The Electromagnetic Properties of Materials

Size: px
Start display at page:

Download "The Electromagnetic Properties of Materials"

Transcription

1 The Electromagnetic Properties of Materials Electrical conduction Metals Semiconductors Insulators (dielectrics) Superconductors Magnetic materials Ferromagnetic materials Others Photonic Materials (optical) Transmission of light Photoactive materials Photodetectors and photoconductors Light emitters: LED, lasers

2 The Optical Properties of Materials: Photonic Materials Beauty: one-half of the earliest materials science Pottery glazes(the origin of metals), paints and cosmetics Jewelry - the development of metals and metalworking Information Window glass Optical fibers (rapidly replacing copper wire) Light The electric light LEDs and Lasers Photodetectors and photoconductors Power Photovoltaics (solar cells) Laser power transmission (welding, surface treatments)

3 The Optical Properties of Materials: Photonic Materials Optical means the whole electromagnetic spectrum From radio waves to γ-rays Can be regarded as Waves in space Particles with quantized energies Light as waves Refraction and reflection at an interface (windows, light pipes, solarium) Absorption and scattering (optical fibers) Diffraction (x-ray and electron crystallography) Light as particles Transmission and absorption Photodetectors and photoconductors: switches, photocopiers Photoemitters: LEDs and lasers

4 Electromagnetic Waves in Free Space E H Wave carries electric and magnetic fields Oriented perpendicular to the direction of propagation Wave: Particle: E = E 0 exp[ i( kx ωt) ] k = 2π λ ω = 2πν ω k = νλ = c (λ = wavelength) (ν = frequency) c = speed ε = hν = ω

5 The Electromagnetic Spectrum - ray µm violet x-ray ultraviolet visible infrared microwave log[frequency(hz)] log[energy(ev)] log[wavelength(m)] Å 1 nm 1 µm 1 mm 1 m 0.5 µm 0.6 µm 0.7 µm blue green yellow orange red radio km Visible light: λ ~ µm E ~ ev

6 Light as a Wave Propagation through free space at velocity, c When light enter a material, it is Refracted Reflected Attenuated incident transmitted reflected

7 Refraction and Reflection at an Interface: Normal Incidence incident reflected Inside material: E = E 0 exp[ i(kx ωt)] k = nk o λ = λ 0 n v = ω k = c n transmitted Refraction: Wave drags charges Friction slows propagation Index of refraction (n) Property governing refraction Related to dielectric constant: n = Depends on frequency (dispersion) n = n(ω) = ε(ω) ε

8 Refraction at an Interface Φ 2 d Φ 1 n 2 n 1 Snells Law n 1 sinφ 1 = n 2 sinφ 2 Light bends toward low-n region The critical angle Light cannot exist region 1 if n φ 2 > φ c = sin 1 1 n 2 Principle of light pipe Optical fiber confines light by reflection

9 Reflection at an Interface Normal incidence from n 1 to n 2 Δn reflection Intensity thrown back incident n 1 reflected n 2 transmitted Reflected intensity R = I r I i = (n 2 n 1 ) 2 (n 2 + n 1 ) 2 Transmitted intensity T = I t I i =1 R = Note: depends on Δn Not transparency 4n 2 (n 1 + n 2 ) 2

10 Exploiting the Light as a Wave: Examples Optical fibers Transparent pipes that transmit light Note that light need not be visible GaAs systems operate in the infrared Greenhouses and solar heaters Glass containers that let light in, Then trap its energy for heat

11 Optical Fibers Require Small diameter to minimize surface loss Perfect cylinder to minimize surface scattering Exceptional purity to suppress absorption Exceptional uniformity to suppress Rayleigh scattering Gradient fibers Rays that reflect from surface travel farther than rays on-axis Loss of coherence and information Want gradient in n such that n lower on outside Rays that reflect from surface move faster Can adjust n with solute additions

12 Propagation of Light: Attenuation I incident reflected transmitted x I T = I 0 exp ηx [ ] I T is gradually attenuated Mechanisms of attenuation Absorption Rayleigh scattering Mechanisms of absorption Conduction electrons Phonons Electronic transitions Valence Core

13 Attenuation: Rayleigh Scattering Light scatters from heterogeneities Density fluctuations Chemical heterogeneities Defects and second-phase particles Only recently is it possible to produce clear, uniform glass As through a glass - darkly

14 Absorption: Insulator or Semiconductor conduction band E Ionic transitions valence band x E Optical phonons Absorption by Optical phonons (solar panels) Ionic transitions (color) Band transitions (photoconductivity) Core transitions (x-ray spectroscopy)

15 Absorption: The Greenhouse Effect conduction band E Ionic transitions valence band x E Optical phonons Absorption by Optical phonons (solar panels) Ionic transitions (color) Band transitions (photoconductivity) Core transitions (x-ray spectroscopy)

16 The Solarium and Solar Heater glass earth Mechanism is glass transparent in the visible Opaque in the infrared Sunlight enters Rays are absorbed and re-emitted in the infrared Re-emitted rays cannot penetrate glass Solar energy is trapped inside

17 Diffraction œ œ d Waves reflected from successive planes Destructive interference unless nλ = 2dsinθ Bragg s Law strong intensity peak (Bragg s Law) Pattern of diffraction peaks identifies crystal structure Use x-rays or electrons with λ of a few Å

18 Electron Diffraction of Intercritically Tempered Steel Electron microscopy Diffraction pattern Combined analysis Photograph Diffraction pattern Peaks from crystal planes Pattern identifies phases Ex.: bcc and fcc Fe present Bright field microstructure Diffraction pattern shows phases Dark field locates phases Image diffraction spot

19 Light as a Particle: Photons Transparency and color Photodetectors Photoconductors Photoelectronics Photocopiers Photoemitters Phosphors Light-emitting diodes (LED) Lasers

20 Light as a Particle: Photons Transparency and color Photodetectors Photoconductors Photoelectronics Photocopiers Photoemitters Phosphors Light-emitting diodes (LED) Lasers

21 Transparency and Color e - e - EG E I ED EG intrinsic excitation extrinsic excitations ionic excitations hˆ hˆ intrinsic extrinsic Materials are opaque to all radiation for which ћω>e G All materials with E G < about 2.5 ev are opaque to visible light Radiation with hν=e i is also absorbed For all internal excitations (donors, acceptors, ionic excitations) Leads to colored or dimmed light

22 Light as a Particle: Photons Transparency and color Photodetectors Photoconductors Photoelectronics Photocopiers Photoemitters Phosphors Light-emitting diodes (LED) Lasers

23 Photoconductivity e - e - conduction band conduction band Ó intrinsic excitation extrinsic excitations E valence band EG E Ed valence band EG k direct gap k indirect gap Light of suitable wavelength excites carriers σ = neµ (n = steady state density from optical excitations) Semiconductor or insulator becomes metal Note two kinds of semiconductor direct gap produces carriers at E G indirect gap excitation requires phonons at E<E d - messy behavior

24 Photoconductors E + e e e e e e e e e - Ó G x Light creates current Electric eye circuits Photodetecters (need multiple conductors to detect frequency) Photoelectronic transistors Switch on when light on Illumination plays the part of positive voltage at the base

25 Photocopiers ÎV ÎV ÎV (a) (b) (c) Charge photoconductor plate Reflect light from page Reflection from white spaces Removes charge Creates map of original print Pass through toner Ink sticks to charge on plate Print Press against paper to transfer ink Faithful copy of original Color copying Passes for the 3 primary colors

26 Light as a Particle: Photons Transparency and color Photodetectors Photoconductors Photoelectronics Photocopiers Photoemitters Phosphors Light-emitting diodes (LED) Lasers

27 Photoemitters: Phosphors A phosphor is an ionic emitter Incident radiation (ћω i =E i ) excites ion Excited ion relaxes in lattice, changing energy Excited state returns to ground state, emitting photon with E e = ћω Since ω ω I, photon is emitted from the material Phosphors used in monitors, etc. Multiple phosphors used for color images

28 Photoemitters: Light Emitting Diodes (LED) E - e e e e e e e Ó G + E conduction band EG E conduction band Ed EG valence band valence band x k k To generate light from a p-n junction: Use a direct-gap semiconductor in forward bias Charge recombinations generate photons Color set by band gap Long search for blue LED solved by GaN

29 Lasers: Light Amplification by Stimulated Emission of Radiation 2 phonon 3 mirror half-silvered mirror Ó 12 Ó 13 stimulated emission 1 Three-level laser (ruby): Excite with incident radiation Transition to level with difficult transition to ground state (inverted population) Transitions stimulate further transitions, create beam of photons in phase Light emission from laser Mirrors used for multiple reflections to amplify in phase beam Mechanism such as half-silvered mirror to emit amplified light

30 Lasers: Four-Level Lasers Three-level laser: Problem ћω 13 can stimulate transition 1 3 One photon lost for each transition - loss of efficiency Four-level laser: Solution Lasing transition to transient state 4 Immediate transition 4 1 empties level 4 High efficiency since ћω 14 has nothing to excite

31 Semiconductor Lasers - + e e e e e e e ћω G Heterojunction GaAs Laser GaAs (n) GaAs (p) GaAlAs (p) Use direct-gap semiconductor (GaAs) Note GaAs gap such that light is infrared Create well where electrons are trapped Pump high density of carriers exceed recombination rate Recombination enhanced by stimulated emission laser

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels. Electron energy levels in an hydrogen atom n=5 n=4 - + n=3 n=2 13.6 = [ev]

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

Lecture 20 Optical Characterization 2

Lecture 20 Optical Characterization 2 Lecture 20 Optical Characterization 2 Schroder: Chapters 2, 7, 10 1/68 Announcements Homework 5/6: Is online now. Due Wednesday May 30th at 10:00am. I will return it the following Wednesday (6 th June).

More information

Lecture 15: Optoelectronic devices: Introduction

Lecture 15: Optoelectronic devices: Introduction Lecture 15: Optoelectronic devices: Introduction Contents 1 Optical absorption 1 1.1 Absorption coefficient....................... 2 2 Optical recombination 5 3 Recombination and carrier lifetime 6 3.1

More information

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states: CME 300 Properties of Materials ANSWERS: Homework 9 November 26, 2011 As atoms approach each other in the solid state the quantized energy states: are split. This splitting is associated with the wave

More information

Review of Optical Properties of Materials

Review of Optical Properties of Materials Review of Optical Properties of Materials Review of optics Absorption in semiconductors: qualitative discussion Derivation of Optical Absorption Coefficient in Direct Semiconductors Photons When dealing

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

3.1 Absorption and Transparency

3.1 Absorption and Transparency 3.1 Absorption and Transparency 3.1.1 Optical Devices (definitions) 3.1.2 Photon and Semiconductor Interactions 3.1.3 Photon Intensity 3.1.4 Absorption 3.1 Absorption and Transparency Objective 1: Recall

More information

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985

Paper Review. Special Topics in Optical Engineering II (15/1) Minkyu Kim. IEEE Journal of Quantum Electronics, Feb 1985 Paper Review IEEE Journal of Quantum Electronics, Feb 1985 Contents Semiconductor laser review High speed semiconductor laser Parasitic elements limitations Intermodulation products Intensity noise Large

More information

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India

Material Science. Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, Indian Institute of Science, Bangalore India Material Science Prof. Satish V. Kailas Associate Professor Dept. of Mechanical Engineering, ndian nstitute of Science, Bangalore 5612 ndia Chapter 17. Optical properties Engineering materials are important

More information

Other Devices from p-n junctions

Other Devices from p-n junctions Memory (5/7 -- Glenn Alers) Other Devices from p-n junctions Electron to Photon conversion devices LEDs and SSL (5/5) Lasers (5/5) Solid State Lighting (5/5) Photon to electron conversion devices Photodectors

More information

Chapter 5. Semiconductor Laser

Chapter 5. Semiconductor Laser Chapter 5 Semiconductor Laser 5.0 Introduction Laser is an acronym for light amplification by stimulated emission of radiation. Albert Einstein in 1917 showed that the process of stimulated emission must

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Laser Fundamentals The light emitted from a laser is monochromatic, that is, it is of one color/wavelength. In contrast, ordinary white light

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior

Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior By Ms. Monika Srivastava Doctoral Scholar, AMR Group of Dr. Anurag Srivastava ABV-IIITM, Gwalior Unit 2 Laser acronym Laser Vs ordinary light Characteristics of lasers Different processes involved in lasers

More information

What do we study and do?

What do we study and do? What do we study and do? Light comes from electrons transitioning from higher energy to lower energy levels. Wave-particle nature of light Wave nature: refraction, diffraction, interference (labs) Particle

More information

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light

Chapter 18. Fundamentals of Spectrophotometry. Properties of Light Chapter 18 Fundamentals of Spectrophotometry Properties of Light Electromagnetic Radiation energy radiated in the form of a WAVE caused by an electric field interacting with a magnetic field result of

More information

Chapter 21 魏茂國. Materials Science and Engineering

Chapter 21 魏茂國. Materials Science and Engineering Chapter 21 ntroduction Electromagnetic radiation Light interactions with solids Atomic and electronic interactions Refraction Reflection Absorption Transmission Color Opacity and translucency in insulators

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Chemistry Instrumental Analysis Lecture 5. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 5 Light Amplification by Stimulated Emission of Radiation High Intensities Narrow Bandwidths Coherent Outputs Applications CD/DVD Readers Fiber Optics Spectroscopy

More information

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected

External (differential) quantum efficiency Number of additional photons emitted / number of additional electrons injected Semiconductor Lasers Comparison with LEDs The light emitted by a laser is generally more directional, more intense and has a narrower frequency distribution than light from an LED. The external efficiency

More information

Introduction CHAPTER 01. Light and opto-semiconductors. Opto-semiconductor lineup. Manufacturing process of opto-semiconductors.

Introduction CHAPTER 01. Light and opto-semiconductors. Opto-semiconductor lineup. Manufacturing process of opto-semiconductors. CHAPTER 0 Light and opto-semiconductors - -2 Light Opto-semiconductors P. 0 P. 3 2 Opto-semiconductor lineup P. 5 3 Manufacturing process of opto-semiconductors P. 6 9 CHAPTER 0. Light and opto-semiconductors

More information

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam

LASERS. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam LASERS Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam General Objective To understand the principle, characteristics and types

More information

Lasers E 6 E 4 E 3 E 2 E 1

Lasers E 6 E 4 E 3 E 2 E 1 Lasers Laser is an acronym for light amplification by stimulated emission of radiation. Here the process of stimulated emission is used to amplify light radiation. Spontaneous emission: When energy is

More information

Skoog Chapter 6 Introduction to Spectrometric Methods

Skoog Chapter 6 Introduction to Spectrometric Methods Skoog Chapter 6 Introduction to Spectrometric Methods General Properties of Electromagnetic Radiation (EM) Wave Properties of EM Quantum Mechanical Properties of EM Quantitative Aspects of Spectrochemical

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008

sin[( t 2 Home Problem Set #1 Due : September 10 (Wed), 2008 Home Problem Set #1 Due : September 10 (Wed), 008 1. Answer the following questions related to the wave-particle duality. (a) When an electron (mass m) is moving with the velocity of υ, what is the wave

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4

Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 Fromm Institute for Lifelong Learning University of San Francisco Modern Physics for Frommies IV The Universe - Small to Large Lecture 4 3 February 06 Modern Physics IV Lecture 4 Agenda Administrative

More information

Chapter 24 Photonics Question 1 Question 2 Question 3 Question 4 Question 5

Chapter 24 Photonics Question 1 Question 2 Question 3 Question 4 Question 5 Chapter 24 Photonics Data throughout this chapter: e = 1.6 10 19 C; h = 6.63 10 34 Js (or 4.14 10 15 ev s); m e = 9.1 10 31 kg; c = 3.0 10 8 m s 1 Question 1 Visible light has a range of photons with wavelengths

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light What are Lasers? What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light emitted in a directed beam Light is coherenent

More information

Conductivity and Semi-Conductors

Conductivity and Semi-Conductors Conductivity and Semi-Conductors J = current density = I/A E = Electric field intensity = V/l where l is the distance between two points Metals: Semiconductors: Many Polymers and Glasses 1 Electrical Conduction

More information

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV 3.1 Introduction to Semiconductors Y. Baghzouz ECE Department UNLV Introduction In this lecture, we will cover the basic aspects of semiconductor materials, and the physical mechanisms which are at the

More information

Sunlight. 1 radiation.

Sunlight. 1 radiation. Sunlight The eye has evolved to see a narrow range of EM waves which we call 'visible light'. This visible range of frequency is due to the light comes from the Sun. The photosphere of the Sun is a blackbody

More information

ET3034TUx Utilization of band gap energy

ET3034TUx Utilization of band gap energy ET3034TUx - 3.3.1 - Utilization of band gap energy In the last two weeks we have discussed the working principle of a solar cell and the external parameters that define the performance of a solar cell.

More information

Fall 2014 Nobby Kobayashi (Based on the notes by E.D.H Green and E.L Allen, SJSU) 1.0 Learning Objectives

Fall 2014 Nobby Kobayashi (Based on the notes by E.D.H Green and E.L Allen, SJSU) 1.0 Learning Objectives University of California at Santa Cruz Electrical Engineering Department EE-145L: Properties of Materials Laboratory Lab 7: Optical Absorption, Photoluminescence Fall 2014 Nobby Kobayashi (Based on the

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID.

Electron Energy, E E = 0. Free electron. 3s Band 2p Band Overlapping energy bands. 3p 3s 2p 2s. 2s Band. Electrons. 1s ATOM SOLID. Electron Energy, E Free electron Vacuum level 3p 3s 2p 2s 2s Band 3s Band 2p Band Overlapping energy bands Electrons E = 0 1s ATOM 1s SOLID In a metal the various energy bands overlap to give a single

More information

PHYSICS 2005 (Delhi) Q3. The power factor of an A.C. circuit is 0.5. What will be the phase difference between voltage and current in this circuit?

PHYSICS 2005 (Delhi) Q3. The power factor of an A.C. circuit is 0.5. What will be the phase difference between voltage and current in this circuit? General Instructions: 1. All questions are compulsory. 2. There is no overall choice. However, an internal choke has been pro vided in one question of two marks, one question of three marks and all three

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

LN 3 IDLE MIND SOLUTIONS

LN 3 IDLE MIND SOLUTIONS IDLE MIND SOLUTIONS 1. Let us first look in most general terms at the optical properties of solids with band gaps (E g ) of less than 4 ev, semiconductors by definition. The band gap energy (E g ) can

More information

Chapter 6. Fiber Optic Thermometer. Ho Suk Ryou

Chapter 6. Fiber Optic Thermometer. Ho Suk Ryou Chapter 6. Fiber Optic Thermometer Ho Suk Ryou Properties of Optical Fiber Optical Fiber Composed of rod core surrounded by sheath Core: conducts electromagnetic wave Sheath: contains wave within the core

More information

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

LASERS. Amplifiers: Broad-band communications (avoid down-conversion) L- LASERS Representative applications: Amplifiers: Broad-band communications (avoid down-conversion) Oscillators: Blasting: Energy States: Hydrogen atom Frequency/distance reference, local oscillators,

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 17.

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 17. FIBER OPTICS Prof. R.K. Shevgaonkar Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture: 17 Optical Sources- Introduction to LASER Fiber Optics, Prof. R.K. Shevgaonkar,

More information

PHYSICS. The Probability of Occurrence of Absorption from state 1 to state 2 is proportional to the energy density u(v)..

PHYSICS. The Probability of Occurrence of Absorption from state 1 to state 2 is proportional to the energy density u(v).. ABSORPTION of RADIATION : PHYSICS The Probability of Occurrence of Absorption from state 1 to state 2 is proportional to the energy density u(v).. of the radiation > P12 = B12 u(v) hv E2 E1 Where as, the

More information

UNIT I: Electronic Materials.

UNIT I: Electronic Materials. SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code: SEMICONDUCTOR PHYSICS (18HS0851) Course & Branch: B.Tech

More information

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a

SPECTRUM. Dispersion. This phenomenon can be observed in a lab environment using a SPECTRUM Dispersion The phenomenon due to which a polychromatic light, like sunlight, splits into its component colours, when passed through a transparent medium like a glass prism, is called dispersion

More information

Light. Mike Maloney Physics, SHS

Light. Mike Maloney Physics, SHS Light Mike Maloney Physics, SHS 1 Light What is LIGHT? WHERE DOES IT COME FROM? 2003 Mike Maloney 2 What is Light? Light is a wave, or rather acts like a wave. How do we know since we cannot see it? We

More information

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

EE 446/646 Photovoltaic Devices I. Y. Baghzouz EE 446/646 Photovoltaic Devices I Y. Baghzouz What is Photovoltaics? First used in about 1890, the word has two parts: photo, derived from the Greek word for light, volt, relating to electricity pioneer

More information

Electromagnetic spectra

Electromagnetic spectra Properties of Light Waves, particles and EM spectrum Interaction with matter Absorption Reflection, refraction and scattering Polarization and diffraction Reading foci: pp 175-185, 191-199 not responsible

More information

Electromagnetic Waves

Electromagnetic Waves 4/15/12 Chapter 26: Properties of Light Field Induction Ok, so a changing magnetic field causes a current (Faraday s law) Why do we have currents in the first place? electric fields of the charges Changing

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Chapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions

Chapter 7: Optical Properties of Solids. Interaction of light with atoms. Insert Fig Allowed and forbidden electronic transitions Chapter 7: Optical Properties of Solids Interaction of light with atoms Insert Fig. 8.1 Allowed and forbidden electronic transitions 1 Insert Fig. 8.3 or equivalent Ti 3+ absorption: e g t 2g 2 Ruby Laser

More information

Sensor Technology. Summer School: Advanced Microsystems Technologies for Sensor Applications

Sensor Technology. Summer School: Advanced Microsystems Technologies for Sensor Applications Sensor Technology Summer School: Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre, Brazil July 12 th 31 st, 2009 1 Outline of the Lecture: Philosophy of Sensing Instrumentation and Systems

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

-I (PH 6151) UNIT-V PHOTONICS AND FIBRE OPTICS

-I (PH 6151) UNIT-V PHOTONICS AND FIBRE OPTICS Engineering Physics -I (PH 6151) UNIT-V PHOTONICS AND FIBRE OPTICS Syllabus: Lasers Spontaneous and stimulated emission Population Inversion -Einstein s co-efficient (Derivation)- types of lasers-nd-yag,co

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules OPTI 500 DEF, Spring 2012, Lecture 2 Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules Energy Levels Every atom or molecule

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

BANNARI AMMAN INSTITUTE OF TECHNOLOGY SATHYAMANGALAM DEPARTMENT OF PHYSICAL SCIENCES. UNIT II Applied Optics

BANNARI AMMAN INSTITUTE OF TECHNOLOGY SATHYAMANGALAM DEPARTMENT OF PHYSICAL SCIENCES. UNIT II Applied Optics BANNAI AMMAN INSTITTE OF TECHNOLOGY SATHYAMANGALAM DEPATMENT OF PHYSICAL SCIENCES NIT II Applied Optics PAT A A1 The superimposition of one light wave over another is called as a) interference b) Diffraction

More information

Optoelectronics ELEC-E3210

Optoelectronics ELEC-E3210 Optoelectronics ELEC-E3210 Lecture 3 Spring 2017 Semiconductor lasers I Outline 1 Introduction 2 The Fabry-Pérot laser 3 Transparency and threshold current 4 Heterostructure laser 5 Power output and linewidth

More information

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer Sheng S. Li Semiconductor Physical Electronics Second Edition With 230 Figures 4) Springer Contents Preface 1. Classification of Solids and Crystal Structure 1 1.1 Introduction 1 1.2 The Bravais Lattice

More information

Stepwise Solution Important Instructions to examiners:

Stepwise Solution Important Instructions to examiners: (ISO/IEC - 700-005 Certified) WINTER 0 EXAMINATION Subject Code: 70 Model Answer (Applied Science- Physics) Page No: 0/5 No. Sub. Important Instructions to examiners: ) The answers should be examined by

More information

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light

What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light What are Lasers? What are Lasers? Light Amplification by Stimulated Emission of Radiation LASER Light emitted at very narrow wavelength bands (monochromatic) Light emitted in a directed beam Light is coherenent

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Chapter 2 Optical Transitions

Chapter 2 Optical Transitions Chapter 2 Optical Transitions 2.1 Introduction Among energy states, the state with the lowest energy is most stable. Therefore, the electrons in semiconductors tend to stay in low energy states. If they

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Chap. 3. Elementary Quantum Physics

Chap. 3. Elementary Quantum Physics Chap. 3. Elementary Quantum Physics 3.1 Photons - Light: e.m "waves" - interference, diffraction, refraction, reflection with y E y Velocity = c Direction of Propagation z B z Fig. 3.1: The classical view

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful Main Requirements of the Laser Optical Resonator Cavity Laser Gain Medium of 2, 3 or 4 level types in the Cavity Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction Population

More information

Practice Paper-3. Q. 2. An electron beam projected along + X-axis, in a magnetic field along the + Z-axis. What is

Practice Paper-3. Q. 2. An electron beam projected along + X-axis, in a magnetic field along the + Z-axis. What is Practice Paper-3 Q. 1. An electric dipole of dipole moment 20 10 6 cm is enclosed by a closed surface. What is the net flux coming out of the surface? Q. 2. An electron beam projected along + X-axis, in

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Sunlight. Sunlight 2. Sunlight 4. Sunlight 3. Sunlight 5. Sunlight 6

Sunlight. Sunlight 2. Sunlight 4. Sunlight 3. Sunlight 5. Sunlight 6 Sunlight 1 Sunlight 2 Introductory Question Sunlight When you look up at the sky during the day, is the light from distant stars reaching your eyes? A. Yes B. No Sunlight 3 Observations about Sunlight

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

CBSE PHYSICS QUESTION PAPER (2005)

CBSE PHYSICS QUESTION PAPER (2005) CBSE PHYSICS QUESTION PAPER (2005) (i) (ii) All questions are compulsory. There are 30 questions in total. Questions 1 to 8 carry one mark each, Questions 9 to 18 carry two marks each, Question 19 to 27

More information

LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: Next Up: Cameras and optics Eyes to web: Final Project Info

LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: Next Up: Cameras and optics Eyes to web: Final Project Info LASERS AGAIN? Phys 1020, Day 17: Questions? LASERS: 14.3 Next Up: Cameras and optics Eyes to web: Final Project Info 1 Group Exercise Your pennies will simulate a two state atom; tails = ground state,

More information

- Outline. Chapter 4 Optical Source. 4.1 Semiconductor physics

- Outline. Chapter 4 Optical Source. 4.1 Semiconductor physics Chapter 4 Optical Source - Outline 4.1 Semiconductor physics - Energy band - Intrinsic and Extrinsic Material - pn Junctions - Direct and Indirect Band Gaps 4. Light Emitting Diodes (LED) - LED structure

More information

Chapter 26: Properties of Light

Chapter 26: Properties of Light Lecture Outline Chapter 26: Properties of Light This lecture will help you understand: Electromagnetic Waves The Electromagnetic Spectrum Transparent Materials Opaque Materials Seeing Light The Eye Electromagnetic

More information

QUESTION BANK IN PHYSICS

QUESTION BANK IN PHYSICS QUESTION BANK IN PHYSICS LASERS. Name some properties, which make laser light different from ordinary light. () {JUN 5. The output power of a given laser is mw and the emitted wavelength is 630nm. Calculate

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV EE495/695 Introduction to Semiconductors I Y. Baghzouz ECE Department UNLV Introduction Solar cells have always been aligned closely with other electronic devices. We will cover the basic aspects of semiconductor

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/ PHYSICS-I

Name :. Roll No. :... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/ PHYSICS-I Name :. Roll No. :..... Invigilator s Signature :.. CS/B. Tech (New)/SEM-1/PH-101/2011-12 2011 PHYSICS-I Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates

More information

Optics in a Fish Tank Demonstrations for the Classroom

Optics in a Fish Tank Demonstrations for the Classroom Optics in a Fish Tank Demonstrations for the Classroom Introduction: This series of demonstrations will illustrate a number of optical phenomena. Using different light sources and a tank of water, you

More information

Class XII Chapter 8 Electromagnetic Waves Physics

Class XII Chapter 8 Electromagnetic Waves Physics Question 8.1: Figure 8.6 shows a capacitor made of two circular plates each of radius 12 cm, and separated by 5.0 cm. The capacitor is being charged by an external source (not shown in the figure). The

More information

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!) Light WAVE or PARTICLE? Electromagnetic Radiation Electromagnetic radiation includes: -radio waves -microwaves -infrared waves -visible light

More information

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer L 18 Thermodynamics [3] Heat transfer convection conduction emitters of seeing behind closed doors Greenhouse effect Heat Capacity How to boil water Heat flow HEAT the energy that flows from one system

More information

Name : Roll No. :.... Invigilator s Signature :.. CS/B.Tech (NEW)/SEM-2/PH-201/2013 2013 PHYSICS - I Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are

More information

Wave - Particle Duality of Light

Wave - Particle Duality of Light Properties of Light Objectives Explain wave-particle duality State the speed of light Describe electromagnetic waves and the electromagnetic spectrum Explain how light interacts with transparent and opaque

More information

Designing Information Devices and Systems II A. Sahai, J. Roychowdhury, K. Pister Discussion 1A

Designing Information Devices and Systems II A. Sahai, J. Roychowdhury, K. Pister Discussion 1A EECS 16B Spring 2019 Designing Information Devices and Systems II A. Sahai, J. Roychowdhury, K. Pister Discussion 1A 1 Semiconductor Physics Generally, semiconductors are crystalline solids bonded into

More information

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS 1. What is intrinsic If a semiconductor is sufficiently pure, then it is known as intrinsic semiconductor. ex:: pure Ge, pure Si 2. Mention the expression for intrinsic carrier concentration of intrinsic

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

LASER. Light Amplification by Stimulated Emission of Radiation

LASER. Light Amplification by Stimulated Emission of Radiation LASER Light Amplification by Stimulated Emission of Radiation Energy Level, Definitions The valence band is the highest filled band The conduction band is the next higher empty band The energy gap has

More information

The Nature of Light. We have a dual model

The Nature of Light. We have a dual model Light and Atoms Properties of Light We can come to understand the composition of distant bodies by analyzing the light they emit This analysis can tell us about the composition as well as the temperature

More information