shell interface?

93 97 Summary T = 4.2 K First optical spin injection in a single nanowire P S (arb. u.) Hanle Measurement Magnetic Field (T) Spin dynamics in wurtzite GaAs nanowires g-factor: g e ~ 0.25 Spin decay time τ ~ 1.5 ns Magnetic field: τ drops Rasha fields due to large GaAs/AlGaAs core-shell interface?

94 98 Summary T = 4.2 K First optical spin injection in a single nanowire P S (arb. u.) Hanle Measurement Magnetic Field (T) Spin dynamics in wurtzite GaAs nanowires g-factor: g e ~ 0.25 Spin decay time τ ~ 1.5 ns Magnetic field: τ drops Rashba fields due to large GaAs/AlGaAs core-shell interface?

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

III-V nanostructured materials synthesized by MBE droplet epitaxy

III-V nanostructured materials synthesized by MBE droplet epitaxy III-V nanostructured materials synthesized by MBE droplet epitaxy E.A. Anyebe 1, C. C. Yu 1, Q. Zhuang 1,*, B. Robinson 1, O Kolosov 1, V. Fal ko 1, R. Young 1, M Hayne 1, A. Sanchez 2, D. Hynes 2, and

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

Nature, Vol 458, 2009 Leon Camenzind FMM University of Basel,

Nature, Vol 458, 2009 Leon Camenzind FMM University of Basel, Nature, Vol 458, 2009 Leon Camenzind University of Basel, 17.6.2011 Outlook Part I: Transient (Spin)-Grating Spectroscopy Part II: Theory of Persistent Spin Helix (PSH) Experimental results Part I Transient

More information

Spin Orbit Coupling (SOC) in Graphene

Spin Orbit Coupling (SOC) in Graphene Spin Orbit Coupling (SOC) in Graphene MMM, Mirko Rehmann, 12.10.2015 Motivation Weak intrinsic SOC in graphene: [84]: Phys. Rev. B 80, 235431 (2009) [85]: Phys. Rev. B 82, 125424 (2010) [86]: Phys. Rev.

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg) Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg) :Syllabus: 1. Introductory description 2. Elliott-Yafet spin relaxation and spin hot spots 3.

More information

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Exciton spectroscopy

Exciton spectroscopy Lehrstuhl Werkstoffe der Elektrotechnik Exciton spectroscopy in wide bandgap semiconductors Lehrstuhl Werkstoffe der Elektrotechnik (WW6), Universität Erlangen-Nürnberg, Martensstr. 7, 91058 Erlangen Vortrag

More information

Experimental discovery of the spin-hall effect in Rashba spin-orbit coupled semiconductor systems

Experimental discovery of the spin-hall effect in Rashba spin-orbit coupled semiconductor systems Experimental discovery of the spin-hall effect in Rashba spin-orbit coupled semiconductor systems J. Wunderlich, 1 B. Kästner, 1,2 J. Sinova, 3 T. Jungwirth 4,5 1 Hitachi Cambridge Laboratory, Cambridge

More information

Luminescence Process

Luminescence Process Luminescence Process The absorption and the emission are related to each other and they are described by two terms which are complex conjugate of each other in the interaction Hamiltonian (H er ). In an

More information

Spin Lifetime Measurements in MBE-Grown GaAs Epilayers

Spin Lifetime Measurements in MBE-Grown GaAs Epilayers phys. stat. sol. (b) 233, No. 3, 445 452 (2002) Spin Lifetime Measurements in MBE-Grown GaAs Epilayers J. S. Colton 1 ), T. A. Kennedy, A. S. Bracker, and D. Gammon Naval Research Laboratory, Washington

More information

arxiv: v2 [cond-mat.mes-hall] 6 Apr 2011

arxiv: v2 [cond-mat.mes-hall] 6 Apr 2011 Electron spin relaxation as evidence of excitons in a two dimensional electron-hole plasma arxiv:1103.2474v2 [cond-mat.mes-hall] 6 Apr 2011 S. Oertel, 1 S. Kunz, 1 D. Schuh, 2 W. Wegscheider, 3 J. Hübner,

More information

Physics of Semiconductors (Problems for report)

Physics of Semiconductors (Problems for report) Physics of Semiconductors (Problems for report) Shingo Katsumoto Institute for Solid State Physics, University of Tokyo July, 0 Choose two from the following eight problems and solve them. I. Fundamentals

More information

Spin relaxation in low-dimensional systems

Spin relaxation in low-dimensional systems J. Phys.: Condens. Matter 11 (1999) 5929 5952. Printed in the UK PII: S0953-8984(99)01386-7 Spin relaxation in low-dimensional systems LViña Departamento de Física de Materiales C-IV-510, Universidad Autónoma

More information

Luminescence basics. Slide # 1

Luminescence basics. Slide # 1 Luminescence basics Types of luminescence Cathodoluminescence: Luminescence due to recombination of EHPs created by energetic electrons. Example: CL mapping system Photoluminescence: Luminescence due to

More information

Electrical spin-injection into semiconductors

Electrical spin-injection into semiconductors Electrical spin-injection into semiconductors L. W. Molenkamp Physikalisches Institut Universität Würzburg Am Hubland 97074 Würzburg Germany Contents Motivation The usual approach Theoretical treatment

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

+ - Indirect excitons. Exciton: bound pair of an electron and a hole.

+ - Indirect excitons. Exciton: bound pair of an electron and a hole. Control of excitons in multi-layer van der Waals heterostructures E. V. Calman, C. J. Dorow, M. M. Fogler, L. V. Butov University of California at San Diego, S. Hu, A. Mishchenko, A. K. Geim University

More information

Christian Scheller Physical Review Letters PRL 100, (2008)

Christian Scheller Physical Review Letters PRL 100, (2008) Christian Scheller 14.11.2008 Physical Review Letters PRL 100, 176806 (2008) Contents Overview D yakonov Perel spin relaxation Rashba effect Samples and symm. measurements (MPGE) Spin lifetime measurements

More information

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy

Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Temperature Dependent Optical Band Gap Measurements of III-V films by Low Temperature Photoluminescence Spectroscopy Linda M. Casson, Francis Ndi and Eric Teboul HORIBA Scientific, 3880 Park Avenue, Edison,

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Optical Nonlinearities in Quantum Wells

Optical Nonlinearities in Quantum Wells Harald Schneider Institute of Ion-Beam Physics and Materials Research Semiconductor Spectroscopy Division Rosencher s Optoelectronic Day Onéra 4.05.011 Optical Nonlinearities in Quantum Wells Harald Schneider

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Using Light to Prepare and Probe an Electron Spin in a Quantum Dot

Using Light to Prepare and Probe an Electron Spin in a Quantum Dot A.S. Bracker, D. Gammon, E.A. Stinaff, M.E. Ware, J.G. Tischler, D. Park, A. Shabaev, and A.L. Efros Using Light to Prepare and Probe an Electron Spin in a Quantum Dot A.S. Bracker, D. Gammon, E.A. Stinaff,

More information

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for

Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for Supplementary Figure 1 Interlayer exciton PL peak position and heterostructure twisting angle. a, Photoluminescence from the interlayer exciton for six WSe 2 -MoSe 2 heterostructures under cw laser excitation

More information

Supplementary Information for

Supplementary Information for Supplementary Information for Multi-quantum well nanowire heterostructures for wavelength-controlled lasers Fang Qian 1, Yat Li 1 *, Silvija Gradečak 1, Hong-Gyu Park 1, Yajie Dong 1, Yong Ding 2, Zhong

More information

Introduction to Optoelectronic Device Simulation by Joachim Piprek

Introduction to Optoelectronic Device Simulation by Joachim Piprek NUSOD 5 Tutorial MA Introduction to Optoelectronic Device Simulation by Joachim Piprek Outline:. Introduction: VCSEL Example. Electron Energy Bands 3. Drift-Diffusion Model 4. Thermal Model 5. Gain/Absorption

More information

Dynamics of electrons in surface states with large spin-orbit splitting. L. Perfetti, Laboratoire des Solides Irradiés

Dynamics of electrons in surface states with large spin-orbit splitting. L. Perfetti, Laboratoire des Solides Irradiés Dynamics of electrons in surface states with large spin-orbit splitting L. Perfetti, Laboratoire des Solides Irradiés Outline Topology of surface states on the Bi(111) surface Spectroscopy of electronic

More information

Calculation on the Band Structure of GaAs using k p -theory FFF042

Calculation on the Band Structure of GaAs using k p -theory FFF042 Calculation on the Band Structure of GaAs using k p -theory FFF04 I-Ju Chen, Sara Thorberg, Yang Chen December 17, 014 1 Introduction With its superior electronics and optical characteristics, GaAs is

More information

Spin Transport in III-V Semiconductor Structures

Spin Transport in III-V Semiconductor Structures Spin Transport in III-V Semiconductor Structures Ki Wook Kim, A. A. Kiselev, and P. H. Song Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7911 We

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Energy Band Calculations for Dynamic Gain Models in Semiconductor Quantum Well Lasers

Energy Band Calculations for Dynamic Gain Models in Semiconductor Quantum Well Lasers Energy Band Calculations for Dynamic Gain Models in School of Electrical and Electronic Engineering University of Nottingham; Nottingham NG7 2RD; UK Email: eexpjb1@nottingham.ac.uk Presentation Outline

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft

Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft Electron Dynamiχ MPRG Fritz-Haber-Institut der Max-Planck-Gesellschaft How exciting! 2016 Berlin, 3-6 August laura.foglia@elettra.eu 1 Current research challenges V Light Harvesting Light Emission Energy

More information

Anisotropic spin splitting in InGaAs wire structures

Anisotropic spin splitting in InGaAs wire structures Available online at www.sciencedirect.com Physics Physics Procedia Procedia 3 (010) 00 (009) 155 159 000 000 14 th International Conference on Narrow Gap Semiconductors and Systems Anisotropic spin splitting

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot

Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot Nondestructive Optical Measurements of a Single Electron Spin in a Quantum Dot J. Berezovsky, M. H. Mikkelsen, O. Gywat, N. G. Stoltz, L. A. Coldren, D. D. Awschalom* Center for Spintronics and Quantum

More information

Magnetic control of valley pseudospin in monolayer WSe 2

Magnetic control of valley pseudospin in monolayer WSe 2 Magnetic control of valley pseudospin in monolayer WSe 2 Grant Aivazian, Zhirui Gong, Aaron M. Jones, Rui-Lin Chu, Jiaqiang Yan, David G. Mandrus, Chuanwei Zhang, David Cobden, Wang Yao, and Xiaodong Xu

More information

Electroluminescence from Silicon and Germanium Nanostructures

Electroluminescence from Silicon and Germanium Nanostructures Electroluminescence from silicon Silicon Getnet M. and Ghoshal S.K 35 ORIGINAL ARTICLE Electroluminescence from Silicon and Germanium Nanostructures Getnet Melese* and Ghoshal S. K.** Abstract Silicon

More information

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Optics and Quantum Optics with Semiconductor Nanostructures. Overview Optics and Quantum Optics with Semiconductor Nanostructures Stephan W. Koch Department of Physics, Philipps University, Marburg/Germany and Optical Sciences Center, University of Arizona, Tucson/AZ Overview

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

SUPPLEMENTARY INFORMATION. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS 2 and WS 2

SUPPLEMENTARY INFORMATION. Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS 2 and WS 2 Long-lived nanosecond spin relaxation and spin coherence of electrons in monolayer MoS and WS Luyi Yang, Nikolai A. Sinitsyn, Weibing Chen 3, Jiangtan Yuan 3, Jing Zhang 3, Jun Lou 3, Scott A. Crooker,

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators Chapter 6 Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators 6.1 Introduction Researchers have devoted considerable effort to enhancing light emission from semiconductors

More information

Dirac matter: Magneto-optical studies

Dirac matter: Magneto-optical studies Dirac matter: Magneto-optical studies Marek Potemski Laboratoire National des Champs Magnétiques Intenses Grenoble High Magnetic Field Laboratory CNRS/UGA/UPS/INSA/EMFL MOMB nd International Conference

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013209 TITLE: Polarized Electron Photoemission Studies of Spin Relaxation in Thin GaAs Epitaxial Films DISTRIBUTION: Approved

More information

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Tolk Department of Physics and Astronomy Vanderbilt University,

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling

Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling Paul Wenk, Michael Kammermeier, John Schliemann, Klaus Richter, Roland Winkler SFB Workshop Bernried 30.09.2014

More information

Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton

Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton Supporting Information Colloidal Single-Layer Quantum Dots with Lateral Confinement Effects on 2D Exciton Ho Jin,, Minji Ahn,,,, Sohee Jeong,,, Jae Hyo Han,,, Dongwon Yoo,, Dong Hee Son, *, and Jinwoo

More information

Optical Manipulation of an Electron Spin in Quantum Dots

Optical Manipulation of an Electron Spin in Quantum Dots Optical Manipulation of an Electron Spin in Quantum Dots Al. L. Efros Naval Research Laoratory, Washington DC, USA Acknowledgements: DARPA/QuIST and ONR Kavli Institute for Theoretical Physics, UC Santa

More information

Level Repulsion of Localised Excitons Observed in Near-Field Photoluminescence Spectra

Level Repulsion of Localised Excitons Observed in Near-Field Photoluminescence Spectra phys. stat. sol. (a) 190, No. 3, 631 635 (2002) Level Repulsion of Localised Excitons Observed in Near-Field Photoluminescence Spectra A. Crottini (a), R. Idrissi Kaitouni (a), JL. Staehli 1 ) (a), B.

More information

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics Lecture I Spin Orbitronics Alireza Qaiumzadeh Radboud University (RU) Institute for Molecules and Materials (IMM) Theory of Condensed Matter group (TCM) What We Talk About When We Talk About Spin Orbitronics

More information

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne Quantum Dot Lasers Ecole Polytechnique Fédérale de Lausanne Outline: Quantum-confined active regions Self-assembled quantum dots Laser applications Electronic states in semiconductors Schrödinger eq.:

More information

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures

Intensity / a.u. 2 theta / deg. MAPbI 3. 1:1 MaPbI 3-x. Cl x 3:1. Supplementary figures Intensity / a.u. Supplementary figures 110 MAPbI 3 1:1 MaPbI 3-x Cl x 3:1 220 330 0 10 15 20 25 30 35 40 45 2 theta / deg Supplementary Fig. 1 X-ray Diffraction (XRD) patterns of MAPbI3 and MAPbI 3-x Cl

More information

Semiconductor Fundamentals. Professor Chee Hing Tan

Semiconductor Fundamentals. Professor Chee Hing Tan Semiconductor Fundamentals Professor Chee Hing Tan c.h.tan@sheffield.ac.uk Why use semiconductor? Microprocessor Transistors are used in logic circuits that are compact, low power consumption and affordable.

More information

Cleveland, OH 44106, USA *

Cleveland, OH 44106, USA * Control of valley polarization in monolayer MoS 2 by optical helicity Kin Fai Mak 1, Keliang He 2, Jie Shan 2, and Tony F. Heinz 1* 1 Departments of Physics and Electrical Engineering, Columbia University,

More information

Spin Dynamics in Semiconductors, Chapter 4 of Semiconductor Spintronics and Quantum Computation edited by D. D. Awschalom, D. Loss, and N. Samarth.

Spin Dynamics in Semiconductors, Chapter 4 of Semiconductor Spintronics and Quantum Computation edited by D. D. Awschalom, D. Loss, and N. Samarth. Spin Dynamics in Semiconductors, Chapter 4 of Semiconductor Spintronics and Quantum Computation edited by D. D. Awschalom, D. Loss, and N. Samarth. Springer, New York, 2002. Contents 4 Spin Dynamics in

More information

Supporting Information. Polaron Self-localization in White-light. Emitting Hybrid Perovskites

Supporting Information. Polaron Self-localization in White-light. Emitting Hybrid Perovskites Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is The Royal Society of Chemistry 2017 Supporting Information Polaron Self-localization in White-light Emitting

More information

tunneling theory of few interacting atoms in a trap

tunneling theory of few interacting atoms in a trap tunneling theory of few interacting atoms in a trap Massimo Rontani CNR-NANO Research Center S3, Modena, Italy www.nano.cnr.it Pino D Amico, Andrea Secchi, Elisa Molinari G. Maruccio, M. Janson, C. Meyer,

More information

Improved Superlattices for Spin-Polarized Electron Sources

Improved Superlattices for Spin-Polarized Electron Sources SLAC-PUB-12249 December 2006 (ACCPHY/MATSCI) Improved Superlattices for Spin-Polarized Electron Sources Yu. A. Mamaev, L. G. Gerchikov, Yu. P. Yashin, V. Kuz michev, D. Vasiliev State Polytechnic University,

More information

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree)

(002)(110) (004)(220) (222) (112) (211) (202) (200) * * 2θ (degree) Supplementary Figures. (002)(110) Tetragonal I4/mcm Intensity (a.u) (004)(220) 10 (112) (211) (202) 20 Supplementary Figure 1. X-ray diffraction (XRD) pattern of the sample. The XRD characterization indicates

More information

Assignment 6. Solution: Assumptions - Momentum is conserved, light holes are ignored. Diagram: a) Using Eq a Verdeyen,

Assignment 6. Solution: Assumptions - Momentum is conserved, light holes are ignored. Diagram: a) Using Eq a Verdeyen, Assignment 6 Solution: Assumptions - Momentum is conserved, light holes are ignored. Diagram: a) Using Eq..4.5a Verdeyen, ΔE c = E 2 E c = Using Eq..4.5b Verdeyen, ΔE v = E v E = b) Using Eq.2.9 Verdeyen,

More information

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Persistent spin helix in spin-orbit coupled system. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Persistent spin helix in spin-orbit coupled system Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab Persistent spin helix in spin-orbit coupled system Jake Koralek, Chris Weber, Joe Orenstein

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation.

Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Optics of Surfaces & Interfaces - VIII September 10 th, 2009 Resonant photo-ionization of point defects in HfO 2 thin films observed by second-harmonic generation. Jimmy Price and Michael C. Downer Physics

More information

Q. Shen 1,2) and T. Toyoda 1,2)

Q. Shen 1,2) and T. Toyoda 1,2) Photosensitization of nanostructured TiO 2 electrodes with CdSe quntum dots: effects of microstructure in substrates Q. Shen 1,2) and T. Toyoda 1,2) Department of Applied Physics and Chemistry 1), and

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Injection of Optically Generated Spins through Magnetic/Nonmagnetic Heterointerface: Ruling out Possible Detection Artifacts

Injection of Optically Generated Spins through Magnetic/Nonmagnetic Heterointerface: Ruling out Possible Detection Artifacts Vol. 106 (2004) ACTA PHYSICA POLONICA A No. 2 Proceedings of the XXXIII International School of Semiconducting Compounds, Jaszowiec 2004 Injection of Optically Generated Spins through Magnetic/Nonmagnetic

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Time Dependent Perturbation Theory. Andreas Wacker Mathematical Physics Lund University

Time Dependent Perturbation Theory. Andreas Wacker Mathematical Physics Lund University Time Dependent Perturbation Theory Andreas Wacker Mathematical Physics Lund University General starting point (t )Ψ (t ) Schrödinger equation i Ψ (t ) = t ^ (t ) has typically no analytic solution for

More information

Basic cell design. Si cell

Basic cell design. Si cell Basic cell design Si cell 1 Concepts needed to describe photovoltaic device 1. energy bands in semiconductors: from bonds to bands 2. free carriers: holes and electrons, doping 3. electron and hole current:

More information

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES

Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Cliquez et modifiez le titre Out-of-equilibrium electron dynamics in photoexcited topological insulators studied by TR-ARPES Laboratoire de Physique des Solides Orsay, France June 15, 2016 Workshop Condensed

More information

ON THE BAND GAPS AND BAND OFFSETS OF TYPE I MULTIPLE QUANTUM WELL (MQW) SYSTEM

ON THE BAND GAPS AND BAND OFFSETS OF TYPE I MULTIPLE QUANTUM WELL (MQW) SYSTEM www.arpapress.com/volumes/vol13issue2/ijrras_13_2_32.pdf ON THE BAND GAPS AND BAND OFFSETS OF TYPE I MULTIPLE QUANTUM WELL (MQW) SYSTEM 1 Ajayi Jonathan Olanipekun, 2 Adelabu, James Sunday Adebowale &

More information

Emissione di luce in campo prossimo da atomi artificiali

Emissione di luce in campo prossimo da atomi artificiali Università degli Studi di Messina Dipartimento di Fisica della Materia Italye Tecnologie Fisiche Avanzate Ecole Polytechnique Fédérale de Lausanne Switzerland Institute of Theoretical Physics Emissione

More information

Spin-orbit coupling: Dirac equation

Spin-orbit coupling: Dirac equation Dirac equation : Dirac equation term couples spin of the electron σ = 2S/ with movement of the electron mv = p ea in presence of electrical field E. H SOC = e 4m 2 σ [E (p ea)] c2 The maximal coupling

More information

Microscopic Modelling of the Optical Properties of Quantum-Well Semiconductor Lasers

Microscopic Modelling of the Optical Properties of Quantum-Well Semiconductor Lasers Microscopic Modelling of the Optical Properties of Quantum-Well Semiconductor Lasers Stephan W. Koch Department of Physics Philipps University, Marburg/Germany OVERVIEW - Outline of Theory - Gain/Absorption

More information

Nanoscience galore: hybrid and nanoscale photonics

Nanoscience galore: hybrid and nanoscale photonics Nanoscience galore: hybrid and nanoscale photonics Pavlos Lagoudakis SOLAB, 11 June 2013 Hybrid nanophotonics Nanostructures: light harvesting and light emitting devices 2 Hybrid nanophotonics Nanostructures:

More information

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes. M. Ehlert 1, C. Song 1,2, M. Ciorga 1,*, M. Utz 1, D. Schuh 1, D. Bougeard 1, and D. Weiss 1 1 Institute of Experimental

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Semiconductors and Optoelectronics. Today Semiconductors Acoustics. Tomorrow Come to CH325 Exercises Tours

Semiconductors and Optoelectronics. Today Semiconductors Acoustics. Tomorrow Come to CH325 Exercises Tours Semiconductors and Optoelectronics Advanced Physics Lab, PHYS 3600 Don Heiman, Northeastern University, 2017 Today Semiconductors Acoustics Tomorrow Come to CH325 Exercises Tours Semiconductors and Optoelectronics

More information

Ph.D. Thesis Synopsis

Ph.D. Thesis Synopsis Ph.D. Thesis Synopsis Title : Study of electronic band structure of group III-V semiconductors using optical spectroscopy with linearly and circularly polarized light Student : Ashish Arora Advisor : Sandip

More information

Spin-resolved photoelectron spectroscopy

Spin-resolved photoelectron spectroscopy Spin-resolved photoelectron spectroscopy Application Notes Spin-resolved photoelectron spectroscopy experiments were performed in an experimental station consisting of an analysis and a preparation chamber.

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED

INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED INVESTIGATIONS OF Mn, Fe, Ni AND Pb DOPED ZINC SULPHIDE NANOPARTICLES A thesis submitted to the University of Pune FOR THE DEGREE OF DOCTOR of PHILOSOPHY IN PHYSICS by PRAMOD H. BORSE DEPARTMENT OF PHYSICS

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ 1 Introduction

More information

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots

Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics in Quantum Dots Vol. 113 (2008) ACTA PHYSICA POLONICA A No. 3 Proceedings of the 13th International Symposium UFPS, Vilnius, Lithuania 2007 Femtosecond Spectral Hole Burning Spectroscopy as a Probe of Exciton Dynamics

More information

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF

Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Development and application for X-ray excited optical luminescence (XEOL) technology at STXM beamline of SSRF Content Introduction to XEOL Application of XEOL Development and Application of XEOL in STXM

More information

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3

University of Louisville - Department of Chemistry, Louisville, KY; 2. University of Louisville Conn Center for renewable energy, Louisville, KY; 3 Ultrafast transient absorption spectroscopy investigations of charge carrier dynamics of methyl ammonium lead bromide (CH 3 NH 3 PbBr 3 ) perovskite nanostructures Hamzeh Telfah 1 ; Abdelqader Jamhawi

More information

Optical properties of single-layer, double-layer, and bulk MoS2

Optical properties of single-layer, double-layer, and bulk MoS2 Optical properties of single-layer, double-layer, and bulk MoS Alejandro Molina-Sánchez, Ludger Wirtz, Davide Sangalli, Andrea Marini, Kerstin Hummer Single-layer semiconductors From graphene to a new

More information

Introduction to scintillators

Introduction to scintillators Introduction to scintillators M. Kobayashi (KEK) 17 November, 2003 1. Luminescence, fluorescence, scintillation, phosphorescence, etc. 2. Scintillation mechanism 3. Scintillation efficiency 4. Main characteristics

More information