ECE Semiconductor Device and Material Characterization

Size: px
Start display at page:

Download "ECE Semiconductor Device and Material Characterization"

Transcription

1 ECE 483 Semiconuctor Device an Material Characterization Dr. Alan Doolittle School of Electrical an Computer Engineering Georgia Institute of Technology As with all of these lecture slies, I am inebte to Dr. Dieter Schroer from Arizona State University for his generous contributions an freely given resources. Most of (>80%) the figures/slies in this lecture came from Dieter. Some of these figures are copyrighte an can be foun within the class text, Semiconuctor Device an Materials Characterization. Every serious microelectronics stuent shoul have a copy of this book! ECE 483 Dr. Alan Doolittle

2 Optical Characterization Optical Microscopy Ellipsometry Transmission Reflection Photoluminescence ECE 483 Dr. Alan Doolittle

3 Optical Excitation Emission Photoluminescence Raman Spectroscopy UV Photoelectron Spectroscopy hν Reflection Optical Microscopy Ellipsometry Reflection Spectroscopy Absorption Photoconuctance Photoelectron Spectroscopy Transmission Absorption Coefficient Infrare Spectroscopy ECE 483 Dr. Alan Doolittle

4 Optical Characterization Photometric Measurements Amplitue of reflecte or transmitte light Optical constants, absorption coefficients ECE 483 Dr. Alan Doolittle

5 Optical Characterization Interference Measurements Phase of reflecte or transmitte light Film thickness, surface structure Two emerging light beams are phase shifte Constructive an estructive interference ' n sinφ n0 sinφ λ n n0 sin φ λ n 0 n φ φ' φ Phase Shift ECE 483 Dr. Alan Doolittle

6 Interference Amplitue 0 Destructive Interference A B C Amplitue 0 Constructive Interference A B C ωt ωt Eye Oxie thickness variations ECE 483 Dr. Alan Doolittle

7 Interference Blue Morpho butterfly gets its bright blue color from interference effects Interference ue to microscopic riges on the wings ECE 483 Dr. Alan Doolittle

8 Optical Characterization Polarization Measurements Ellipticity of reflecte light Optical constants, film thickness, surface structure Polarizer polarizes the light into particular orientation H-sheet; most popular linear polarizer Polyvinyl alcohol (plastic sheet) is heate an stretche Sheet is ippe into ioine solution Ioine impregnates the plastic, attaches to long-chain molecules, forms wire gri Polarizer Horizontal polarization, transmitte Vertical polarization, not transmitte ECE 483 Dr. Alan Doolittle

9 Polarize Light x Electric Fiel y y Magnetic Fiel Circular Polarization x y x y y x x z z Elliptical Polarization z ECE 483 Dr. Alan Doolittle

10 Polarizing Filter Effect Colore light from thin-film iriescence in butterflies is often polarize Left wings: unmoifie Right wings: generate by taking two photographs through a polarizing filter rotate by 90 between exposures, an then proucing the ifference of the two images One shows a pattern of polarize an epolarize regions, the other oes not Wing color important in male attraction to females A. Sweeney et al. Nature 43, 3 (003) ECE 483 Dr. Alan Doolittle

11 Diamons What s so special about iamons? Star of South Africa Diamon 83.5 Carats Taylor Diamon 69 Carats ECE 483 Dr. Alan Doolittle

12 Transmission, Reflection, Refraction A iamon is polishe into a particular shape for maximum light refraction/reflection/transmission 58 Facets ECE 483 Dr. Alan Doolittle

13 Optical Microscopy Light cannot be focuse to an infinitesimally small spot ue to the wave nature of light ECE 483 Dr. Alan Doolittle

14 Optical Microscopy There is no lower limit to the size of an isolate object that can be etecte The minimum separation, s, of two point objects occurs when the first maximum of the iffraction pattern of one object falls on the first minimum of the secon object s 0.6λ 0. 6λ n sinθ NA λ free space wavelength, n refractive inex of immersion meium, θ half the angle subtene by the lens at the object, NA numerical aperture Best resolution about 0.5 µm for λ 0.4 µm, NA ECE 483 Dr. Alan Doolittle

15 Optical Microscopy Different approaches to optical microscopy bring out ifferent features Bright Fiel Dark Fiel Interference Contrast ECE 483 Dr. Alan Doolittle

16 Near Fiel Optical Microscopy Conventional microscopy Images the far fiel, where Raleigh limit prevails Near fiel microscopy Images the near fiel, where solution etermine by aperture, not wavelength Detector must be very close to sample λ Lens λ λ λ/ Aperture λ D Detector Spherically iverging wave Spacing D Evanescent wave Detector ECE 483 Dr. Alan Doolittle

17 Near Fiel Optical Microscopy The light is confine to a small aperture Drawn or etche glass fiber Topography Transmission Fluorescence Light Al Coat Glass Fiber Polymer Sample Physics.nist.gov/Divisions/Div844/facilities/nsom/nsom.html ECE 483 Dr. Alan Doolittle

18 Definition Ellipsometry Measurement of the state of polarization of a polarize light wave General Scheme A polarize light wave probe interacts with an "optical system", this interaction changes the state of polarization, measurement of the initial an final states is performe this yiels information about the optical constants of the "system" E S E E S Incient E P E P Reflecte ECE 483 Dr. Alan Doolittle

19 Null Ellipsometer Angles P, C, an A lea to ellipsometer quantities ρ, Ψ an Laser Polarizer Unpolarize P Compensator Linearly Polarize ρ tanψe C Incient j φ φ The ellipsometry equation! n 0 n -jk Transmitte Reflecte A Extinguishe Analyzer Detector Elliptically Polarize Sample Linearly Polarize ECE 483 Dr. Alan Doolittle

20 Nonestructive technique Ellipsometry Film thickness measurement; can measure film thicknesses own to nm Refractive inex etermination; can measure refractive inex of thin films of unknown thickness Azimuth angles can be measure with great accuracy Measures a ratio of two values Highly accurate an reproucible (even in low light levels) No reference sample necessary Not as susceptible to scatter, lamp or purge fluctuations Surface uniformity assessment Composition eterminations Can be use for in situ analysis ECE 483 Dr. Alan Doolittle

21 Null ellipsometry Ellipsometer Polarizer-Compensator-Sample-Analyzer Polarizer an Compensator Angles ajuste for linear polarization upon reflection Analyzer is ajuste to extinguish reflecte light Rotating Analyzer Ellipsometry Analyzer rotates ( θ ) I [ + a cosθ sinθ ] I + 0 b Ψ cos Spectroscopic Ellipsometry ( a ); Uses several wavelengths Can also use several angles cos b a ECE 483 Dr. Alan Doolittle

22 Ellipsometry Measure change of polarization state of light reflecte from a surface Ep( reflecte ) Rp ; Rs E ( incient ) p Es( reflecte ) E ( incient ) s ρ R R p s tanψe j For an air-soli with an absorbing substrate n [ cos Ψ sin Ψ sin ] tan φ k n0 sin φ + [ + sinψ cos ] n k n 0 sin φ tan φ sin4ψ sin [ + sinψ cos ] ECE 483 Dr. Alan Doolittle

23 Definition Transmission / Absorption Absorption - the loss of a photon from an incient flux by the process of exciting an electron from a lower- to a higher-energy state General Scheme Light is incient on a thin sample part of the light is reflecte an the remainer is absorbe or transmitte; a measurement is mae of the transmitte intensity The experiment can be carrie out as a function of temperature, externally applie fiels, sample thickness, etc. I i I t ECE 483 Dr. Alan Doolittle

24 Transmission Optical transmission measurements Sample thickness Absorption coefficient Impurities in semiconuctors (oxygen an carbon in Si) I i I r I r R R A B C D n, k, α n 0 n 0 0 x I t I t T I I t i + R R e For R R : R T ( R )( R ) + R e α ( R) α ( n0 n) + k ( n + n ) + k 0 e R R e e Re α α α α cosφ 4πn φ λ cosφ ECE 483 Dr. Alan Doolittle

25 ECE 483 Dr. Alan Doolittle Transmission If etector has insufficient resolution ( ) φ α α α cos R e e R e R T + ( ) cosφ R R R T + ( ) R R R R T + ( ) e R e R T α α ( ) φ φ π π π α α α e R e R T + cos Re If α 0 T /λ

26 ECE 483 Dr. Alan Doolittle Transmission Gives absorption coefficient, impurity ensity (e.g., oxygen, carbon in Si), thickness ( ) ( ) ( ) λ α ; 4 ln n T R T R R

27 ECE 483 Dr. Alan Doolittle Thickness Oscillations are etermine by ; / 4 cos λ πn Has maxima at n i m n m n m i ) (... ) ( ; 0 λ λ λ + + i o i i m λ λ λ ) / (/ ) ( λ λ λ λ λ λ i i i n i n ) (/ ) / (/ : 0 λ λ λ n n i For (/λ) /λ: Wave number

28 Instrumentation Two types of instruments are use Monochromator Source Entrance Slit Interferometer Source N θ φ Grating L Movable Mirror Beam Splitter L Sample Detector Exit Slit Fixe Mirror mλ sin(θ)cos(φ) m,, 3..; line spacing of grating ECE 483 Dr. Alan Doolittle

29 Interferometer Let source be cosπfx f: frequency of light x: movable mirror location L L Constructive interference Maximum etector output L L + λ/4 Destructive interference Zero etector output L Movable Mirror Source Beam Splitter L Fixe Mirror Sample Detector L L L L + λ/4 ECE 483 Dr. Alan Doolittle

30 Fourier Transform Infrare Spectroscopy Fourier transform infrare spectroscopy (FTIR) I ( x ) B( f )[ + cosπxf ] I f ( x ) Acosπxf f B 0 I f ( x ) 0 B( f )[ cosπxf ]f + Af ( f ) I( x ) cosπxf x ω ω sinπxf πxf Amplitue f f Spectrum f (siny/y) 0.8 f 0 3 cm x0 3 cm x (cm) Interferogram ECE 483 Dr. Alan Doolittle

31 Interferogram - Spectrum Interferogram Spectrum ECE 483 Dr. Alan Doolittle

32 FTIR Applications Determine oxygen an carbon ensity by transmission ip ECE 483 Dr. Alan Doolittle

33 ECE 483 Dr. Alan Doolittle Reflection Reflection measurements Film thickness Reflectivity φ n 0 n n λ φ φ Reflection Transmission Refraction cos cos φ φ α α α α r r e r r e r r e r e r R sin sin cos 4 ; n n n n n n n r n n n n r φ φ λ φ π φ

34 Reflection Examples Rearview Mirror ECE 483 Dr. Alan Doolittle

35 Total Internal Reflection Snell s law: n 0 sinθ 0 n sinθ For θ θ c sin - (n 0 /n ) (critical angle) θ 0 90 Total internal reflection ECE 483 Dr. Alan Doolittle

36 Reflection R versus λ yiels plots with unequal wavelength spacings R versus /λ (wavenumber) gives equal spacings n φ cos λ( max) m n m,, 3 n iλ λ ( λ λ ) cosφ ( λ λ ) cosφ 0 i i: number of complete cycles from λ 0 to λ i i 0 o i i Reflectance Reflectance λ 0 λ λ λ Wavelength (cm) λ 3 - λ - λ - λ Wavenumber (cm - ) ECE 483 Dr. Alan Doolittle

37 Reflection FTIR Applications FTIR is use in may soli state an chemical applications ECE 483 Dr. Alan Doolittle

38 Line With Scatterometry uses scattere or iffracte light From iffracte signature can etermine Line height Line with Corner rouning Siewall slope/angle Special test structure Light 300 (variable λ) Variable θ i Variable θ Detector SEM CD (nm) Measurements Scatterometry CD (nm) C.J. Raymon in Hanbook of Si Semiconuctor Metrology (A.C. Diebol, e.) Marcel Dekker, 00. ECE 483 Dr. Alan Doolittle

39 Luminescence Luminescence is the emission of light ue to: Incanescence: energy supplie by heat Photoluminescence: energy supplie by light Fluorescence: energy supplie by ultraviolet light Chemiluminescence: energy supplie by chemical reactions Bioluminescence: energy supplie by chemical reactions in living beings Electroluminescence: energy supplie by electric current/voltage Cathooluminescence: energy supplie by electron beams. Raioluminescence: energy supplie by nuclear raiation Phosphorescence: elaye luminescence or "afterglow" Triboluminescence: energy supplie by mechanical action Thermoluminescence: energy supplie by heat ECE 483 Dr. Alan Doolittle

40 Photoluminescence Incient laser creates electron-hole pairs (ehp) When the ehp recombine, they emit light Si Sample Light Detector E C E D hν E A E V hν E G E D -E V E C -E A E D -E A Exciton ECE 483 Dr. Alan Doolittle

41 How Does PL Work An How Can It Be Use? Carrier generation epth Wavelength epth information Recombination Shockley-Rea-Hall (impurities) impurity information Auger (high carrier ensities) oping ensity information Surface (surface states, impurities) surface information Raiative (light emission) etection mechanism This is what we want! Moulate Light Carrier Generation Diffusion Recombination ECE 483 Dr. Alan Doolittle

42 Depth Depenent PL Signals ECE 483 Dr. Alan Doolittle

43 Iron In Si by PL An PCD PL PCD Fe Mean: 465 mv Dev.: 7.74 mv Mean: 75 µs Dev.: 0 µs Mean:.4x0 cm -3 Dev.:.9x0 cm Signal (mv) Lifetime (µs) N Fe (cm -3 ) ECE 483 Dr. Alan Doolittle

44 Review Questions What etermines the resolution limit in conventional optical microscopy? What is near fiel optical microscopy? What are the basic elements of ellipsometry? How oes FTIR work? Where are transmission measurements use? Where are reflection measurements use? What is luminescence? How can photoluminescence be use in Si characterization? ECE 483 Dr. Alan Doolittle

Lecture 20 Optical Characterization 2

Lecture 20 Optical Characterization 2 Lecture 20 Optical Characterization 2 Schroder: Chapters 2, 7, 10 1/68 Announcements Homework 5/6: Is online now. Due Wednesday May 30th at 10:00am. I will return it the following Wednesday (6 th June).

More information

PHY 114 Summer 2009 Final Exam Solutions

PHY 114 Summer 2009 Final Exam Solutions PHY 4 Summer 009 Final Exam Solutions Conceptual Question : A spherical rubber balloon has a charge uniformly istribute over its surface As the balloon is inflate, how oes the electric fiel E vary (a)

More information

ECE Semiconductor Device and Material Characterization

ECE Semiconductor Device and Material Characterization ECE 4813 Semiconductor Device and Material Characterization Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology As with all of these lecture slides, I am indebted

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

DUV ( nm ) Characterization of Materials: A new instrument, the Purged UV Spectroscopic Ellipsometer,

DUV ( nm ) Characterization of Materials: A new instrument, the Purged UV Spectroscopic Ellipsometer, WISE 2000, International Workshop on Spectroscopic Ellipsometry, 8 9 May 2000 DUV (150 350nm ) Characterization of Materials: A new instrument, the Purged UV Spectroscopic Ellipsometer, Pierre BOHER,,

More information

SOLUTION & ANSWER FOR KCET-2009 VERSION A1 [PHYSICS]

SOLUTION & ANSWER FOR KCET-2009 VERSION A1 [PHYSICS] SOLUTION & ANSWER FOR KCET-009 VERSION A [PHYSICS]. The number of significant figures in the numbers.8000 ---- 5 an 7.8000 5 significant igits 8000.50 7 significant igits. β-ecay means emission of electron

More information

of a molecule possessing a vibrational energy hν is

of a molecule possessing a vibrational energy hν is Question 1 (a) A pulse N:YAG laser is to be employe in a Rayleigh scattering experiment to etermine gas temperature. The laser can be use at 532 nm (secon harmonic), 355 nm (thir harmonic), or 266 nm (fourth

More information

ECE Semiconductor Device and Material Characterization

ECE Semiconductor Device and Material Characterization ECE 4813 Semiconductor Device and Material Characterization Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology As with all of these lecture slides, I am indebted

More information

Supporting Information s for

Supporting Information s for Supporting Information s for # Self-assembling of DNA-templated Au Nanoparticles into Nanowires and their enhanced SERS and Catalytic Applications Subrata Kundu* and M. Jayachandran Electrochemical Materials

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

Near field microscopy and optical spectroscopy Bringing some color to materials science Julio A. Soares, Ph.D.

Near field microscopy and optical spectroscopy Bringing some color to materials science Julio A. Soares, Ph.D. 2008 Advanced Materials Characterization Workshop Near field microscopy and optical spectroscopy Bringing some color to materials science Julio A. Soares, Ph.D. Sponsors: Sponsors: Supported by the U.S.

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages )

Spectroscopy: Introduction. Required reading Chapter 18 (pages ) Chapter 20 (pages ) Spectroscopy: Introduction Required reading Chapter 18 (pages 378-397) Chapter 20 (pages 424-449) Spectrophotometry is any procedure that uses light to measure chemical concentrations Properties of Light

More information

PH 222-3A Spring 2010

PH 222-3A Spring 2010 PH -3A Spring 010 Interference Lecture 6-7 Chapter 35 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 35 Interference The concept of optical interference is critical to understanding

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

The Electromagnetic Properties of Materials

The Electromagnetic Properties of Materials The Electromagnetic Properties of Materials Electrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical)

More information

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES

Chemistry 524--Final Exam--Keiderling May 4, :30 -?? pm SES Chemistry 524--Final Exam--Keiderling May 4, 2011 3:30 -?? pm -- 4286 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted. No open books or

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

Chapter 35. Interference

Chapter 35. Interference Chapter 35 Interference The concept of optical interference is critical to understanding many natural phenomena, ranging from color shifting in butterfly wings to intensity patterns formed by small apertures.

More information

Chemistry Instrumental Analysis Lecture 15. Chem 4631

Chemistry Instrumental Analysis Lecture 15. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 15 IR Instruments Types of Instrumentation Dispersive Spectrophotometers (gratings) Fourier transform spectrometers (interferometer) Single beam Double beam

More information

Advanced Spectroscopy Laboratory

Advanced Spectroscopy Laboratory Advanced Spectroscopy Laboratory - Raman Spectroscopy - Emission Spectroscopy - Absorption Spectroscopy - Raman Microscopy - Hyperspectral Imaging Spectroscopy FERGIELAB TM Raman Spectroscopy Absorption

More information

Lecture 9: Introduction to Diffraction of Light

Lecture 9: Introduction to Diffraction of Light Lecture 9: Introduction to Diffraction of Light Lecture aims to explain: 1. Diffraction of waves in everyday life and applications 2. Interference of two one dimensional electromagnetic waves 3. Typical

More information

Instrumental Analysis: Spectrophotometric Methods

Instrumental Analysis: Spectrophotometric Methods Instrumental Analysis: Spectrophotometric Methods 2007 By the end of this part of the course, you should be able to: Understand interaction between light and matter (absorbance, excitation, emission, luminescence,fluorescence,

More information

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016

Diffraction Gratings, Atomic Spectra. Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 Diffraction Gratings, Atomic Spectra Prof. Shawhan (substituting for Prof. Hall) November 14, 2016 1 Increase number of slits: 2 Visual Comparisons 3 4 8 2 Diffraction Grating Note: despite the name, this

More information

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time.

The individual electric and magnetic waves are in phase. The fields peak at the same position at the same time. 1 Part 3: Otics 3.1: Electromagnetic Waves An electromagnetic wave (light wave) consists of oscillating electric and magnetic fields. The directions of the electric and magnetic fields are erendicular.

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters

LC circuit: Energy stored. This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters Disclaimer: Chapter 29 Alternating-Current Circuits (1) This lecture reviews some but not all of the material that will be on the final exam that covers in Chapters 29-33. LC circuit: Energy stored LC

More information

Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this.

Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this. Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this. Superposition of Sinusoidal Waves Assume two waves are traveling in the same direction, with the same frequency,

More information

PS210 - Optical Techniques. Section VI

PS210 - Optical Techniques. Section VI PS210 - Optical Techniques Section VI Section I Light as Waves, Rays and Photons Section II Geometrical Optics & Optical Instrumentation Section III Periodic and Non-Periodic (Aperiodic) Waves Section

More information

Lecture 11: Introduction to diffraction of light

Lecture 11: Introduction to diffraction of light Lecture 11: Introduction to diffraction of light Diffraction of waves in everyday life and applications Diffraction in everyday life Diffraction in applications Spectroscopy: physics, chemistry, medicine,

More information

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. Sign In Forgot Password Register username username password password Sign In If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki

More information

The Quantum Theory of Atoms and Molecules

The Quantum Theory of Atoms and Molecules The Quantum Theory of Atoms and Molecules Breakdown of classical physics: Wave-particle duality Dr Grant Ritchie Electromagnetic waves Remember: The speed of a wave, v, is related to its wavelength, λ,

More information

Phys 531 Lecture 27 6 December 2005

Phys 531 Lecture 27 6 December 2005 Phys 531 Lecture 27 6 December 2005 Final Review Last time: introduction to quantum field theory Like QM, but field is quantum variable rather than x, p for particle Understand photons, noise, weird quantum

More information

Announcements: Review quiz and Exam 2

Announcements: Review quiz and Exam 2 Announcements: Review quiz an Exam Review Quiz on Friay, Oct. 31st, 014, in class Turn in the Quiz at the en o class or extra creit (up to 50 points). Open book quiz. Bring ormula sheet, scientiic calculator,

More information

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions

R O Y G B V. Spin States. Outer Shell Electrons. Molecular Rotations. Inner Shell Electrons. Molecular Vibrations. Nuclear Transitions Spin States Molecular Rotations Molecular Vibrations Outer Shell Electrons Inner Shell Electrons Nuclear Transitions NMR EPR Microwave Absorption Spectroscopy Infrared Absorption Spectroscopy UV-vis Absorption,

More information

Ch 313 FINAL EXAM OUTLINE Spring 2010

Ch 313 FINAL EXAM OUTLINE Spring 2010 Ch 313 FINAL EXAM OUTLINE Spring 2010 NOTE: Use this outline at your own risk sometimes a topic is omitted that you are still responsible for. It is meant to be a study aid and is not meant to be a replacement

More information

Vibrational Spectroscopies. C-874 University of Delaware

Vibrational Spectroscopies. C-874 University of Delaware Vibrational Spectroscopies C-874 University of Delaware Vibrational Spectroscopies..everything that living things do can be understood in terms of the jigglings and wigglings of atoms.. R. P. Feymann Vibrational

More information

Fourier Transform IR Spectroscopy

Fourier Transform IR Spectroscopy Fourier Transform IR Spectroscopy Absorption peaks in an infrared absorption spectrum arise from molecular vibrations Absorbed energy causes molecular motions which create a net change in the dipole moment.

More information

PRINCIPLES OF PHYSICAL OPTICS

PRINCIPLES OF PHYSICAL OPTICS PRINCIPLES OF PHYSICAL OPTICS C. A. Bennett University of North Carolina At Asheville WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Preface 1 The Physics of Waves 1 1.1 Introduction

More information

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency.

Because light behaves like a wave, we can describe it in one of two ways by its wavelength or by its frequency. Light We can use different terms to describe light: Color Wavelength Frequency Light is composed of electromagnetic waves that travel through some medium. The properties of the medium determine how light

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

ECE Semiconductor Device and Material Characterization

ECE Semiconductor Device and Material Characterization ECE 4813 Semiconductor Device and Material Characterization Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology As with all of these lecture slides, I am indebted

More information

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES

Chemistry 524--Final Exam--Keiderling Dec. 12, pm SES Chemistry 524--Final Exam--Keiderling Dec. 12, 2002 --4-8 pm -- 238 SES Please answer all questions in the answer book provided. Calculators, rulers, pens and pencils are permitted plus one 8.5 x 11 sheet

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

Chem Homework Set Answers

Chem Homework Set Answers Chem 310 th 4 Homework Set Answers 1. Cyclohexanone has a strong infrared absorption peak at a wavelength of 5.86 µm. (a) Convert the wavelength to wavenumber.!6!1 8* = 1/8 = (1/5.86 µm)(1 µm/10 m)(1 m/100

More information

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at 2001 Spectrometers Instrument Machinery Movies from this presentation can be access at http://www.shsu.edu/~chm_tgc/sounds/sound.html Chp20: 1 Optical Instruments Instrument Components Components of various

More information

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller

Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller Fluorescence Workshop UMN Physics June 8-10, 2006 Quantum Yield and Polarization (1) Joachim Mueller Quantum yield, polarized light, dipole moment, photoselection, dipole radiation, polarization and anisotropy

More information

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering

What happens when light falls on a material? Transmission Reflection Absorption Luminescence. Elastic Scattering Inelastic Scattering Raman Spectroscopy What happens when light falls on a material? Transmission Reflection Absorption Luminescence Elastic Scattering Inelastic Scattering Raman, Fluorescence and IR Scattering Absorption

More information

Optics and Spectroscopy

Optics and Spectroscopy Introduction to Optics and Spectroscopy beyond the diffraction limit Chi Chen 陳祺 Research Center for Applied Science, Academia Sinica 2015Apr09 1 Light and Optics 2 Light as Wave Application 3 Electromagnetic

More information

( ) + ( +kq 2 / L) + 2 ( kq2 / 2L) + ( +kq2 / 3L) =

( ) + ( +kq 2 / L) + 2 ( kq2 / 2L) + ( +kq2 / 3L) = Exam 3 Solutions Prof. Paul Avery Prof. Pradeep Kumar Apr. 6, 014 1. Four charges are placed along a straight line each separated by a distance L from its neighbor. The order of the charges is +Q, Q, Q,

More information

Preview from Notesale.co.uk Page 1 of 38

Preview from Notesale.co.uk Page 1 of 38 F UNDAMENTALS OF PHOTONICS Module 1.1 Nature and Properties of Light Linda J. Vandergriff Director of Photonics System Engineering Science Applications International Corporation McLean, Virginia Light

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Name Section This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

POLARIZATION FUNDAMENTAL OPTICS POLARIZATION STATES 1. CARTESIAN REPRESENTATION 2. CIRCULAR REPRESENTATION. Polarization. marketplace.idexop.

POLARIZATION FUNDAMENTAL OPTICS POLARIZATION STATES 1. CARTESIAN REPRESENTATION 2. CIRCULAR REPRESENTATION. Polarization. marketplace.idexop. POLARIZATION POLARIZATION STATS Four numbers are required to describe a single plane wave Fourier component traveling in the + z direction. These can be thought of as the amplitude and phase shift of the

More information

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis X-ray Spectroscopy Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis Element specific Sensitive to low concentrations (0.01-0.1 %) Why XAS? Applicable under

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

AP 5301/8301 Instrumental Methods of Analysis and Laboratory

AP 5301/8301 Instrumental Methods of Analysis and Laboratory 1 AP 5301/8301 Instrumental Methods of Analysis and Laboratory Lecture 7 Optical spectroscopies Prof YU Kin Man E-mail: kinmanyu@cityu.edu.hk Tel: 3442-7813 Office: P6422 Lecture 7: outline 2 Introduction

More information

Experiment O-2. The Michelson Interferometer

Experiment O-2. The Michelson Interferometer Experiment O-2 The Michelson Interferometer The Michelson interferometer is one of the best known and historically important interferometers. It is a very accurate length-measuring device and has been

More information

C101-E145 TALK LETTER. Vol. 17

C101-E145 TALK LETTER. Vol. 17 C101-E145 TALK LETTER Vol. 17 UV-VIS Spectroscopy and Fluorescence Spectroscopy (Part 1 of 2) ------- 02 Applications: Spectrofluorophotometers Used in a Variety of Fields ------- 06 Q&A: Is there a way

More information

Band gap engineering of pseudomorphic Ge 1-x-y Si x Sn y alloys on Ge for photonic applications

Band gap engineering of pseudomorphic Ge 1-x-y Si x Sn y alloys on Ge for photonic applications Ban gap engineering of pseuomorphic -x-y x Sn y alloys on for photonic applications Nalin Fernano, Ryan Hickey, John Hart, Ramsey Hazbun, Dainan Zhang, James Kolozey, Stefan Zollner, Department of Physics,

More information

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Double-Slit Eperiment reading: Chapter 22 2. Single-Slit Diffraction reading: Chapter 22 3. Diffraction Grating reading: Chapter

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

25 Instruments for Optical Spectrometry

25 Instruments for Optical Spectrometry 25 Instruments for Optical Spectrometry 25A INSTRUMENT COMPONENTS (1) source of radiant energy (2) wavelength selector (3) sample container (4) detector (5) signal processor and readout (a) (b) (c) Fig.

More information

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched

Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched Introduction p. xvii Light as Wave Motion p. 1 Huygens' Ideas p. 2 Newton's Ideas p. 8 Complex Numbers p. 10 Simple Harmonic Motion p. 11 Polarized Waves in a Stretched String p. 16 Velocities of Mechanical

More information

Analytical Spectroscopy Review

Analytical Spectroscopy Review Analytical Spectroscopy Review λ = wavelength ν = frequency V = velocity = ν x λ = 2.998 x 10 8 m/sec = c (in a vacuum) ν is determined by source and does not change as wave propogates, but V can change

More information

FIRST YEAR PHYSICS. Unit 4: Light II

FIRST YEAR PHYSICS. Unit 4: Light II FIRST YEAR PHYSICS Unit 4: Light II Contents PHASORS...3 RESOLUTION OF OPTICAL INSTRUMENTS...5 Rayleigh s criterion... 7 MORE ON DIFFRACTION...11 Multiple slits:... 11 Diffraction gratings... 14 X-RAY

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

Science Lab I Properties of Light

Science Lab I Properties of Light Art & Science of Light Fall 2007 Science Lab I Properties of Light Prepared by: Dr. Dharshi Bopegedera 1 Using the Filtergraph (15 minutes) 1. Turn on the filtergraph, place a card on it and look at the

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

Characterisation of vibrational modes of adsorbed species

Characterisation of vibrational modes of adsorbed species 17.7.5 Characterisation of vibrational modes of adsorbed species Infrared spectroscopy (IR) See Ch.10. Infrared vibrational spectra originate in transitions between discrete vibrational energy levels of

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer Objective Determination of the wave length of the light of the helium-neon laser by means of Michelson interferometer subsectionprinciple and Task Light is made to produce interference

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 1 Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

Ch. 6: Introduction to Spectroscopic methods

Ch. 6: Introduction to Spectroscopic methods Ch. 6: Introduction to Spectroscopic methods Spectroscopy: A branch of science that studies the interaction between EM radiation and matter. Spectrometry and Spectrometric methods : Measurement of the

More information

Interference- Michelson Interferometer. Interference lecture by Dr. T.Vishwam

Interference- Michelson Interferometer. Interference lecture by Dr. T.Vishwam Interference- Michelson Interferometer Interference lecture by Dr. T.Vishwam * Measurement of the coherence length of a spectral line * Measurement of thickness of thin transparent flakes * Measurement

More information

What is spectroscopy?

What is spectroscopy? Absorption Spectrum What is spectroscopy? Studying the properties of matter through its interaction with different frequency components of the electromagnetic spectrum. With light, you aren t looking directly

More information

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS Jin Zhong Zhang University of California, Santa Cruz, USA TECHNISCHE INFORMATIONSBIBLIOTHEK Y World Scientific NEW JERSEY. t'on.don SINGAPORE «'BEIJING

More information

Spectroscopy Problem Set February 22, 2018

Spectroscopy Problem Set February 22, 2018 Spectroscopy Problem Set February, 018 4 3 5 1 6 7 8 1. In the diagram above which of the following represent vibrational relaxations? 1. Which of the following represent an absorbance? 3. Which of following

More information

TA/TI survey. Phy Phy

TA/TI survey.   Phy Phy TA/TI survey https://webapps.pas.rochester.edu/secure/phpq/ Phy121 7 60 73 Phy123 1 6 11 Chapter 34 The Wave Nature of Light; Interference Units of Chapter 34 34-5 Interference in Thin Films 34-6 Michelson

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES Igor Zozouleno Solid State Electronics Department of Science and Technology Linöping University Sweden igozo@itn.liu.se http://www.itn.liu.se/meso-phot

More information

Nano-optics. Topics: How do we image things on the nanoscale? How do we use nanofabrication for new optical devices? COSMOS 2006 Lecture 1

Nano-optics. Topics: How do we image things on the nanoscale? How do we use nanofabrication for new optical devices? COSMOS 2006 Lecture 1 Nano-optics Topics: How do we image things on the nanoscale? How do we use nanofabrication for new optical devices? Wave Optics 1. Electromagnetic wave x Ex λ Direction of Propagation y z z plane wave

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor: Profs. Andrew Rinzler, Paul Avery, Selman Hershfield PHYSICS DEPARTMENT PHY 2049 Final Exam April 24, 200 Name (print, last first): Signature: On my honor, I have neither given nor received

More information

Chapter 2 Optical Transitions

Chapter 2 Optical Transitions Chapter 2 Optical Transitions 2.1 Introduction Among energy states, the state with the lowest energy is most stable. Therefore, the electrons in semiconductors tend to stay in low energy states. If they

More information

Physics 41 Chapter 38 HW Serway 9 th Edition

Physics 41 Chapter 38 HW Serway 9 th Edition Physics 4 Chapter 38 HW Serway 9 th Eition Questions: 3, 6, 8, Problems:, 4, 0,, 5,,, 9, 30, 34, 37, 40, 4, 50, 56, 57 *Q383 Answer () The power of the light coming through the slit ecreases, as you woul

More information

Reflection = EM strikes a boundary between two media differing in η and bounces back

Reflection = EM strikes a boundary between two media differing in η and bounces back Reflection = EM strikes a boundary between two media differing in η and bounces back Incident ray θ 1 θ 2 Reflected ray Medium 1 (air) η = 1.00 Medium 2 (glass) η = 1.50 Specular reflection = situation

More information

Chapter 17: Fundamentals of Spectrophotometry

Chapter 17: Fundamentals of Spectrophotometry Chapter 17: Fundamentals of Spectrophotometry Spectroscopy: the science that deals with interactions of matter with electromagnetic radiation or other forms energy acoustic waves, beams of particles such

More information

The Diffraction Grating

The Diffraction Grating The Diffraction Grating If one extends the double slit to large number of slits very closely spaced, one gets what is called a diffraction grating. d sin θ. Maxima are still at d sin θ m = mλ, m = 0, 1,

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE426F Optical Engineering Final Exam Dec. 17, 2003 Exam Type: D (Close-book + one 2-sided aid sheet + a non-programmable calculator)

More information

Diagnósticos em Plasmas

Diagnósticos em Plasmas Tecnologia a Plasma para o Processamento de Materiais Diagnósticos em Plasmas Diagnósticos Ópticos João Santos Sousa, nº50901 Semestre Inverno 2004/2005 21 de Janeiro de 2005, 9h-10h, sala F8 Contents

More information

Learn how reflection at interfaces with different indices of refraction works and how interfaces can change the polarization states of light.

Learn how reflection at interfaces with different indices of refraction works and how interfaces can change the polarization states of light. Slide 1 Goals of the Lab: Learn how reflection at interfaces with different indices of refraction works and how interfaces can change the polarization states of light. Learn how to measure the influence

More information

Chap 4 Optical Measurement

Chap 4 Optical Measurement Chap 4 Optical Measurement 4.1 Light Solid Interaction E-M Wave permittivity, permeability Refractive index, extinction coefficient propagation absorption Refraction Absorption Scattering, Rayleigh Scattering

More information