MORPHING AIRFOIL SHAPE CHANGE OPTIMIZATION WITH MINIMUM ACTUATOR ENERGY AS AN OBJECTIVE

Size: px
Start display at page:

Download "MORPHING AIRFOIL SHAPE CHANGE OPTIMIZATION WITH MINIMUM ACTUATOR ENERGY AS AN OBJECTIVE"

Transcription

1 9th AIAA/ISSMO Sympsium n Multidisciplinary Analysis and Optimizatin 4-6 September, Atlanta, Gergia AIAA -54 MORPHING AIRFOIL SHAPE CHANGE OPTIMIZATION WITH MINIMUM ACTUATOR ENERGY AS AN OBJECTIVE Brian C. Prck * Terrence A. Weisshaar William A. Crssley Purdue University Schl f Aernautics and Astrnautics West Lafayette, Indiana Abstract Mrphing aircraft are multi-rle aircraft that use innvative actuatrs, effectrs, and mechanisms t change their state t perfrm select missins with substantially imprved system perfrmance. State change in this study means a change in the crss-sectinal shape f the wing itself, nt chrd extensin r span extensin. Integrating actuatrs and mechanisms int an effective, light weight structural tplgy that generates lift and sustains the air lads generated by the wing is central t the success f mrphing, shape changing wings and airfils. The bjective f this study is t explre a prcess t link analytical mdels and ptimizatin tls with design methds t create energy efficient, lightweight wing/structure/actuatr cmbinatins fr mrphing aircraft wings. In this case, the energy reuired t change frm ne wing r airfil shape t anther is used as the perfrmance index fr ptimizatin while the aerdynamic perfrmance such as lift r drag is cnstrained. Three different, but related, tpics are cnsidered: energy reuired t perate articulated trailing edge flaps and slats attached t flexible D airfils; ptimal, minimum energy, articulated cntrl deflectins n wings t generate lift; and, defrmable airfils with crss-sectinal shape changes reuiring strain energy changes t mve frm ne lift cefficient t anther. Results indicate that a frmal ptimizatin scheme using minimum actuatr energy as an bjective and internal structural tplgy features as design variables can identify the best actuatrs and their mst effective lcatins s that minimal energy is reuired t perate a mrphing wing. Backgrund A mrphing aircraft is a multi-rle aircraft that, thrugh the use f mrphing technlgies such as innvative actuatrs, effectrs r mechanisms, changes its state substantially t cmplete all rles - with superir system perfrmance. Fr instance, fr a hunter-killer aircraft, rle A is lng-duratin liter while rle B is high-speed dash and rle C is sme frm f energy depsitin t neutralize the target. Mrphing aircraft are a majr part f a system that reuires technlgy integratin t manipulate gemetric, mechanical electrmagnetic r ther missin critical features - n the grund r in-flight - t match vehicle perfrmance t a well-defined envirnment and missin bjective. Mdern aircraft already cntain cmplex mrphing devices t allw them t balance ne missin demand against anther but still perfrm a missin well. The simplest example is the use f landing and take-ff flaps t allw transprt aircraft t perate frm shrter length airprts and still cruise at high speed. The trade-ff that favrs mrphing is the fuel saved when a smaller wing is used fr efficient high-speed flight and deplyable flaps generate increased lift at lw landing and take-ff speeds. The cst f this system perfrmance balancing is expressed in metrics such as weight, cmplexity and cst. * Graduate Student, Schl f Aernautics and Astrnautics, 8 Grissm Hall, West Lafayette, IN Prfessr, Schl f Aernautics and Astrnautics, 8 Grissm Hall, West Lafayette, IN , currently n leave at DARPA, Arlingtn, Virginia. Assciate Prfessr, Schl f Aernautics and Astrnautics, 8 Grissm Hall, West Lafayette, IN Cpyright by the authr(s). Published by the American Institute f Aernautics and Astrnautics, Inc., with permissin.

2 Mrphing Aircraft Ptential cmbining many systems int ne ISR missin: high altitude, lng range / endurance Hunt: sar, bserve cmbine functins / reduce system cmplexity Attack missin: high speed dash, high speed turns Attack: dive, maneuver Figure Cmbining system functins Mrphing shape/state changes are als necessary when lng liter time is cupled with a high-speed dash reuirement r when stealth features are nt reuired during the entire missin. In the latter case, mrphing int a faceted brick shape like the F-7 fr the stealthy prtin f the missin wuld then change the aircraft radar crss-sectin state while preserving aerdynamic perfrmance during lng cruise segments. Mdern mrphing aircraft cncepts address system prblems such as that depicted in Figure. The upper part f Figure shws the different sensr aircraft reuired t identify targets fr cmbat aircraft t engage and attack. In additin t the variety f aircraft used, this bserve, identify, target and attack system reuires cmmand and cntrl as well as human peratrs. The result is a cmplex system with large time lags that impede its effectiveness. The lwer part f Figure shws nature s answer t a sensing and attack system. All capability, including system peratin, is cncentrated nbard the vehicle. Wing mrphing cannt be applied t all systems and all missins. In fact, it reuires a majr effrt t identify the new missins that might result frm mdern mrphing. Hwever, nce these missins and system architectures are identified and the aircraft that use them are develped, the result will be t create game-changers. Minimizing actuatr energy reuired t generate lift Mdern mrphing cncepts include wings with a variety f mving surfaces, such as: articulated flaps and slats; surface flw cntrl devices; and cntinuusly defrming surfaces. In the latter case, the defrmatin f the surface is generated either by internal elements that exert frces and mments n the aer structure t defrm it r external devices such as cntinuusly defrming trailing edge surfaces. The latter case includes Active Aerelastic Wing cncepts (AAW). Because wings are lightweight, structural flexibility and aerelasticity are essential features f mrphing wing design. The energy reuired t change wing crss-sectinal shape t generate lift has tw parts, the energy reuired t strain the structure and the energy reuired t mve against the air pressures n the wing surface. The strain energy stred during the lift generatin is wasted energy since it cannt be recvered by the pwer system nbard the aircraft. In fact, in sme cases, such as ailern induced distrtin that leads t ailern reversal, all f the energy ges t strain the structure and change the pressure distributin, but the result is n net lift and thus there is n useful utput despite a large energy expenditure. We will cnsider three related aer-structure interactin studies t illustrate hw actuatin energy plays a rle in sme mrphing wing design activities. The first f these studies is determining the energy reuired t perate leading and trailing edge devices with different flap-t-chrd ratis at different airspeeds. This study prvides a useful illustratin in hw external aerdynamic frces can be used t assist the nbard cntrl energy t generate lift. The secnd study illustrates the interactin between aerelastic effects and energy reuired t generate lift n a flexible wing. This study has tw parts, ne with a simple strip thery mdel and the ther with a mre accurate aerdynamic cnfiguratin. The third study lks at a cntinuusly defrming surface and fcuses n the strain energy reuired t change frm ne airfil shape t anther, but withut including aerelastic effects. These airfil shapes are limited t NACA 4-series airfils t ensure that all f the shapes cnsidered are smth. A secnd part f the third study examines a set f shell-like finite element mdels and illustrates hw the cmbinatin f actuatr placement,

3 deplyment and structural design can make a large difference in the energy reuired t perate mrphing systems. Minimizing flap deflectin energy fr an idealized -DOF System The first f ur three studies determines the energy reuired t perate leading and trailing edge devices with different flap-t-chrd ratis at different airspeeds t generate lift. A -DOF mdel with pitch (trsin) freedm, θ, abut a hypthetical elastic axis, and a cntrl deflectin, δ, is illustrated in Figure. The airfil chrdwise pressure distributin at three different dynamic pressures is shwn in Figure fr the same ailern input. The integral f the pressure distributin ver the entire surface the lift decreases as airspeed increases and becmes negative when the ailern reverses. This is due t aerelasticity. The hinge mment created by the aerdynamic frces n the ailern aft f the hinge line als changes as dynamic pressure increases. Figure indicates that the mment abut the hinge line, due t integrated pressure distributin abut the hinge line, declines as airspeed increases. Pressure distributin pre-reversal reversal pst-reversal The pressure distributin (psitive up) n the airfil is the linear superpsitin f the pressure distributin (psitive upward) due t the ailern deflectin (psitive dwn, as in the figure) written as p δ due t δ This is written as p δ Figure Aerdynamic pressure distributins n a flexible airfil mdel at three different airspeeds. = and a twist angle θ (psitive nse-up) that ccurs when the ailern is deflected. p due t θ given as θ = f δ where = θ. Static euilibrium cnsideratins lead t the relatin between θ and δ ο p θ divergence C Lδ f = reversal C Lα and =. In general, f is a negative number. divergence The hinge mment due t the aerdynamic pressure n the flap is written as Mδ = Hδδ where xtrailing δ Hδ = ( p fp )( x xh ) dx x δ + θ. The wrk dne by the ailern is Wailern = H δ. This wrk is zer if the hinge hinge mment is zer. This special case ccurs at airspeeds where the fllwing is true. This ccurs when CL c C δ macδ f = + CL e C α L α xtrailing ( ) = ( ) () xtrailing p x x x H dx f p x xh dx. () δ hinge x θ hinge = xtrailing xhinge θ ( ) p x δ x xh dx hinge a5 =. The dynamic pressure at xtrailing p x x dx a6 ( ) which this ccurs is defined as and is fund t be a5 = = divergence CL c C δ macδ a + a CL e C α Lα 6 5 H (3) 3

4 Plts f and the nndimensinalized reversal dynamic pressure reversal reversal = are divergence presented in Figure 3, pltted as functins f the ailern hinge line lcatin (r flap-t-chrd-rati) and nndimensinal dynamic pressure =. Reversal ccurs befre the zer divergence mment dynamic pressure ccurs. Near this cmbinatin f dynamic pressure and hinge mment lcatin, this airfil/cntrl cmbinatin reuires nly a small amunt f wrk t generate lift. Theretically, at the ailern wrk reuired is zer because the airstream des all f the wrk. Flap t Chrd Rati / Figure 3 Nndimensinal reversal D dynamic pressure (blue) and nndimensinal minimum energy dynamic pressure (red) as a functin f flap-t-chrd rati divergence Reversal Lw Hinge Mments = div Figure 4 Lift per unit actuatr energy vs. = and flap-t-chrd rati. Dark blue shading represents lw lift inefficient regins; red/yellw regins represent high efficiency regins. Slid lines represent lines f cnstant lift. panel V panel ailern ailern Figure 5 Tw-degree-f-freedm segmented airfil mdel with intercnnecting trsinal springs and ailerns. The efficiency f the ailern in generating lift is measured as the lift generated per unit f wrk input int the ailern cntrl surface. A cntur plt f lift generated by the ailern, divided by the wrk dne by the ailern, is prvided in Figure 4. In this plt, the lgarithm f the rati is pltted. Figure 4 als shws lines f eual lift. Thse nearest reversal are smallest because f lift ineffectiveness. Nte that the mst efficient flap-t-chrd and dynamic pressure cmbinatins are thse near. The mst inefficient peratin ccurs near reversal, the dark blue line in Figures 3 and 4. Several cnclusins may be drawn frm this simple study. First f all, aerelasticity matters and affects peratin f the cntrl device. Secnd, the stiffness f the structure and the size f the actuatr can be tailred fr lw energy perfrmance. A similar study with a leading edge device, nt shwn here, shws that there is a similar leveraging f aerelastic effects fr airfil/structure design, althugh reversal des nt ccur. Wing actuatr efficiency mdeling The secnd prblem t illustrate energy ptimizatin fr mrphing wings uses the mdel shwn in Figure 5. This wing mdel cnsists f tw spanwise segments, each with a trailing edge r leading edge articulated surface. We want t find hw t create a fixed amunt f lift by deflecting cntrl surfaces, but distribute the lift ver the wing segments s that the ttal energy reuired t deflect the surfaces is minimized. Fr mdels f this type, the articulated surface hinge mment, M i, is related t the ensemble f cntrl 4

5 deflectins δ j by the euatin M = H δ (4) i j j= where the cefficients H are hinge mment cefficients that prvide the influence f each surface n the M = H δ s that hinge mment in uestin. The expressin fr the ensemble f hinge mments is { i} { j} the wrk dne by the cntrllers is J = δi { Mi} = δ i H { δ j} (5) We nrmalize this expressin by dividing by a reference cefficient s that J H = δ = δ δ H H { M } { } i i i j (6) If we simplify ur aerdynamic mdel t remve the crss-cupling terms H and H and assume that H and H are eual then the perfrmance index J simply becmes J = δ + δ (7) The bjective is t generate a fixed amunt f lift L with the cntrl surfaces that deflect amunts δ and δ. Figure 6 illustrates the fact that the energy minimizatin prblem in which we minimize En. 7 while generating a specified lift has a clsed-frm slutin. When we use simple aerdynamic strip thery, the euatins f static euilibrium prvide tw simultaneus euatins in terms f the twist angles f each sectin and trsinal stiffnesses f the springs cnnecting the panels with each ther and the wall. The reuirement fr cnstant lift L plts as a straight line L = A δ + A δ, as shwn in Figure 6. ( ) ( ) δ = LA pt A + A J =cnstant δ L = A ( + δ ) δ A ( ) L =cnstant δ Figure 6 Graphical depictin f energy ptimizatin with cnstant lift. The cefficients A and A are functins f dynamic pressure,, because f aerelastic effects. The least energy slutin is fund by lcating the tangent between the circle defined in En. 7 and the cnstant lift line. When this tangency pint is input int En. 7 the result is J pt = L A + A (8) Since A and A depend n aerelasticity, J is a functin f the aerelastic features f the design. If, at a certain dynamic pressure, ne f the cntrl surfaces reverses, then the cefficient A i fr that surface will be zer and the cnstant lift line in Figure 6 will be parallel t ne f the axes. The minimum energy slutin will reuire that nly ne f the surfaces generate lift while the ther is idle. 5

6 Figure 7 shws hw the ailern deflectin n each panel changes with nn-dimensinal dynamic pressure =. The vertical divergence axis measures the amunt f ailern deflectin (per radian) per unit f reuired wing lift. Nte that the sum f the lift generated by each sectin is cnstant. As airspeed increases, if the ailern n ne f the panels reverses, it will then deflect upward (a negative number in Figure 7) t create psitive lift. Figure 8 plts the nn-dimensinal energy functin J is pltted as a functin f nndimensinal dynamic pressure =. divergence Figure 8 shws that the energy reuired is large between the reversal pints f individual surfaces shwn in Figure 7. The maximum amunt f energy reuired des nt ccur exactly at the reversal pint fr either ailern. Instead, there is a pint where the cmbinatin f structural stiffness and ailern arrangement creates the need fr large actuatr energy inputs t achieve the reuired lift. The dynamic pressure at which this ccurs can be lcated exactly and this slutin will be discussed in the next sectin. delta pt /L bar J pt /L Panel reversal Variatin f Optimal Flap Energy delta delta Panel reversal Figure 7 Ailern deflectin reuired fr each panel segment t generate a fixed amunt f lift n a DOF wing vs. =. divergence Multi-degree-f-freedm wing actuatr mdel A mre accurate, but still simplistic, mdel f a flexible wing with leading and trailing edge actuatrs prvides further insight t the minimum energy actuatin lift generatin prblem. The mdel shwn in Figure 9 uses a distributin f hrseshe vrtices n a flexible, bar Figure 8 Objective functin J per unit wing lift fr the DOF wing mdel vs. =. divergence beam-like wing t prvide matrix euatins fr spanwise lift as a functin f wing spanwise angle f attack distributin and cntrl surface deflectins. The static euilibrium f frces and mments alng the wing reference axis is written in matrix frm as 3 A C l = + Z + E { } { α } { δ } j r j r B { lj} = { αr} + Z + E { δ j} (9) () s that the lift distributin is {} l { } i = B αr + B Z + E { δ j} () Figure 9 Idealized beam-like wing mdel shwing hrseshe vrtex ensemble. 6

7 The matrices Z and E are functins f cntrller aerdynamic derivatives, lcatin and wing bending and trsinal stiffness. The matrix [ B ] = [ A ] [ C ] is the aerelastic flexibility matrix fr the symmetrical, cantilevered wing. This matrix is a functin f the distributin f aerdynamic derivatives alng the wing, either estimated r measured, as well as planfrm gemetry and structural stiffness. The distributin f knwn initial angles f attack alng the wing is given by { α r } while the distributin f δ. Fr this study, we set { α } = s that cntrl surface deflectins is given by { } i r {} l i = B Z + E { δ j} () If the design bjective is t use active cntrl surfaces t increase lift (t any distributin favred by the designer), then we can use cmbinatins f full span ailerns r full span leading edge devices t d this. If there are as many cntrl elements as there are panel segments then there is a clsed-frm slutin t this prblem. Fr instance, if we wish t cmpute the reuired ailern deflectins t create a lift distributin with knwn resultant and an elliptical distributin fr minimum drag, then we can cmpute the distributin t be { δi} = Z + E B { lj} In this case, the slutin is clsed-frm and des nt reuire minimizatin because there are n free design variables. Euatin 3 reuires the inversin f the matrix Z E +. This matrix is a functin f the wing trsinal and bending stiffness, as well as the size and lcatin f the leading edge and trailing edge devices. This suggests the fllwing eigenvalue prblem elliptical (3) r { } {} Z E + δ = j { δ } { δ } (4) E Z j = j (5) Euatin 5 shws that there is a self-euilibrating deflectin shape { δ i } at the dynamic pressure,, fr which the deflected surfaces and wing distrtin cmbinatins are in static euilibrium n matter what the magnitude f the deflectin. Hwever, at this airspeed the ailerns cannt create lift. This is a multi-degree f freedm reversal speed, but it differs frm the classical reversal speed, since the classical divergence speed is fr a single ailern instead f an ensemble f ailerns. Euatin 5 is an eigenvalue prblem and the cntrl deflectins are an eigenvectr. Near r at the special eigenvalue, the ailerns will generate lift if they are nt deflected in the eigenvectr shape, but there is a high actuatr energy cst assciated with this cntrl-induced lift. T study this phenmenn, we created a cnstant chrd, swept wing mdel representative f a high-altitude flying wing. Flap deflectin [rad] Tip Rt Figure Ailern deflectins fr a cntinuus set f trailing edge cntrls pltted against Mach number. 7

8 Energy Panel Lift Rt Tip Figure Spanwise lift distributin created fr the actuatr minimum energy prblem Figure - Minimum actuatin energy functin J as a functin f Mach number Flap deflectin [rad] Tip Rt Rt Tip Figure 3 - Ailern deflectins fr a cntinuus set f trailing edge cntrls vs. Mach number. The wing sweep angle is 5.5 while the span is nearly feet. The euatins fr static euilibrium given in En. 9 were prgrammed int a MATLAB surce cde. The ptimizatin prblem is t minimize J subject t the cnstraint that L = 4 lb. This prblem was slved using the MATLAB ptimizatin tl kit. This cnfiguratin was fund t have a reversal eigenvalue at M=.38. Figure shws the slutin fr minimum energy trailing edge flap deflectins (in radians) as a functin f Mach number. Depending n their lcatin alng the span, the utbard cntrl surfaces begin t reverse at relatively lw Mach numbers (indicated by the change in deflectins frm psitive t negative in Figure ). The inbard panels d nt reverse in the Mach number range cnsidered. Figure shws hw the lift distributin adjusts as Mach number increases. As Mach number increases, the inbard panels (n the left side in this figure) must generate mre f the lad as the utbard ailerns begin t reverse. As Mach number increases, the reversed trailing edge surfaces becme mre effective in their reversed state than the inbard panels, causing the majrity f the lad t shift utbard. The spanwise lift distributin is distrted and induced drag changes. Figure indicates that there is a dramatic increase in the inbard lift at abut M=.38, fllwed by an increase in the utbard lift as the reversed panels begin t generate mre lad. Figure shws the minimum actuatin energy functin J as a functin f Mach number. In cntrast t the -degree-ffreedm mdel, there is n peak in actuatin energy, but instead there is a steady decline in the energy due t aerelastic effects, in this case the peratin f reversed ailern segments. As presently psed, there is n cnstraint n spanwise lift distributin, nly a reuirement that the lift have a specified net value. As a result, the ailerns are free t avid actuatr shapes that resemble the eigenvectr at ur reversal eigenvalue f.38. If we add an additinal cnstraint t the prblem and frce the spanwise lift distributin t be elliptical s 8

9 that we include minimum induced drag int the prblem, the results are very different. Because the number f design variables (deflectins) euals the number f cnstraints (elliptical panel lift distributin with a specified net value), there is nly ne cmbinatin f trailing edge deflectins that will prduce an elliptical lift distributin. Therefre, energy is nt minimized, it is simply calculated and the frmal ptimizatin prblem disappears. Figure 3 shws the trailing edge surface deflectins reuired t create an elliptical lift distributin. The deflectins becme large at the critical reversal Mach number defined in En. 5. Figure 4 shws the cntrl energy reuired t generate an elliptical lift distributin. As the determinant f the matrix Z E + becmes small and the trailing edge deflectins becme large and the actuatin energy functin als becmes large, but nt infinite since the cntrl surface deflectin pattern is nt exactly the same shape as a system eigenvalue. When bth leading edge and trailing edge surfaces are included in the cntrl prblem with elliptical lift distributin reuirements, an ptimizatin prblem nce again appears since there are mre design variables than there are cnstraints. Figure 5 shws the leading and trailing edge deflectins that prduce an elliptical lift distributin with minimum cntrl energy. At the critical reversal Mach number, the trailing edge surfaces are unable t prduce the reuired distributin withut substantial energy expenditure s the mre effective leading edge surfaces begin t be deplyed. Figure 6 shws the minimum actuatin energy functin J reuired t create an elliptical lift distributin with a cmbinatin f leading and trailing edge surfaces. The energy des have a peak assciated with the system eigenvalue, but it n lnger is extremely large. The additin f leading edge flaps allws the lift distributin t be maintained with reasnable cntrl surface deflectins. Summary These reversal pints and the assciated reversal prblems are revealed by an eigenvalue prblem such as that discussed in this sectin. Fr trailing edge surfaces, this eigenvalue prblem will mst likely define regins f ineffectiveness that are within the flight envelpe. These regins are functins f the usual ensemble f aerelastic parameters, including trsinal and bending stiffness and flap-t-chrd rati. Flap deflectin [rad] Energy System determinant = (Energy peak) Figure 4 - Cntrl energy J reuired t generate elliptical lift distributin vs. Mach number Leading Edge Trailing Edge Figure 5 Optimal ailern deflectins fr a cntinuus leading edge and trailing edge cntrls vs. Mach number. Energy Figure 6 - Cntrl energy J reuired t generate elliptical lift distributin with leading edge and trailing edge cntrls vs. Mach number. 9

10 Leading edge surfaces have eigenvalues that are usually negative and thus cannt experience reversal. When a cmbinatin f leading edge and trailing edge surfaces are used and a frmal ptimizatin rutine is emplyed, effective cmbinatins f lift generating surfaces are revealed. Minimizing strain energy assciated with airfil shape change Mdern mrphing wing cncepts cntain segments with internal cntrllers that cntinuusly change the shape f the wing in flight withut the hinge-line discntinuity assciated with articulated surfaces (cf. References 4-9). In such cases, the efficient design f mrphing structures t create lift and mments in flight must cnsider the structural strain energy reuired t change the lift n the surface as it transitins frm ne airfil shape t anther. The final part f ur study cnsidered hw t defrm tw dimensinal airfil sectins using the least amunt f energy t achieve the gal f creating lift. The stated gal is t determine hw t pse a useful, frmal ptimizatin prblem t help us in the design prcess and actuatr selectin prcess. When an airfil changes its shape, the strain energy change reuired depends n the type f sub-structure enclsed within the airfil shape. This internal tplgy must be designed, tgether with the actuatrs and their lcatins. T examine hw much energy is reuired t change frm ne airfil shape t anther, we assumed that the airfil structures are slid, cellular structures, idealized as a cntinuus cllectin f internal springs. Aerdynamic and aerelastic effects were nt cnsidered fr this study. The airfil shapes used in the study were limited t the NACA 4-series t ensure that all f the shapes were smth and realizable. These airfils have numbers such as NACA 4. This airfil series is described by three design parameters: the first number is the maximum camber-t-chrd rati, being %, the chrdwise lcatin f maximum camber, 4 being the 4% psitin, and the thickness-t-chrd rati, being % thick. All airfils cnsidered fr this study have the maximum camber lcatin fixed at the 4% chrd psitin. Any candidate airfil shape is described by nly the camber-t-chrd and thickness-tchrd design variables. Because n aerdynamic pressures are included in ur mdel, the nly expenditure f energy is the strain energy change reuired t transitin frm ne airfil shape t anther. Chsing an initial airfil shape allws cnstructin f an energy respnse surface t describe the strain energy assciated with shape changes. Fr this study, the maximum camber varied between % and 9% f the chrd and the thicknesst-chrd rati varied frm % t 5%. Strain energy is develped in the springs when frce actuatrs displace the initial airfil cntur t generate a new shape specified by new maximum camber and thickness values. There are tw springs at each chrdwise lcatin. One spring cnnects the camber line t the upper surface while the ther spring cnnects the camber line t the lwer surface. The strain energy assciated with the change in spring lengths is given as: U = k L n i i (6) i= EA where ki = is the stiffness f spring i and L i is the change in length f spring i. Euatin 6 becmes L i EA U = n Li (7) i= Li Euatin 7 can be nn-dimensinalized with respect t the chrd length, c, t give U ND.. n = U L/ c EAc = / (8) i= ( ) ( ) i L c i

11 During airfil defrmatin, the camber line f the riginal airfil remains grunded, s that the change in spring length is gverned slely by the displacement f the airfil s uter surfaces with respect t the initial camber line. This mdeling apprach is illustrated in Figures 7a and 7b. This mdeling scheme reflects a shape change created by actuatrs applying vertical frces. Original airfil Initial upper spring length Initial lwer spring length Original camber line New airfil Original camber line Defrmed upper spring length Defrmed lwer spring length Figure 7a: (left): Representative initial spring setup fr the starting airfil. Figure 7b (right): Spring defrmatin after changing t the new airfil shape. By chsing an initial airfil shape with a given lift cefficient and displacing it int all ther allwable shapes, it is pssible t determine the strain energy respnse surface. Figure 8 shws this respnse surface using the NACA 4 airfil as the initial, reference airfil. The reference strain energy is zer. The cnstant strain cnturs are shwn as bld lines. Figure 8 als shws lines f cnstant c l (thin slid lines) and cnstant c.8 d (thin dashed lines). Lines with larger c l values are lcated nearer the tp f Figure 8 while larger drag values are.6 lcated in the upper right part f the figure. Figure 8 shws that there are many airfil shapes capable f satisfying a cnstraint n c l, but there exists nly ne that can be mdified fr the least amunt f energy expended t defrm the surface. If cnstraints exist n bth c l and c d there is n ptimizatin prblem because nly ne airfil shape satisfies bth f the cnstraints. Hwever, since the aerdynamic perfrmance cnstraints are predetermined, results such as thse in Figure 8 can help t determine what these cnstraints shuld be by shwing the tradeffs between aerdynamic perfrmance and energy. Fr instance, it might be seen that fr a small increase in allwable drag, large reductins in actuatin strain energy can be btained. Adaptive shell mdels The internal spring mdel strain energy is based n a cellular wing structure with cntrlled displacements frm the riginal camber line. Hwever, the linear spring mdel des nt explicitly describe the strain energy assciated with a shell structure like that usually used in wing design. In particular, the shell skin may underg substantial perimeter changes as the airfil shape changes. Figure 9 shws a Max Camber/Chrd f Final Airfil Thickness/Chrd f Final Airfil Figure 8: Strain energy assciated with changing a 4 airfil. The new airfil shape can be determined frm the thickness/chrd and max camber/chrd ratis; the lcatin f maximum camber is 4% f the chrd. Figure 9: Representative airfil shell finite element mdel. Figure : Typical strain energy distributin resulting frm the shape change f a 4 airfil via vertical ndal displacements.

12 representative finite element mdel created using ASTROS System). (Autmated STRuctural Optimizatin There are tw ways t change frm ne airfil shape t anther. We can simply mve pints straight upward frm the initial psitin r we can mve pints at an angle. Althugh the final shape is the same, the amunt f bending and stretching f the shell is different. In bth cases the changes in the airfil shape were created by defining the ndal displacements f the final airfil shape. When we mve the initial pints vertically, the strain energy distributin is shwn in Figure. Nte that strain energy is cncentrated at the leading edge because leading edge elements have large bending and in-plane strains, while mid-chrd elements underg nearly rigid-bdy translatins. When ndes are displaced alng a vectr that yields the shrtest distance between the initial and final airfil shapes the strain energy distributin is shwn in Figure. These results indicate that this alternative displacement methd distributes the strain energy ver a larger area f the airfil and the leading edge stress cncentratin is nt as large. Figure : Typical strain energy distributin resulting frm the shape change f a 4 airfil via minimum distance ndal displacements Max Camber/Chrd f Final Airfil Thickness/Chrd f Final Airfil Max Camber/Chrd f Final Airfil Thickness/Chrd f Final Airfil Max Camber/Chrd f Final Airfil Thickness/Chrd f Final Airfil Figure - Strain energy respnse surfaces fr a 4 airfil: (a) (left) mdeled with internal springs; (b) (center) mdeled with finite elements, vertical ndal displacement scheme; (c) mdeled with finite elements, minimum distance ndal displacement scheme. When the shell mdel is cmpared t the riginal cellular structure mdel the shapes f the strain energy respnse surfaces are different. There are als differences between the tw ndal displacement methds. These differences are shwn in Figures a-c. These results imply that the strain energy develped during a shape change depends nt nly n the initial and final airfil shapes, but als n the manner in which the shape change is carried ut. They als imply that ne type f actuatr may be better than anther s that the shape change has minimum actuatin energy. Optimizatin t minimize the strain energy assciated with an airfil shape change is dependent upn the actuatin apprach used t create the shape change. Cnclusin - actuatr/structure integratin and aerelasticity matter The develpment f smart materials and new actuatrs has created the ability t design and use cntinuusly defrming surfaces t generate aerdynamic frces and mments. Aerelastic effects allw the airstream t d wrk n the airfil t generate lift with reduced actuatr effrt. As a result, there are flight regins where certain types f actuatrs perate mre efficiently. Hwever, cntinuusly defrming surfaces encunter different prblems than cnventinal surfaces because they may be deplyed in an infinite number f different shapes and sme deplyment schemes are better r mre effective. Cntinuusly defrming cntrl surfaces are subject t a special reversal phenmena that limit their effectiveness. These reversal prblems are revealed by an eigenvalue prblem that has a critical dynamic pressure and a mde shape. The result is a range f Mach numbers r dynamic pressures where the surfaces are ineffective. Fr trailing edge surfaces, these ineffectiveness regins are functins f an ensemble f aerelastic parameters, including trsinal and bending stiffness and flap-t-chrd rati.

13 Cntinuus leading edge surfaces have critical reversal eigenvalues r dynamic pressures that are negative; these surfaces d nt experience cntrl reversal. When a cmbinatin f leading edge and trailing edge surfaces are used and a frmal ptimizatin rutine is emplyed, effective cmbinatins f lift generating surfaces are revealed. When the surface itself is defrmed by internal actuatrs that strain the structure, sme shapes that generate the reuired lift are easier t mrph int. The results shwn here indicate that strain energy is a useful metric t use t judge hw t g frm ne lift reuirement t anther. What is needed is a mdel with an ptimizatin prcedure that, unlike tday s weight minimizatin, is multi-disciplinary in that it cnsiders metrics such as strain energy as the perfrmance index and takes int accunt changes in the structure and aerdynamic measures such as lift and drag. ACKNOWLEDGEMENTS This research was spnsred by the Air Vehicles Directrate, Air Frce Research Labratry, Wright- Pattersn AFB, Ohi. The authrs thank Dr. Brian Sanders f the Air Vehicles Directrate fr technical cmments and valuable suggestins during the curse f this wrk. REFERENCES. McGwan, A.R., et al., Recent Results frm NASA s Mrphing Prject, SPIE Paper N , 9 th Internatinal Sympsium n Smart Structures and Materials, March 7-,, San Dieg, Califrnia.. Perry, B., Cle, S. and Miller, G., Summary f an Active Flexible Wing Prgram, Jurnal f Aircraft, Vl. 3, N., Jan.-Feb. 995, pp Weisshaar, T.A., Frward Swept Wing Static Aerelasticity, AFFDL-TR , Air Frce Flight Dynamics Labratry, Wright-Pattersn AFB, Ohi. 4. Saggere, L., Kta, S., Static Shape Cntrl f Smart Structures Using Cmpliant Mechanisms. AIAA Jurnal, Vl. 37, N. 5, May 999, pp Spillman, J. J. The Use f Variable Camber t Reduce Drag, Weight and Csts f Transprt Aircraft. Aernautical Jurnal, January 99, pp Austin, F., Siclari, M. J.; Van Nstrand, W., Weisensel, G. N., Kttamasu, V., Vlpe, G., Cmparisn f Smart-Wing Cncepts fr Transnic Cruise Drag Reductin. SPIE, Vl. 344, pp Austin, F., Van Nstrand, W., Shape Cntrl f an Adaptive Wing fr Transnic Drag Reductin. SPIE, Vl. 447, pp Mnner, H.P., Breitbach, I., Bein, T., Hanselka, H. Design Aspects f the Adaptive Wing the Elastic Trailing Edge and the Lcal Spiler Bump. Aernautical Jurnal, February, pp Campanile, L. F., Seack, O., Sachau, D. The Belt-Rib Cncept fr Variable-Camber Airfils; Recent Develpments. Prceedings f SPIE Vl Smart Structures and Materials : Smart Structures and Integrated Systems. Pp. -.. Abbtt, I. H.; Vn Denhff, A. E. Thery f Wing Sectins. Dver Publicatins, Inc., New Yrk, Jhnsn, E.H., and V.B. Venkayya, Autmated Structural Optimizatin System, Vl. I, Theretical Manual, Technical Reprt 88-38, Air Frce Wright Aernautical Labratries, March

Introductory Thoughts

Introductory Thoughts Flw Similarity By using the Buckingham pi therem, we have reduced the number f independent variables frm five t tw If we wish t run a series f wind-tunnel tests fr a given bdy at a given angle f attack,

More information

Aircraft Performance - Drag

Aircraft Performance - Drag Aircraft Perfrmance - Drag Classificatin f Drag Ntes: Drag Frce and Drag Cefficient Drag is the enemy f flight and its cst. One f the primary functins f aerdynamicists and aircraft designers is t reduce

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

3D FE Modeling Simulation of Cold Rotary Forging with Double Symmetry Rolls X. H. Han 1, a, L. Hua 1, b, Y. M. Zhao 1, c

3D FE Modeling Simulation of Cold Rotary Forging with Double Symmetry Rolls X. H. Han 1, a, L. Hua 1, b, Y. M. Zhao 1, c Materials Science Frum Online: 2009-08-31 ISSN: 1662-9752, Vls. 628-629, pp 623-628 di:10.4028/www.scientific.net/msf.628-629.623 2009 Trans Tech Publicatins, Switzerland 3D FE Mdeling Simulatin f Cld

More information

Fundamental Concepts in Structural Plasticity

Fundamental Concepts in Structural Plasticity Lecture Fundamental Cncepts in Structural Plasticit Prblem -: Stress ield cnditin Cnsider the plane stress ield cnditin in the principal crdinate sstem, a) Calculate the maximum difference between the

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression

3.4 Shrinkage Methods Prostate Cancer Data Example (Continued) Ridge Regression 3.3.4 Prstate Cancer Data Example (Cntinued) 3.4 Shrinkage Methds 61 Table 3.3 shws the cefficients frm a number f different selectin and shrinkage methds. They are best-subset selectin using an all-subsets

More information

On Boussinesq's problem

On Boussinesq's problem Internatinal Jurnal f Engineering Science 39 (2001) 317±322 www.elsevier.cm/lcate/ijengsci On Bussinesq's prblem A.P.S. Selvadurai * Department f Civil Engineering and Applied Mechanics, McGill University,

More information

Free Vibrations of Catenary Risers with Internal Fluid

Free Vibrations of Catenary Risers with Internal Fluid Prceeding Series f the Brazilian Sciety f Applied and Cmputatinal Mathematics, Vl. 4, N. 1, 216. Trabalh apresentad n DINCON, Natal - RN, 215. Prceeding Series f the Brazilian Sciety f Cmputatinal and

More information

Space Shuttle Ascent Mass vs. Time

Space Shuttle Ascent Mass vs. Time Space Shuttle Ascent Mass vs. Time Backgrund This prblem is part f a series that applies algebraic principles in NASA s human spaceflight. The Space Shuttle Missin Cntrl Center (MCC) and the Internatinal

More information

(1.1) V which contains charges. If a charge density ρ, is defined as the limit of the ratio of the charge contained. 0, and if a force density f

(1.1) V which contains charges. If a charge density ρ, is defined as the limit of the ratio of the charge contained. 0, and if a force density f 1.0 Review f Electrmagnetic Field Thery Selected aspects f electrmagnetic thery are reviewed in this sectin, with emphasis n cncepts which are useful in understanding magnet design. Detailed, rigrus treatments

More information

Technical Bulletin. Generation Interconnection Procedures. Revisions to Cluster 4, Phase 1 Study Methodology

Technical Bulletin. Generation Interconnection Procedures. Revisions to Cluster 4, Phase 1 Study Methodology Technical Bulletin Generatin Intercnnectin Prcedures Revisins t Cluster 4, Phase 1 Study Methdlgy Release Date: Octber 20, 2011 (Finalizatin f the Draft Technical Bulletin released n September 19, 2011)

More information

Dead-beat controller design

Dead-beat controller design J. Hetthéssy, A. Barta, R. Bars: Dead beat cntrller design Nvember, 4 Dead-beat cntrller design In sampled data cntrl systems the cntrller is realised by an intelligent device, typically by a PLC (Prgrammable

More information

DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING A VISCOUS ADJOINT-BASED METHOD

DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING A VISCOUS ADJOINT-BASED METHOD DESIGN OPTIMIZATION OF HIGH-LIFT CONFIGURATIONS USING A VISCOUS ADJOINT-BASED METHOD Sangh Kim Stanfrd University Juan J. Alns Stanfrd University Antny Jamesn Stanfrd University 40th AIAA Aerspace Sciences

More information

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Lead/Lag Compensator Frequency Domain Properties and Design Methods Lectures 6 and 7 Lead/Lag Cmpensatr Frequency Dmain Prperties and Design Methds Definitin Cnsider the cmpensatr (ie cntrller Fr, it is called a lag cmpensatr s K Fr s, it is called a lead cmpensatr Ntatin

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

Figure 1a. A planar mechanism.

Figure 1a. A planar mechanism. ME 5 - Machine Design I Fall Semester 0 Name f Student Lab Sectin Number EXAM. OPEN BOOK AND CLOSED NOTES. Mnday, September rd, 0 Write n ne side nly f the paper prvided fr yur slutins. Where necessary,

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES PREFERRED RELIABILITY PAGE 1 OF 5 PRACTICES PRACTICE NO. PT-TE-1409 THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC Practice: Perfrm all thermal envirnmental tests n electrnic spaceflight hardware in a flight-like

More information

37 Maxwell s Equations

37 Maxwell s Equations 37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

More information

OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION

OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION U. S. FOREST SERVICE RESEARCH PAPER FPL 50 DECEMBER U. S. DEPARTMENT OF AGRICULTURE FOREST SERVICE FOREST PRODUCTS LABORATORY OF SIMPLY SUPPORTED PLYWOOD PLATES UNDER COMBINED EDGEWISE BENDING AND COMPRESSION

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions

Lecture 23: Lattice Models of Materials; Modeling Polymer Solutions Lecture 23: 12.05.05 Lattice Mdels f Materials; Mdeling Plymer Slutins Tday: LAST TIME...2 The Bltzmann Factr and Partitin Functin: systems at cnstant temperature...2 A better mdel: The Debye slid...3

More information

GENESIS Structural Optimization for ANSYS Mechanical

GENESIS Structural Optimization for ANSYS Mechanical P3 STRUCTURAL OPTIMIZATION (Vl. II) GENESIS Structural Optimizatin fr ANSYS Mechanical An Integrated Extensin that adds Structural Optimizatin t ANSYS Envirnment New Features and Enhancements Release 2017.03

More information

EDA Engineering Design & Analysis Ltd

EDA Engineering Design & Analysis Ltd EDA Engineering Design & Analysis Ltd THE FINITE ELEMENT METHOD A shrt tutrial giving an verview f the histry, thery and applicatin f the finite element methd. Intrductin Value f FEM Applicatins Elements

More information

Lecture 13: Electrochemical Equilibria

Lecture 13: Electrochemical Equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 13: 10.21.05 Electrchemical Equilibria Tday: LAST TIME...2 An example calculatin...3 THE ELECTROCHEMICAL POTENTIAL...4 Electrstatic energy cntributins

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

Study Group Report: Plate-fin Heat Exchangers: AEA Technology

Study Group Report: Plate-fin Heat Exchangers: AEA Technology Study Grup Reprt: Plate-fin Heat Exchangers: AEA Technlgy The prblem under study cncerned the apparent discrepancy between a series f experiments using a plate fin heat exchanger and the classical thery

More information

NGSS High School Physics Domain Model

NGSS High School Physics Domain Model NGSS High Schl Physics Dmain Mdel Mtin and Stability: Frces and Interactins HS-PS2-1: Students will be able t analyze data t supprt the claim that Newtn s secnd law f mtin describes the mathematical relatinship

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA

February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA February 28, 2013 COMMENTS ON DIFFUSION, DIFFUSIVITY AND DERIVATION OF HYPERBOLIC EQUATIONS DESCRIBING THE DIFFUSION PHENOMENA Mental Experiment regarding 1D randm walk Cnsider a cntainer f gas in thermal

More information

ABSORPTION OF GAMMA RAYS

ABSORPTION OF GAMMA RAYS 6 Sep 11 Gamma.1 ABSORPTIO OF GAMMA RAYS Gamma rays is the name given t high energy electrmagnetic radiatin riginating frm nuclear energy level transitins. (Typical wavelength, frequency, and energy ranges

More information

Course Stabilty of Structures

Course Stabilty of Structures Curse Stabilty f Structures Lecture ntes 2015.03.06 abut 3D beams, sme preliminaries (1:st rder thery) Trsin, 1:st rder thery 3D beams 2:nd rder thery Trsinal buckling Cupled buckling mdes, eamples Numerical

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Design Optimization of Multi Element High Lift Configurations. Using a Viscous Continuous Adjoint Method

Design Optimization of Multi Element High Lift Configurations. Using a Viscous Continuous Adjoint Method Design Optimizatin f Multi Element High Lift Cnfiguratins Using a Viscus Cntinuus Adjint Methd Sangh Kim, Juan J. Alns, and Antny Jamesn Stanfrd University, Stanfrd, CA 94305 ABSTRACT An adjint-based Navier-Stkes

More information

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India CHAPTER 3 INEQUALITIES Cpyright -The Institute f Chartered Accuntants f India INEQUALITIES LEARNING OBJECTIVES One f the widely used decisin making prblems, nwadays, is t decide n the ptimal mix f scarce

More information

THERMAL TEST LEVELS & DURATIONS

THERMAL TEST LEVELS & DURATIONS PREFERRED RELIABILITY PAGE 1 OF 7 PRACTICES PRACTICE NO. PT-TE-144 Practice: 1 Perfrm thermal dwell test n prtflight hardware ver the temperature range f +75 C/-2 C (applied at the thermal cntrl/munting

More information

Review of the Roll-Damping, Measurements in the T-38 Wind Tunnel

Review of the Roll-Damping, Measurements in the T-38 Wind Tunnel Internatinal Jurnal f Scientific and Research Publicatins, Vlume 3, Issue 12, December 2013 1 Review f the Rll-Damping, Measurements in the T-38 Wind Tunnel Dušan Regdić *, Marija Samardžić **, Gjk Grubr

More information

COASTAL ENGINEERING Chapter 2

COASTAL ENGINEERING Chapter 2 CASTAL ENGINEERING Chapter 2 GENERALIZED WAVE DIFFRACTIN DIAGRAMS J. W. Jhnsn Assciate Prfessr f Mechanical Engineering University f Califrnia Berkeley, Califrnia INTRDUCTIN Wave diffractin is the phenmenn

More information

Activity Guide Loops and Random Numbers

Activity Guide Loops and Random Numbers Unit 3 Lessn 7 Name(s) Perid Date Activity Guide Lps and Randm Numbers CS Cntent Lps are a relatively straightfrward idea in prgramming - yu want a certain chunk f cde t run repeatedly - but it takes a

More information

Kinematic transformation of mechanical behavior Neville Hogan

Kinematic transformation of mechanical behavior Neville Hogan inematic transfrmatin f mechanical behavir Neville Hgan Generalized crdinates are fundamental If we assume that a linkage may accurately be described as a cllectin f linked rigid bdies, their generalized

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Relationship Between Amplifier Settling Time and Pole-Zero Placements for Second-Order Systems *

Relationship Between Amplifier Settling Time and Pole-Zero Placements for Second-Order Systems * Relatinship Between Amplifier Settling Time and Ple-Zer Placements fr Secnd-Order Systems * Mark E. Schlarmann and Randall L. Geiger Iwa State University Electrical and Cmputer Engineering Department Ames,

More information

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems.

Building to Transformations on Coordinate Axis Grade 5: Geometry Graph points on the coordinate plane to solve real-world and mathematical problems. Building t Transfrmatins n Crdinate Axis Grade 5: Gemetry Graph pints n the crdinate plane t slve real-wrld and mathematical prblems. 5.G.1. Use a pair f perpendicular number lines, called axes, t define

More information

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Prfessr and Chair Mechanical Engineering Department Christian Brthers University 650 East Parkway Suth Memphis, TN 38104 Office: (901) 321-3424 Rm: N-110 Fax : (901) 321-3402

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Surface and Contact Stress

Surface and Contact Stress Surface and Cntact Stress The cncept f the frce is fundamental t mechanics and many imprtant prblems can be cast in terms f frces nly, fr example the prblems cnsidered in Chapter. Hwever, mre sphisticated

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

A Stall Flutter Of Helicopter Rotor Blades.- A Special Case 01 The Dynamic Stall Phenomenon MASSACHUSETTS INSTITUTE CF TECHNOLOGY.

A Stall Flutter Of Helicopter Rotor Blades.- A Special Case 01 The Dynamic Stall Phenomenon MASSACHUSETTS INSTITUTE CF TECHNOLOGY. - AD REPORT 1*81^.3 CO A Stall Flutter Of Helicpter Rtr Blades.- A Special Case 01 The Dynamic Stall Phenmenn NORMAN D. HAM MASSACHUSETTS INSTITUTE CF TECHNOLOGY MAY I967 D D C m Spa

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS On cmpletin f this tutrial yu shuld be able t d the fllwing. Define viscsity

More information

Pressure And Entropy Variations Across The Weak Shock Wave Due To Viscosity Effects

Pressure And Entropy Variations Across The Weak Shock Wave Due To Viscosity Effects Pressure And Entrpy Variatins Acrss The Weak Shck Wave Due T Viscsity Effects OSTAFA A. A. AHOUD Department f athematics Faculty f Science Benha University 13518 Benha EGYPT Abstract:-The nnlinear differential

More information

Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison

Aerodynamic Separability in Tip Speed Ratio and Separability in Wind Speed- a Comparison Jurnal f Physics: Cnference Series OPEN ACCESS Aerdynamic Separability in Tip Speed Rati and Separability in Wind Speed- a Cmparisn T cite this article: M L Gala Sants et al 14 J. Phys.: Cnf. Ser. 555

More information

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC.

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC. PHYSIS 536 Experiment 4: D Pwer Supply I. Intrductin The prcess f changing A t D is investigated in this experiment. An integrated circuit regulatr makes it easy t cnstruct a high-perfrmance vltage surce

More information

Energy considerations Energy considerations

Energy considerations Energy considerations Energy cnsieratins 99.0.8 DRFT. Energy cnsieratins The wrk reuire t assemble tw charges, an is fun by first bringing frm infinity t its esire psitin (which reuires n wrk) an then bringing frm infinity

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink American Jurnal f Engineering Research (AJER) 016 American Jurnal f Engineering Research (AJER) e-issn: 30-0847 p-issn : 30-0936 Vlume-5, Issue-, pp-9-36 www.ajer.rg Research Paper Open Access Design and

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

L a) Calculate the maximum allowable midspan deflection (w o ) critical under which the beam will slide off its support.

L a) Calculate the maximum allowable midspan deflection (w o ) critical under which the beam will slide off its support. ecture 6 Mderately arge Deflectin Thery f Beams Prblem 6-1: Part A: The department f Highways and Public Wrks f the state f Califrnia is in the prcess f imprving the design f bridge verpasses t meet earthquake

More information

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must

the results to larger systems due to prop'erties of the projection algorithm. First, the number of hidden nodes must M.E. Aggune, M.J. Dambrg, M.A. El-Sharkawi, R.J. Marks II and L.E. Atlas, "Dynamic and static security assessment f pwer systems using artificial neural netwrks", Prceedings f the NSF Wrkshp n Applicatins

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

A Study on Pullout Strength of Cast-in-place Anchor bolt in Concrete under High Temperature

A Study on Pullout Strength of Cast-in-place Anchor bolt in Concrete under High Temperature Transactins f the 7 th Internatinal Cnference n Structural Mechanics in Reactr Technlgy (SMiRT 7) Prague, Czech Republic, August 7 22, 23 Paper #H-2 A Study n Pullut Strength f Cast-in-place Anchr blt

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

Department of Electrical Engineering, University of Waterloo. Introduction

Department of Electrical Engineering, University of Waterloo. Introduction Sectin 4: Sequential Circuits Majr Tpics Types f sequential circuits Flip-flps Analysis f clcked sequential circuits Mre and Mealy machines Design f clcked sequential circuits State transitin design methd

More information

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1

Phys101 Final Code: 1 Term: 132 Wednesday, May 21, 2014 Page: 1 Phys101 Final Cde: 1 Term: 1 Wednesday, May 1, 014 Page: 1 Q1. A car accelerates at.0 m/s alng a straight rad. It passes tw marks that are 0 m apart at times t = 4.0 s and t = 5.0 s. Find the car s velcity

More information

How do scientists measure trees? What is DBH?

How do scientists measure trees? What is DBH? Hw d scientists measure trees? What is DBH? Purpse Students develp an understanding f tree size and hw scientists measure trees. Students bserve and measure tree ckies and explre the relatinship between

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

BUCKLING OPTIMIZATION OF UNSYMMETRICALLY LAMINATED PLATES UNDER TRANSVERSE LOADS

BUCKLING OPTIMIZATION OF UNSYMMETRICALLY LAMINATED PLATES UNDER TRANSVERSE LOADS BUCKLIG OPTIMIZATIO OF USYMMETRICALLY LAMIATED PLATES UDER TRASVERSE LOADS Hsuan-Teh Hu and Zhng-Zhi Chen Department f Civil Engineering, atinal Cheng Kung University Tainan, Taiwan 7, R.O.C. SUMMARY:

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

SMART TESTING BOMBARDIER THOUGHTS

SMART TESTING BOMBARDIER THOUGHTS Bmbardier Inc. u ses filiales. Tus drits réservés. BOMBARDIER THOUGHTS FAA Bmbardier Wrkshp Mntreal 15-18 th September 2015 Bmbardier Inc. u ses filiales. Tus drits réservés. LEVERAGING ANALYSIS METHODS

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank

CAUSAL INFERENCE. Technical Track Session I. Phillippe Leite. The World Bank CAUSAL INFERENCE Technical Track Sessin I Phillippe Leite The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Phillippe Leite fr the purpse f this wrkshp Plicy questins are causal

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

A.H. Helou Ph.D.~P.E.

A.H. Helou Ph.D.~P.E. 1 EVALUATION OF THE STIFFNESS MATRIX OF AN INDETERMINATE TRUSS USING MINIMIZATION TECHNIQUES A.H. Helu Ph.D.~P.E. :\.!.\STRAC'l' Fr an existing structure the evaluatin f the Sti"ffness matrix may be hampered

More information

WRITING THE REPORT. Organizing the report. Title Page. Table of Contents

WRITING THE REPORT. Organizing the report. Title Page. Table of Contents WRITING THE REPORT Organizing the reprt Mst reprts shuld be rganized in the fllwing manner. Smetime there is a valid reasn t include extra chapters in within the bdy f the reprt. 1. Title page 2. Executive

More information

Support-Vector Machines

Support-Vector Machines Supprt-Vectr Machines Intrductin Supprt vectr machine is a linear machine with sme very nice prperties. Haykin chapter 6. See Alpaydin chapter 13 fr similar cntent. Nte: Part f this lecture drew material

More information

CHAPTER 2 Algebraic Expressions and Fundamental Operations

CHAPTER 2 Algebraic Expressions and Fundamental Operations CHAPTER Algebraic Expressins and Fundamental Operatins OBJECTIVES: 1. Algebraic Expressins. Terms. Degree. Gruping 5. Additin 6. Subtractin 7. Multiplicatin 8. Divisin Algebraic Expressin An algebraic

More information

Numerical Simulation of the Flow Field in a Friction-Type Turbine (Tesla Turbine)

Numerical Simulation of the Flow Field in a Friction-Type Turbine (Tesla Turbine) Numerical Simulatin f the Flw Field in a Frictin-Type Turbine (Tesla Turbine) Institute f Thermal Pwerplants Vienna niversity f Technlgy Getreidemarkt 9/313, A-6 Wien Andrés Felipe Rey Ladin Schl f Engineering,

More information

FIELD QUALITY IN ACCELERATOR MAGNETS

FIELD QUALITY IN ACCELERATOR MAGNETS FIELD QUALITY IN ACCELERATOR MAGNETS S. Russenschuck CERN, 1211 Geneva 23, Switzerland Abstract The field quality in the supercnducting magnets is expressed in terms f the cefficients f the Furier series

More information

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance summary C = ε A / d = πε L / ln( b / a ) ab C = 4πε 4πε a b a b >> a Chapter 16 Electric Energy and Capacitance Capacitance Q=CV Parallel plates, caxial cables, Earth Series and parallel 1 1 1 = + +..

More information

Derailment Safety Evaluation by Analytic Equations

Derailment Safety Evaluation by Analytic Equations PAPER Derailment Safety Evaluatin by Analytic Equatins Hideyuki TAKAI General Manager, Track Technlgy Div. Hirnari MURAMATSU Assistant Senir Researcher, Track Gemetry & Maintenance, Track Technlgy Div.

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Floating Point Method for Solving Transportation. Problems with Additional Constraints

Floating Point Method for Solving Transportation. Problems with Additional Constraints Internatinal Mathematical Frum, Vl. 6, 20, n. 40, 983-992 Flating Pint Methd fr Slving Transprtatin Prblems with Additinal Cnstraints P. Pandian and D. Anuradha Department f Mathematics, Schl f Advanced

More information

1 The limitations of Hartree Fock approximation

1 The limitations of Hartree Fock approximation Chapter: Pst-Hartree Fck Methds - I The limitatins f Hartree Fck apprximatin The n electrn single determinant Hartree Fck wave functin is the variatinal best amng all pssible n electrn single determinants

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

THE LIFE OF AN OBJECT IT SYSTEMS

THE LIFE OF AN OBJECT IT SYSTEMS THE LIFE OF AN OBJECT IT SYSTEMS Persns, bjects, r cncepts frm the real wrld, which we mdel as bjects in the IT system, have "lives". Actually, they have tw lives; the riginal in the real wrld has a life,

More information

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation

A New Evaluation Measure. J. Joiner and L. Werner. The problems of evaluation and the needed criteria of evaluation III-l III. A New Evaluatin Measure J. Jiner and L. Werner Abstract The prblems f evaluatin and the needed criteria f evaluatin measures in the SMART system f infrmatin retrieval are reviewed and discussed.

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Lecture 24: Flory-Huggins Theory

Lecture 24: Flory-Huggins Theory Lecture 24: 12.07.05 Flry-Huggins Thery Tday: LAST TIME...2 Lattice Mdels f Slutins...2 ENTROPY OF MIXING IN THE FLORY-HUGGINS MODEL...3 CONFIGURATIONS OF A SINGLE CHAIN...3 COUNTING CONFIGURATIONS FOR

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

Propeller Performance Analysis Using Lifting Line Theory. by Kevin M. Flood B.S., (1997) Hobart College M.A., (2002) Webster University

Propeller Performance Analysis Using Lifting Line Theory. by Kevin M. Flood B.S., (1997) Hobart College M.A., (2002) Webster University Prpeller Perfrmance Analysis Using Lifting Line Thery by Kevin M. Fld B.S., (997) Hbart Cllege M.A., (00) Webster University Submitted t the Department f Mechanical Engineering in Partial Fulfillment f

More information

Homework 1 AERE355 Fall 2017 Due 9/1(F) NOTE: If your solution does not adhere to the format described in the syllabus, it will be grade as zero.

Homework 1 AERE355 Fall 2017 Due 9/1(F) NOTE: If your solution does not adhere to the format described in the syllabus, it will be grade as zero. 1 Hmerk 1 AERE355 Fall 217 Due 9/1(F) Name NOE: If yur slutin des nt adhere t the frmat described in the syllabus, it ill be grade as zer. Prblem 1(25pts) In the altitude regin h 1km, e have the flling

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

Lecture 02 CSE 40547/60547 Computing at the Nanoscale

Lecture 02 CSE 40547/60547 Computing at the Nanoscale PN Junctin Ntes: Lecture 02 CSE 40547/60547 Cmputing at the Nanscale Letʼs start with a (very) shrt review f semi-cnducting materials: - N-type material: Obtained by adding impurity with 5 valence elements

More information

A mathematical model for complete stress-strain curve prediction of permeable concrete

A mathematical model for complete stress-strain curve prediction of permeable concrete A mathematical mdel fr cmplete stress-strain curve predictin f permeable cncrete M. K. Hussin Y. Zhuge F. Bullen W. P. Lkuge Faculty f Engineering and Surveying, University f Suthern Queensland, Twmba,

More information

Curvature Effects on Thermal Buckling Load of DWCNT Under Axial Compression Force

Curvature Effects on Thermal Buckling Load of DWCNT Under Axial Compression Force Jurnal f Slid Mechanics Vl. 3,. (0) pp. -8 Curvature Effects n Thermal Buckling Lad f DWCT Under Aial Cmpressin Frce A. Ghrbanpur Arani,,*, M. Mhammadimehr, M. Ghazi Department f Mechanical Engineering,

More information