Semiconductor Nanostructures. Gerhard Abstreiter

Size: px
Start display at page:

Download "Semiconductor Nanostructures. Gerhard Abstreiter"

Transcription

1 Semiconductor Nanostructures Fabrication and Properties of Self-Assembled Quantum Dots Gerhard Abstreiter Walter Schottky Institute, TUM, Garching Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 1

2 Outline: introduction to low-dimensional semiconductor structures fabrication of nanostructures with MBE! cleaved edge overgrowth (CEO)! self-assembled quantum dots (SAQD) structural properties of SAQDs electronic level structure of SAQDs control of charge in novel SAQD devices coherent control of a single dot photodiode charge and spin storage in SAQDs Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 2

3 crystal - and electronic structure example: GaAs [001] [110] Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 3

4 density of states for parabolic bands ~1cm 3D Density of States D(E) ~ E E g E Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 4

5 low-dimensional semiconductors: heterostructures and quantum wells Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 5

6 fabrication by molecular beam epitaxy schematics of a Ga(Al,In)As system cooling shroud (77K) RHEED gun substrate effusion-cells: Ga, As, Al, In, Si va lve transfersystem shutter RHEED screen window substrate manipulator Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 6

7 ultra clean MBE system at Walter Schottky Institut excellent vacuum (p 5x10-12 mbar) long-term closed growth chamber source materials: Ga, Al, In, As Valved cracker cell provides As 4 or As 2 only Si as dopant Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 7

8 high mobility 2-d electron gas Si modulation doping + electric subbands conduction band GaAs substrate GaAs epi layer high mobility 2DEG AlGaAs GaAs cap Energy Density of States D(E) const. E F E 1 E 2 E Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 8

9 Important achievements with heterostructures: basic physics:! magnetotransport, Shubnikov-de Haas Effect! Quantum Hall Effect, Fractional Quantum Hall Effect! interband and intersubband spectroscopy! superlattice and miniband physics.. devices:! high electron mobility transistors! quantum well lasers! quantum cascade lasers! quantum well intersubband detectors. Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 9

10 towards one and zero-dimensional systems length scale: ~10 nm 1D 0D Density of States D(E) ~ 1/ E Density of States D(E) discrete:! artificial atoms E 11 E 12 E 13 E E 111 E 112 E 113 E Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 10

11 wires and dots by cleaved edge overgrowth (CEO) first growth cleavage second growth Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 11

12 natural cleavage plane: (110) (001) (110) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 12

13 Quantum wires: quantized conductance [110] 2nd growth cleavage plane Tantalum gate LT-GaAs cap Si δ AlGaAs -doping AlGaAs spacer GaAs cap AlGaAs Si δ-doping AlGaAs spacer one-dimensional electron system AlGaAs GaAs quantum well [001] 1st growth one-dimensional electron system Tantalum gate cleavage plane [001] 1st growth GaAs quantum well [110] 2nd growth area depleted at negative gate bias two-dimensional electron systems Amir Yacoby et al. PRL 77, 4612 (1996) Martin Rother, PhD thesis, TUM (2000) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 13

14 superlattice field effect transitor, electrons in atomically precise potential landscapes 200 U= g 0.1 V V step 20 mv U= g 0.4 V T=800 mk - miniband transport, quantum interference - fractional QHE > 2d Ising ferromagnets - gate voltage control of nuclear spin R. Deutschmann et al. PRL 86, 1857 (2001) J.H. Smet et al. PRL 86, 2412 (2001) J.H. Smet, et al. Nature 415, 281 (2002) source drain current I sd ( µ A) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff source drain voltage U sd (V) 14

15 Quantum dots by double CEO in situ cleave 2nd growth step 1st growth step GaAs substrate GaAs quantum well AlGaAs barrier in situ cleave 3rd growth step coupled dots with precision on an atomic scale: photoluminescence: d (nm) Intensity G. Schedelbeck et al., Science 278, 1677 (1997) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 15

16 quantum dots by self-assembly lattice mismatched systems like InAs/GaAs or Si/Ge:! Stranski-Krastanov growth mode TEM micrographs Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 16

17 density, size, shape and composition depend on growth conditions AFM images 5.04 nm 0 nm 500 nm 9.16 nm 0 nm 1000 nm 500 nm 250 nm 1000 nm 500 nm 250 nm 500 nm 0 nm 0 nm 0 nm 0 nm T g = 480 C density: cm -2 T g = 530 C density: 1.2x10 10 cm -2 Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 17

18 Growth parameters:! substrate temperature! growth rate! III to V ratio (beam equivalent pressure)! growth interuption! amount of deposited material! nominal composition (InAs or InGaAs)! capping material Structural characterisation:! STM and AFM! electron microscopy! X-ray analysis Important: shape, size and composition are changed during overgrowth due to interdiffusion and segregation Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 18

19 typical shapes: lenses, pyramids, trunkated pyramids AFM STM [100] TEM 15nm P.M.Koenraad, Eindhoven Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 19

20 A detailed analysis of the different characterisation methods leads to a consistent of size shape and composition Example for: T S = 530 C, 2,8 ML InAs as determined from X-ray and TEM This information is basis for kp calculations resulting in a realistic electronic level structure Growth direction (nm) Indium-content Radius (nm) 0,6 0,4 0,2 0,0 Electron (000) hole (0±11) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 20

21 Simpler picture of the electronic level structure based on the fact that the diameter of the dots is typically much larger than the thickness: Narrow rectangular potential well in z-direction and parabolic well in x,y direction z x,y QW like potential ~ HO like potential Level structure analogue to shell structure of atoms > artificial atoms 2 electrons in the s-shell, 4 in the p-shell,. E p-shell n=1. l=±1 s-shell n=0, l=0 Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 21

22 z x,y Exciton GaAs InGaAs GaAs Single particle picture: ocupation with few carriers: particle-particle interactions determine optical interband transition energies Energy E n=2 n=1 E n=2 n=1 HH x,y n=1 HH n=2 n=1 n=2 allowed transitions Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 22

23 Photoluminescence studies PL-Intensity (a. u.) T=4.2 K 100 mw 40 mw 10 mw 1 mw 10-2 Density: cm GaAs WL ! Discrete recombination energies (shell structure of electronic energy levels) Energy (ev)! Inhomogeneous broadening (fluctuations in size, shape and composition) Chu et al., J. Appl. Phys. 75, 2355 (1999) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 23

24 Towards single dot spectroscopy Typical areal density 100µm -2 spatially resolved spectroscopy 1x1µm Require low QD density material and spatially resovled spectroscopic techniques Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 24

25 spectroscopy with high spatial reolution Sub Micron Mesas 200nm <λ Nano Apertures hν 500nm Structures defined by e-beam lithography PL Intensity (arb. units) 200nm 500nm 200µm Single Dot T = 10 K Spatially Resolved PL >1 QD Far Field PL ~10 7 QDs Energy (mev) Increasing spatial resolution Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 25

26 Photoluminescence in in the few exciton limit Multi-Exciton States: s-shell p-shell s-shell: 4X p P L (µw) Theory: 1X 2X 3X s Energy E HH x,y p-shell: 3X p n=2 n=1 n=1 n=2 n=2 n=1 n=1 n=2 E HH 4X p n=2 n=1 n=1 n=2 n=2 n=1 n=1 n=2 n=2 n=1 n=1 n=2 P L in t e nsity ( arb. U n its ) 3X s 3X p 2X Findeis et al., SSC 114, 227 (2000) 1X U. Hohenesterand E. Molinari See also: E. Dekel et al., PRL 80, 4991 (1998) K. Hinzer, et al., PRB 63, (2001) Energy in mev Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 26

27 Charged excitons, trions s-shell In Ga As/GaAs p-shell P(µW) L X Charged excitons + X - X + PL i n te nsity ( a rb. Units ) 2X PL counts x - x + n=2 n=2 n=1 n=1 n=1 n=1 n=2 n= Energy in ev 1X?? Energy in mev Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 27

28 Pioneering work in single dot spectroscopy " localized excitons in narrow quantum wells: K.Brunner et al., PRL 69, 3216 (1992), PRL 73, 1138 (1994), APL 64, 3320 (1994) A. Zrenner et al., PRL 72, 3382 (1994) H. G. Hess et al., Science 264, 1740 (1994) D. Gammon et al., Science 273, 87 (1996) and PRL 76, 3005 (1996) " cleaved edge overgrowth, coupled dots W. Wegscheider et al., PRL 79, 1917 (1997) G. Schedelbeck et al., Science 279, 1792 (1997) quantum dot " self-assembled quantum dots J.-Y. Marzin et al., PRL 73, 716 (1994) M. Grundmann et al., PRL 74, 4043 (1995) quantum wire quantum well more than 400 publications over the past 6 years: for an overview see: Proceedings of Int. Conf. On Semiconductor Quantum Dots 2000 and 2002, published in Pysica Status Solidi Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 28

29 Single dot photodiode: control of charges E F + n -GaAs InGaAs QD s i-gaas 40 nm i- Al Ga As Ba rrie r Laser focus i-gaas-buffer n-gaas-substrat nm " Single electron charging from the n + -GaAs back-contact Coulomb-charging energy: C QD ~ 5 x F E c ~ 20 mev see e.g. Drechsler et al. PRL 94 Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 29

30 WL filled with electrons External Voltage [V] X 2- X - X Ele ctric Fie ld [V] "Single electron charging: neutral, single and double charged single exciton states X Energy [ev] X - X 0 "Tunnel escape of the carriers before recombination => Photocurrent regime Findeis et al, PRB 63, R121309, (2001) Similar work: Warburton et al., Nature 2000, Finley et al. PRB 2001, Hartmann et al. PRL 2000,... Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 30

31 Resonant excitation Single QD photodiode = Electrically contacted two-level system Laser focus hω X exciton i-gaas-buffer n-gaas-substrat InGaAs QD 0 - Optical excitation of a single QD exciton - Carrier-tunneling and photocurrent detection Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 31

32 PL versus photocurrent hω hω Oulton et al., PRB 66, (2002) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 32

33 driving a two-level system Incoherent regime Coherent regime cw excitation hω X excitation with ps-pulses hω X 0 0 experimental timescales > dephasing time Pulse length < dephasing time 50% maximum inversion of the two-level system 100 occupancy (%) 50 occupancy (%) 50 time 0 π 2π 4π pulse area Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 33

34 Incoherent regime: Two-level system driven into saturation Tunable escape time of the carriers Coherent regime: Rabi-oscillations of the QD PC deterministic current source Photocurrent (na) F=66.7 kv/cm experiment model Excitation power (arb. units) E. Beham et al, Appl. Phys. Lett. 79, 2808 (2001) Ω R ~ 3 THz P. Borri et al., PRB 66, (2002) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 34 Photocurrent (pa) V = V B experiment fit hω Excitation amplitude (arb. units) A. Zrenner et al., Nature 418, 612 (2002) "all optical" work in QDs: T. H. Stievater et al., Phys. Rev. Lett. 87, (2001). H. Kamada et al., Phys. Rev. Lett. 87, (2001). H. Htoon et al., Phys. Rev. Lett. 88, (2002). X 0

35 Single dot photodiode: a two-level system with contacts Photocurrent I = L(A ) e f exc # Theoretical limitation for maximum photocurrent: excitation with π-pulse: L(A exc)=1 Inversion of the = e f = 13.1 pa two-level system # Experimentally: (12.3 ± 0.5) pa one e-h-pair per pulse I max f=82 MHz (laser repetition rate) # Quantitative proof for Rabi-flopping # QD acts as deterministic current source # Optically triggered single electron turnstile effect Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 35

36 Charge storage in in self-assembled dots Write/store n-i-hetero-schottkydiode for hole storage CB hν E F i-gaas i-algaas VB i-gaas n-gaas V reset hν Reset/readout p-i-hetero-schottkydiode for electron storage Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 36

37 (a) writing (d) CB (c) CB hω exc. hω exc. VB hω QD hω exc. hω QD VB t hω QD E F V read E F EL Intensity (arb. units) (b) t=12µs S R ω exc. PL readout Energy (ev) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 37

38 (a) (b) (c) AlGaAs Barrier F V store i-gaas Buffer p-substrate V read CHARGING Illumination STORAGE t READOUT ON OFF Voltage V reset V store Detector Spin Doping Spin Storage Spin Readout ON OFF Time Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 38

39 Normalized peak intensity 1 τ store (10K)»1ms τ store (90K)=(60±5)µs τ store (100K)=(30±5)µs Storage time t (µs) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 39

40 Spin storage based on optical selection rules GaAs bandstructure energy levels in QDs CB -1/2 +1/2 CB + σ -3/2 HH σ + -1/2 LH σ +1/2 LH σ +3/2 HH heavy hole light hole splitting in quantum dots Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 40

41 p s cb Electrons: J e,z = ±1/2 Heavy holes: J h,z = ±3/2 M = ± 1 s σ + σ - p vb Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 41

42 Operation principle (a) (b) (c) AlGaAs Barrier σ + F σ + V store i-gaas Buffer p-substrate V read CHARGING Illumination STORAGE t READOUT ON OFF Voltage V reset V store Detector Spin Doping Spin Storage Spin Readout ON OFF Time Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 42

43 Lum. Intensity [arb. Units] B=0T T=10K Excitation: σ - Detection: σ + σ - t = 1µs Energy [ev] Lum. Intensity [arb. Units] B=8T T=10K Excitation: unpol. Detection: σ + σ - Lum. Intensity [arb. Units] B=8T T=10K Excitation: σ - Detection: σ + σ Energy [ev] Energy [ev] Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 43

44 Exchange splitting IX p > Isotropic e-h exchange Anisotropic e-h exchange 1/ 2(I+1>+I-1>) 50 mev I+1>, I-1> <150 µev IX s > µev 1/ 2(I+1>-I-1>) M=±2 1 ev dark ICGS> Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 44

45 Zeemann splitting σ + σ -, σ + 1/ 2(I+1>+I-1>) 0.1 1T σ + σ - 1/ 2(I+1>-I-1>) σ - Increasing B Increasing B Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 45

46 t=1µs, B=8T Detection σ+ Detection σ- EL Intensity (arb. units) π pump σ - pump Energy (mev) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 46

47 P=(I + -I - )/(I + +I - ) (a) σ + Excitation σ - Excitation t (ms) t (ms) (b) 5T 8T 10T 12T σ+ Intensity (arb. units) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 47

48 Spin Lifetime T 1 (s) Theory m= -4.0±0.6 m= -5.3± Magnetic Field (T) Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 48

49 Towards ordering of dots Vertical stacking is achieved nearly perfectly if the thickness of intermediate layers is smaller than 50 nm 20 nm Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 49

50 Lateral ordering: Growth on patterned substrates (requires lithography) Growth on vicinal or high index surfaces Examples form the work of O. Schmidt et al. MPI FKF, Stuttgart Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 50

51 Combination of of CEO and and self selfassembly 1 st : grow AlAs stripes in GaAs matrix 2 nd : cleave in MBE machine [110] [001] 3 rd : grow InAs Dots on MBE patterned (110) surface Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 51

52 substrate first results InAs on superlattices SL1 SL2 SL3 SL4 [110] [001] InAs (+ 50 nm GaAs) surface AlAs / GaAs superlattice nm 2365 nm 1000 nm [110] [110] [001] 1µm SL1: 5x 32nm AlAs / 68nm GaAs SL2: 5x 20nm AlAs / 40nm GaAs Model: nucleation and collection of InAs on AlAs due to less desorption and lower surface mobility SL3: 5x 11nm AlAs / 22nm GaAs SL4: 10x 20nm AlAs / 20nm GaAs GaAs AlAs GaAs Gerhard Abstreiter, ICPS-27, July 25, 2004, Flagstaff 52

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics interband transitions in quantum wells Atomic wavefunction of carriers in

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Semiconductor Quantum Dots

Semiconductor Quantum Dots Semiconductor Quantum Dots M. Hallermann Semiconductor Physics and Nanoscience St. Petersburg JASS 2005 Outline Introduction Fabrication Experiments Applications Porous Silicon II-VI Quantum Dots III-V

More information

Self-Assembled InAs Quantum Dots

Self-Assembled InAs Quantum Dots Self-Assembled InAs Quantum Dots Steve Lyon Department of Electrical Engineering What are semiconductors What are semiconductor quantum dots How do we make (grow) InAs dots What are some of the properties

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures

Optical Characterization of Self-Assembled Si/SiGe Nano-Structures Optical Characterization of Self-Assembled Si/SiGe Nano-Structures T. Fromherz, W. Mac, G. Bauer Institut für Festkörper- u. Halbleiterphysik, Johannes Kepler Universität Linz, Altenbergerstraße 69, A-

More information

solidi current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates

solidi current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates solidi status physica pss c current topics in solid state physics InAs quantum dots grown by molecular beam epitaxy on GaAs (211)B polar substrates M. Zervos1, C. Xenogianni1,2, G. Deligeorgis1, M. Androulidaki1,

More information

Quantum Condensed Matter Physics Lecture 17

Quantum Condensed Matter Physics Lecture 17 Quantum Condensed Matter Physics Lecture 17 David Ritchie http://www.sp.phy.cam.ac.uk/drp/home 17.1 QCMP Course Contents 1. Classical models for electrons in solids. Sommerfeld theory 3. From atoms to

More information

Fabrication / Synthesis Techniques

Fabrication / Synthesis Techniques Quantum Dots Physical properties Fabrication / Synthesis Techniques Applications Handbook of Nanoscience, Engineering, and Technology Ch.13.3 L. Kouwenhoven and C. Marcus, Physics World, June 1998, p.35

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

InGaAs-AlAsSb quantum cascade lasers

InGaAs-AlAsSb quantum cascade lasers InGaAs-AlAsSb quantum cascade lasers D.G.Revin, L.R.Wilson, E.A.Zibik, R.P.Green, J.W.Cockburn Department of Physics and Astronomy, University of Sheffield, UK M.J.Steer, R.J.Airey EPSRC National Centre

More information

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires

Part I. Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Growth of III V semiconductor quantum dots C. Schneider, S. Höfling and A. Forchel 1.1 Introduction

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Optical Nonlinearities in Quantum Wells

Optical Nonlinearities in Quantum Wells Harald Schneider Institute of Ion-Beam Physics and Materials Research Semiconductor Spectroscopy Division Rosencher s Optoelectronic Day Onéra 4.05.011 Optical Nonlinearities in Quantum Wells Harald Schneider

More information

Novel materials and nanostructures for advanced optoelectronics

Novel materials and nanostructures for advanced optoelectronics Novel materials and nanostructures for advanced optoelectronics Q. Zhuang, P. Carrington, M. Hayne, A Krier Physics Department, Lancaster University, UK u Brief introduction to Outline Lancaster University

More information

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada

NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada NANOESTRUCTURAS V Escuela Nacional de Física de la Materia Condensada Parte III Sergio E. Ulloa Department of Physics and Astronomy, CMSS, and Nanoscale and Quantum Phenomena Institute Ohio University,

More information

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne Quantum Dot Lasers Ecole Polytechnique Fédérale de Lausanne Outline: Quantum-confined active regions Self-assembled quantum dots Laser applications Electronic states in semiconductors Schrödinger eq.:

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering L. Nevou, F. H. Julien, M. Tchernycheva, J. Mangeney Institut d Electronique Fondamentale, UMR CNRS 8622, University Paris-Sud

More information

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor From nanophysics research labs to cell phones Dr. András Halbritter Department of Physics associate professor Curriculum Vitae Birth: 1976. High-school graduation: 1994. Master degree: 1999. PhD: 2003.

More information

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics

Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics 550 Brazilian Journal of Physics, vol. 34, no. 2B, June, 2004 Semiconductor Quantum Dot Nanostructures and their Roles in the Future of Photonics S. Fafard, K. Hinzer, and C. N. Allen Institute for Microstructural

More information

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures MSE 6001, Semiconductor Materials Lectures Fall 2006 3 Semiconductor Heterostructures A semiconductor crystal made out of more

More information

Optical Investigation of the Localization Effect in the Quantum Well Structures

Optical Investigation of the Localization Effect in the Quantum Well Structures Department of Physics Shahrood University of Technology Optical Investigation of the Localization Effect in the Quantum Well Structures Hamid Haratizadeh hamid.haratizadeh@gmail.com IPM, SCHOOL OF PHYSICS,

More information

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield

2D MBE Activities in Sheffield. I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield 2D MBE Activities in Sheffield I. Farrer, J. Heffernan Electronic and Electrical Engineering The University of Sheffield Outline Motivation Van der Waals crystals The Transition Metal Di-Chalcogenides

More information

Physics and Material Science of Semiconductor Nanostructures

Physics and Material Science of Semiconductor Nanostructures Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: omalis@purdue.edu Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570p/ Lecture

More information

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour

vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour Supplementary Figure 1 Raman spectrum of monolayer MoS 2 grown by chemical vapour deposition. Raman peaks of the monolayer sample grown by chemical vapour deposition (S-CVD) are peak which is at 385 cm

More information

Magneto-Optical Properties of Quantum Nanostructures

Magneto-Optical Properties of Quantum Nanostructures Magneto-optics of nanostructures Magneto-Optical Properties of Quantum Nanostructures Milan Orlita Institute of Physics, Charles University Institute of Physics, Academy of Sciences of the Czech Republic

More information

InAs Quantum Dots for Quantum Information Processing

InAs Quantum Dots for Quantum Information Processing InAs Quantum Dots for Quantum Information Processing Xiulai Xu 1, D. A. Williams 2, J. R. A. Cleaver 1, Debao Zhou 3, and Colin Stanley 3 1 Microelectronics Research Centre, Cavendish Laboratory, University

More information

Electronic and Optoelectronic Properties of Semiconductor Structures

Electronic and Optoelectronic Properties of Semiconductor Structures Electronic and Optoelectronic Properties of Semiconductor Structures Jasprit Singh University of Michigan, Ann Arbor CAMBRIDGE UNIVERSITY PRESS CONTENTS PREFACE INTRODUCTION xiii xiv 1.1 SURVEY OF ADVANCES

More information

Using Light to Prepare and Probe an Electron Spin in a Quantum Dot

Using Light to Prepare and Probe an Electron Spin in a Quantum Dot A.S. Bracker, D. Gammon, E.A. Stinaff, M.E. Ware, J.G. Tischler, D. Park, A. Shabaev, and A.L. Efros Using Light to Prepare and Probe an Electron Spin in a Quantum Dot A.S. Bracker, D. Gammon, E.A. Stinaff,

More information

A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS

A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS Romanian Reports in Physics, Vol. 63, No. 4, P. 1061 1069, 011 A STUDY OF DYNAMIC CHARACTERIZATIONS OF GaAs/ALGaAs SELF-ASSEMBLED QUANTUM DOT LASERS H. ARABSHAHI Payame Nour University of Fariman, Department

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix

Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a CdTe Matrix Widely Tunable and Intense Mid-Infrared PL Emission from Epitaxial Pb(Sr)Te Quantum Dots in a Matrix S. Kriechbaumer 1, T. Schwarzl 1, H. Groiss 1, W. Heiss 1, F. Schäffler 1,T. Wojtowicz 2, K. Koike 3,

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

Hole Transport in Germanium Quantum Dots

Hole Transport in Germanium Quantum Dots 12 Hole Transport in Germanium Quantum Dots Thomas Asperger 1, Christian Miesner, Karl Brunner, Gerhard Abstreiter Semiconductor quantum dots (QDs) have been investigated widely during the past several

More information

Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide

Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide Mat. Res. Soc. Symp. Proc. Vol. 737 2003 Materials Research Society E13.8.1 Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide D. A. Tenne, A. G.

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures Superlattices and Microstructures, Vol. 2, No. 4, 1996 Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures M. R. Deshpande, J. W. Sleight, M. A. Reed, R. G. Wheeler

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures

Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures JOURNAL OF APPLIED PHYSICS 97, 024511 (2005) Negative differential conductance and current bistability in undoped GaAs/ Al, Ga As quantum-cascade structures S. L. Lu, L. Schrottke, R. Hey, H. Kostial,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 Table of List of contributors Preface page xi xv Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1 1 Growth of III V semiconductor quantum dots C.

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 9 th 2016.6.13 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Site for uploading answer sheet Outline today Answer to the question

More information

Electron spin qubits in P donors in Silicon

Electron spin qubits in P donors in Silicon Electron spin qubits in P donors in Silicon IDEA League lectures on Quantum Information Processing 7 September 2015 Lieven Vandersypen http://vandersypenlab.tudelft.nl Slides with black background courtesy

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells

Nanomaterials for Photovoltaics (v11) 14. Intermediate-Band Solar Cells 1 14. Intermediate-Band Solar Cells Intermediate (impurity) band solar cells (IBSCs) (I) Concept first proposed by A. Luque and A. Martí in 1997. Establish an additional electronic band within the band

More information

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany

Optical Spectroscopies of Thin Films and Interfaces. Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany Optical Spectroscopies of Thin Films and Interfaces Dietrich R. T. Zahn Institut für Physik, Technische Universität Chemnitz, Germany 1. Introduction 2. Vibrational Spectroscopies (Raman and Infrared)

More information

SELF-ASSEMBLED QUANTUM DOTS FOR OPTOELECTRONIC DEVICES: PROGRESS AND CHALLENGES

SELF-ASSEMBLED QUANTUM DOTS FOR OPTOELECTRONIC DEVICES: PROGRESS AND CHALLENGES SELF-ASSEMBLED QUANTUM DOTS FOR OPTOELECTRONIC DEVICES: PROGRESS AND CHALLENGES M.Henini School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, U.K. Tel/Fax: +44 115 9515195/9515180

More information

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes Introduction to semiconductor nanostructures Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes What is a semiconductor? The Fermi level (chemical potential of the electrons) falls

More information

Optics and Quantum Optics with Semiconductor Nanostructures. Overview

Optics and Quantum Optics with Semiconductor Nanostructures. Overview Optics and Quantum Optics with Semiconductor Nanostructures Stephan W. Koch Department of Physics, Philipps University, Marburg/Germany and Optical Sciences Center, University of Arizona, Tucson/AZ Overview

More information

One-dimensional excitons in GaAs quantum wires

One-dimensional excitons in GaAs quantum wires J. Phys.: Condens. Matter 10 (1998) 3095 3139. Printed in the UK PII: S0953-8984(98)82817-8 REVIEW ARTICLE One-dimensional excitons in GaAs quantum wires Hidefumi Akiyama Institute for Solid State Physics

More information

Investigation of the formation of InAs QD's in a AlGaAs matrix

Investigation of the formation of InAs QD's in a AlGaAs matrix 10th Int. Symp. "Nanostructures: Physics and Technology" St Petersburg, Russia, June 17-21, 2002 2002 IOFFE Institute NT.16p Investigation of the formation of InAs QD's in a AlGaAs matrix D. S. Sizov,

More information

Self-assembled SiGe single hole transistors

Self-assembled SiGe single hole transistors Self-assembled SiGe single hole transistors G. Katsaros 1, P. Spathis 1, M. Stoffel 2, F. Fournel 3, M. Mongillo 1, V. Bouchiat 4, F. Lefloch 1, A. Rastelli 2, O. G. Schmidt 2 and S. De Franceschi 1 1

More information

Zero- or two-dimensional?

Zero- or two-dimensional? Stacked layers of submonolayer InAs in GaAs: Zero- or two-dimensional? S. Harrison*, M. Young, M. Hayne, P. D. Hodgson, R. J. Young A. Schliwa, A. Strittmatter, A. Lenz, H. Eisele, U. W. Pohl, D. Bimberg

More information

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

Nano-Electro-Mechanical Systems (NEMS) in the Quantum Limit

Nano-Electro-Mechanical Systems (NEMS) in the Quantum Limit Nano-Electro-Mechanical Systems (NEMS) in the Quantum Limit Eva Weig, now postdoc at University of California at Santa Barbara. Robert H. Blick, University of Wisconsin-Madison, Electrical & Computer Engineering,

More information

Graphene and Carbon Nanotubes

Graphene and Carbon Nanotubes Graphene and Carbon Nanotubes 1 atom thick films of graphite atomic chicken wire Novoselov et al - Science 306, 666 (004) 100μm Geim s group at Manchester Novoselov et al - Nature 438, 197 (005) Kim-Stormer

More information

Anisotropic spin splitting in InGaAs wire structures

Anisotropic spin splitting in InGaAs wire structures Available online at www.sciencedirect.com Physics Physics Procedia Procedia 3 (010) 00 (009) 155 159 000 000 14 th International Conference on Narrow Gap Semiconductors and Systems Anisotropic spin splitting

More information

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects

Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical. Interconnects Three-Dimensional Silicon-Germanium Nanostructures for Light Emitters and On-Chip Optical eptember 2011 Interconnects Leonid Tsybeskov Department of Electrical and Computer Engineering New Jersey Institute

More information

Quantum Optics with Mesoscopic Systems II

Quantum Optics with Mesoscopic Systems II Quantum Optics with Mesoscopic Systems II A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich Outline 1) Cavity-QED with a single quantum dot 2) Optical pumping of quantum dot spins 3)

More information

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots Quantum Information Processing with Semiconductor Quantum Dots slides courtesy of Lieven Vandersypen, TU Delft Can we access the quantum world at the level of single-particles? in a solid state environment?

More information

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract

A spin Esaki diode. Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno. Abstract A spin Esaki diode Makoto Kohda, Yuzo Ohno, Koji Takamura, Fumihiro Matsukura, and Hideo Ohno Laboratory for Electronic Intelligent Systems, Research Institute of Electrical Communication, Tohoku University,

More information

Optical Manipulation of an Electron Spin in Quantum Dots

Optical Manipulation of an Electron Spin in Quantum Dots Optical Manipulation of an Electron Spin in Quantum Dots Al. L. Efros Naval Research Laoratory, Washington DC, USA Acknowledgements: DARPA/QuIST and ONR Kavli Institute for Theoretical Physics, UC Santa

More information

Photonic devices for quantum information processing:

Photonic devices for quantum information processing: Outline Photonic devices for quantum information processing: coupling to dots, structure design and fabrication Optoelectronics Group, Cavendish Lab Outline Vuckovic s group Noda s group Outline Outline

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Correlated 2D Electron Aspects of the Quantum Hall Effect

Correlated 2D Electron Aspects of the Quantum Hall Effect Correlated 2D Electron Aspects of the Quantum Hall Effect Magnetic field spectrum of the correlated 2D electron system: Electron interactions lead to a range of manifestations 10? = 4? = 2 Resistance (arb.

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Electrically Driven Polariton Devices

Electrically Driven Polariton Devices Electrically Driven Polariton Devices Pavlos Savvidis Dept of Materials Sci. & Tech University of Crete / FORTH Polariton LED Rome, March 18, 211 Outline Polariton LED device operating up to room temperature

More information

Charge noise and spin noise in a semiconductor quantum device

Charge noise and spin noise in a semiconductor quantum device Charge noise and spin noise in a semiconductor quantum device Andreas V. Kuhlmann, 1 Julien Houel, 1 Arne Ludwig, 1, 2 Lukas Greuter, 1 Dirk Reuter, 2, 3 Andreas D. Wieck, 2 Martino Poggio, 1 and Richard

More information

Mn in GaAs: from a single impurity to ferromagnetic layers

Mn in GaAs: from a single impurity to ferromagnetic layers Mn in GaAs: from a single impurity to ferromagnetic layers Paul Koenraad Department of Applied Physics Eindhoven University of Technology Materials D e v i c e s S y s t e m s COBRA Inter-University Research

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Polariton laser in micropillar cavities

Polariton laser in micropillar cavities Polariton laser in micropillar cavities D. Bajoni, E. Wertz, P. Senellart, I. Sagnes, S. Bouchoule, A. Miard, E. Semenova, A. Lemaître and J. Bloch Laboratoire de Photonique et de Nanostructures LPN/CNRS,

More information

Low-dimensional electron transport properties in InAs/AlGaSb mesoscopic structures

Low-dimensional electron transport properties in InAs/AlGaSb mesoscopic structures Superlattices and Microstructures, Vol 21, No 1, 1997 Low-dimensional electron transport properties in InAs/AlGaSb mesoscopic structures M Inoue, T Sugihara, T Maemoto, S Sasa, H Dobashi, S Izumiya Department

More information

Chapter 2 InP Ring-Shaped Quantum Dot Molecules by Droplet Epitaxy

Chapter 2 InP Ring-Shaped Quantum Dot Molecules by Droplet Epitaxy Chapter 2 InP Ring-Shaped Quantum Dot Molecules by Droplet Epitaxy Wipakorn Jevasuwan, Somchai Ratanathammapan, and Somsak Panyakeow Abstract Droplet epitaxy technique is a key fabrication method to create

More information

Electronic States of InAs/GaAs Quantum Dots by Scanning Tunneling Spectroscopy

Electronic States of InAs/GaAs Quantum Dots by Scanning Tunneling Spectroscopy Electronic States of InAs/GaAs Quantum Dots by Scanning Tunneling Spectroscopy S. Gaan, Guowei He, and R. M. Feenstra Dept. Physics, Carnegie Mellon University, Pittsburgh, PA 15213 J. Walker and E. Towe

More information

Potential and Carrier Distribution in AlGaN Superlattice

Potential and Carrier Distribution in AlGaN Superlattice Vol. 108 (2005) ACTA PHYSICA POLONICA A No. 4 Proceedings of the XXXIV International School of Semiconducting Compounds, Jaszowiec 2005 Potential and Carrier Distribution in AlGaN Superlattice K.P. Korona,

More information

Electrical control of superposed quantum states evolution in quantum dot molecule by pulsed field

Electrical control of superposed quantum states evolution in quantum dot molecule by pulsed field 1 Electrical control of superposed quantum states evolution in quantum dot molecule by pulsed field S. W. Hwang*, D. Y. Jeong*, M. S. Jun*, M. H. Son*, L. W. Engel, J. E. Oh, & D. Ahn* *Institute of Quantum

More information

Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices

Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices C. Pacher, M. Kast, C. Coquelin, G. Fasching, G. Strasser, E. Gornik Institut für Festkörperelektronik,

More information

Localization effects in magnetic two-dimensional hole system: from weak to strong localization Ursula Wurstbauer

Localization effects in magnetic two-dimensional hole system: from weak to strong localization Ursula Wurstbauer Localization effects in magnetic two-dimensional hole system: from weak to strong localization Ursula Wurstbauer Columbia University, New York, USA Collaborators Prof. Dr. Werner Wegscheider University

More information

Plan for Lectures #4, 5, & 6. Theme Of Lectures: Nano-Fabrication

Plan for Lectures #4, 5, & 6. Theme Of Lectures: Nano-Fabrication Plan for Lectures #4, 5, & 6 Theme Of Lectures: Nano-Fabrication Quantum Wells, SLs, Epitaxial Quantum Dots Carbon Nanotubes, Semiconductor Nanowires Self-assembly and Self-organization Two Approaches

More information

Quantum Dot Lasers. Jose Mayen ECE 355

Quantum Dot Lasers. Jose Mayen ECE 355 Quantum Dot Lasers Jose Mayen ECE 355 Overview of Presentation Quantum Dots Operation Principles Fabrication of Q-dot lasers Advantages over other lasers Characteristics of Q-dot laser Types of Q-dot lasers

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers Tillmann Kubis, Gerhard Klimeck Department of Electrical and Computer Engineering Purdue University, West Lafayette, Indiana

More information

Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices

Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices Cross-Section Scanning Tunneling Microscopy of InAs/GaSb Superlattices Cecile Saguy A. Raanan, E. Alagem and R. Brener Solid State Institute. Technion, Israel Institute of Technology, Haifa 32000.Israel

More information

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Lecture 2. Electron states and optical properties of semiconductor nanostructures Lecture Electron states and optical properties of semiconductor nanostructures Bulk semiconductors Band gap E g Band-gap slavery: only light with photon energy equal to band gap can be generated. Very

More information

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Spin-orbit Effects in Semiconductor Spintronics Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg Collaborators Hartmut Buhmann, Charlie Becker, Volker Daumer, Yongshen Gui Matthias

More information

NONLINEAR TRANSPORT IN BALLISTIC SEMICONDUCTOR DIODES WITH NEGATIVE EFFECTIVE MASS CARRIERS

NONLINEAR TRANSPORT IN BALLISTIC SEMICONDUCTOR DIODES WITH NEGATIVE EFFECTIVE MASS CARRIERS NONLINEAR TRANSPORT IN BALLISTIC SEMICONDUCTOR DIODES WITH NEGATIVE EFFECTIVE MASS CARRIERS B. R. Perkins, Jun Liu, and A. Zaslavsky, Div. of Engineering Brown University Providence, RI 02912, U.S.A.,

More information

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Tolk Department of Physics and Astronomy Vanderbilt University,

More information

Upper-barrier excitons: first magnetooptical study

Upper-barrier excitons: first magnetooptical study Upper-barrier excitons: first magnetooptical study M. R. Vladimirova, A. V. Kavokin 2, S. I. Kokhanovskii, M. E. Sasin, R. P. Seisyan and V. M. Ustinov 3 Laboratory of Microelectronics 2 Sector of Quantum

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc.

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc. Quantum and Non-local Transport Models in Crosslight Device Simulators Copyright 2008 Crosslight Software Inc. 1 Introduction Quantization effects Content Self-consistent charge-potential profile. Space

More information

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University g Q 2 m T + S Mirror U 3 U 1 U 2 U 3 Mirror Detector See Hanson et al., Rev. Mod. Phys.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 1.138/NNANO.211.214 Control over topological insulator photocurrents with light polarization J.W. McIver*, D. Hsieh*, H. Steinberg, P. Jarillo-Herrero and N. Gedik SI I. Materials and device fabrication

More information

Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot

Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot Physics Physics Research Publications Purdue University Year 2005 Polarized fine structure in the photoluminescence excitation spectrum of a negatively charged quantum dot M. E. Ware, E. A. Stinaff, D.

More information

Large terrace formation and modulated electronic states in 110 GaAs quantum wells

Large terrace formation and modulated electronic states in 110 GaAs quantum wells PHYSICAL REVIEW B, VOLUME 63, 075305 Large terrace formation and modulated electronic states in 110 GaAs quantum wells Masahiro Yoshita* Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha,

More information

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Journal of the Korean Physical Society, Vol. 42, No., February 2003, pp. 768 773 Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Axel Scherer, T. Yoshie, M. Lončar, J. Vučković

More information

tunneling theory of few interacting atoms in a trap

tunneling theory of few interacting atoms in a trap tunneling theory of few interacting atoms in a trap Massimo Rontani CNR-NANO Research Center S3, Modena, Italy www.nano.cnr.it Pino D Amico, Andrea Secchi, Elisa Molinari G. Maruccio, M. Janson, C. Meyer,

More information