Table-top EUV/Soft X-ray Source and Wavefront Measurements at Short Wavelengths

Size: px
Start display at page:

Download "Table-top EUV/Soft X-ray Source and Wavefront Measurements at Short Wavelengths"

Transcription

1 Table-top EUV/Soft X-ray Source and Wavefront Measurements at Short Wavelengths K. Mann J.O. Dette, F. Kühl, U. Leinhos, M. Lübbecke, T. Mey, M. Müller, M. Stubenvoll, J. Sudradjat, B. Schäfer Laser-Laboratorium Göttingen e.v. Hans-Adolf-Krebs Weg 1 D Göttingen Laser- Laboratorium Göttingen e.v.

2 Dept. Optics / Short Wavelengths Optics test ( nm) (Long term) degradation (10 9 pulses) Non-linear processes LIDT Absorption / Scatter losses Wavefront deformation Beam propagation Wavefront coherence M² EUV/XUV technology Source & Optics Metrology Material interaction 2

3 Laser plasma source for extreme UV and soft x-ray radiation laser ~ 300µm pulsed Xenon gas jet XUV: =1 10nm EUV: = 10 20nm Univ. Prag Univ. Göttingen Max-Planck Inst. compact low debris long-term stable versatile

4 Reflectivity LLG-Activities Based on LPP Source Direct structuring EUV reflectometry Sample angle =2.88nm NEXAFS spectroscopy Soft x-ray microscopy 4

5 Ablation / damage EUV Schwarzschild objective (Mo/Si): ~ 13,5 nm Damage thresholds of mirrors / substrates single-pulse damage F. Barkusky, K. Mann et al., Optics Express 18, 4347 (2010) 5

6 EUV/XUV plasma source T. Salditt Univ. Göttingen Isolated Nitrogen = 2.88nm Peak brillance: 6*10 17 [Ph./(s mrad 2 mm 2 0,1%BW)] = 2.88nm

7 Absorption length (µm) NEXAFS Spectroscopy in the water window : = Near-edge x-ray absorption fine-structure Excitation of unoccupied molecular orbitals Fingerprint of molecules surface-sensitive chemical analytics Accessable absorption edges Spectrum of Krypton plasma 10 H 2 O 1 C 0,1 Ti N Ca O: 2,28 nm Ti: 2,73 nm N: 3,0 nm Ca: 3,58 nm C: 4,36 nm 2,0 2,5 3,0 3,5 4,0 4,5 5,0 Wavelength (nm) B, C, N, O, F, S, Ca, Ti, Mn, Fe

8 Intensity [CCD-Counts] Transmission Optical density [a.u.] Table-top NEXAFS Spectrometer = 1 7nm, 10 20nm Laser polychromatic concept ( single-shot ) transmission of thin samples Synchrotron (J. Stöhr) Source sample spectrometer polyimide sample (d=200nm): Transmission Carbon (CXRO) without sample with Polyimid (d=200nm) 1,0 0,8 0,6 0,4 0,2 2,0 1,5 1,0 0,5 * C=C * C-N * C=C * C=O * C=O Polyimide 60 laser pulses 0 0, Photonenenergy [ev] 0, Photon energy [ev] Carbon K-edge C. Peth, K. Mann et al., J. Phys. D 41 (2008)

9 Compact NEXAFS spectrometer = 1 7nm 10 20nm pump-probe exp. measurement in ambient air

10 Optical density Optical Thickness [a.u.] NEXAFS spectroscopy on thin films Lipid membranes (carbon K-edge) (T. Salditt) Wavelength [nm] 4,4 4,3 4,2 4,1 4 3,9 * C=C DOPC DMPC DOPS Photon energy (ev) PCMO (Perovskite-type manganate) Pr 1-x Ca x MnO 3 (S. Techert) 2,0 1,9 1,8 1,7 1,6 1,5 1,4 1,3 1,2 1,1 Ca L 2,3 N K NEXAFS-Spectrum PCMO O K Mn L 2,3 Pr M 4,5 1, Photon-Energy (ev) : Pr, Ca : O : Mn Every element visible (single shots) Pump-probe experiments phase transitions E. Novakova, C. Peth, K. Mann, T. Salditt et al.: Biointerphases, 3 (2008) FB44 P. Grossmann, S. Techert, C. Jooss, K. Mann et al.: Rev. Sci. Instr. 2012

11 NEXAFS at Fe L 2,3 edge Example: Prussian Blue Carbon K edge Iron L 2,3 edge Photon energy ~ 720eV 300 laser pulses

12 Improvements (1): Power density: ns ps laser Single pulse spectra: Single Single pulse pulse XUV XUV spectra spectra Single-Pulse - Max. Laserpulse-Energy - Al filtered Nitrogen Oxygen Neon N (Z = 7) O (Z = 8) Ne (Z = 10) 150ps 380mJ ns 450mJ Photon energy (ev) Photon energy (ev) Photon energy (ev) Ar (Z = 18) Kr (Z = 36) Xe (Z = 54) Photon energy (ev) Photon energy (ev) Single pulse XUV spectra Photon energy (ev) Peak brillance Argon of isolated N = 2.88nm: Krypton Xenon 6*10 17 (ns laser) 1.2*10 20 Ph./(s mrad 2 mm 2 0,1%BW) (ps laser)

13 Simulation of spectra: Ar ns measured ps measured Calculation with MHD code PrismSPECT simulated simulated ns laser ps laser electron temperature [ev] electron density [10 19 e/cm³] M. Müller, K. Mann et al.: Opt. Express 21 (2013)

14 Improvements (2): Plasma generation with barrel shock Schlieren image Nitrogen 10 bar Helium 170 mbar Nitrogen 10 bar Vacuum ~10-3 mbar ~10x brilliance = 2.88 nm 500 µm 500 µm T. Mey, M. Rein, K. Mann, New J. Phys. 14 (2012)

15 Improvements (3): Focusing optics for x-ray plasma Nitrogen plasma, = 2.88nm (monochromatic) grazing incidence ellipsoidal mirror focus dia. ~ 500µm laser plasma ellipsoidal mirror caustic measurement

16 Ablation of =2.88nm FWHM 500 µm Kr plasma (3 6nm): ~ 100mJ/cm² 5000 N 2 15 bar, 3 min ultrasonic bath focal spot of elliptical mirror: ~ nm 8.5*10 9 photons/pulse

17 Improvements (3): Focusing optics for x-ray plasma Nitrogen plasma, = 2.88nm (monochromatic) grazing incidence ellipsoidal mirror focus dia. ~ 500µm laser plasma ellipsoidal mirror caustic measurement Optics adjustment: time-consuming

18 Wavefront measurements Hartmann-Shack sensor: wavefront: directional distribution intensity distribution Wavefront w(x,y) = surface Poynting-Vektor S(x,y) (ISO ) 18

19 Beam characterization of FLASH Experimental setup at BL2 = nm Hartmann plate Adjustment of beam line optics by online wavefront monitoring 0.5 Yaw [mrad] w rms =15.5nm w rms =3.5nm w rms =2.6nm w rms =2.6nm w rms =5.9nm 0.0 w rms =13nm [1] B. Flöter et al, Beam parameters of FLASH beamline BL1 from Hartmann wavefront measurements, Nucl. Instrum. Meth. A 635 (2011) Pitch [mrad]

20 Beam characterization of FLASH Experimental setup at BL2 = nm Hartmann plate before adjustment after adjustment Wavefront w rms ~ 10nm w rms ~ 2.5nm ~ /10 Intensity [2] B. Flöter et al, EUV Hartmann sensor for wavefront measurements at the Free-electron LASer in Hamburg, New J. Phys. 12 (2010)

21 Beam parameters from Hartmann data FLASH =7nm Beam profiles and wavefronts of single pulses (no focusing mirror) Beam propagation parameters X Y w pv [nm] 5.3 ± 0.69 w rms [nm] 0.67 ± 0.09 Beam propagation parameter M ± 0.08 ( ) Beam propagation parameter M 2 i 1.23 ± ± 0.1 ( ) Beam width d [mm] 6 ± ± 0.1 Waist position z 0,i [m] ± ± 1.4 Rayleigh length z R [mm] 3760 ± ± 731 Waist diameter d 0,i [µm] 2 nd moment 200 ± ± 25 ( ) Divergence [µrad] 55 ± 2 44 ± 2 ( )

22 Beam characterization at / = 32nm Focal spot size: Computed PMMA imprint 10x10µm² Active KB System Wavefront sensor

23 Summary: Laser plasma EUV / soft x-ray source Clean, stable, compact =1 20nm, ns ps pulses reflectometry, ablation studies, NEXAFS / EXAFS for chemical analysis spectro-microscopy Hartmann wavefront sensor (EUV / soft x-rays) real-time alignment of optics beam propagation for single pulses Characterization of partially coherent radiation Wigner distribution

24 Thank You! Coworkers: Dr. B. Schäfer Dr. U. Leinhos J.O. Dette W. Hüttner F. Kühl M. Lübbecke T. Mey M. Müller G. Steinert J. Sudradjat M. Stubenvoll

25 CCD-Counts XUV peak brillance of laser plasma source N VI 1s 2-1s2p Stickstoff - Einzelpuls - Al gefiltert N VII 1s 2-1s2p N VI 1s 2-1s3p N VI 1s 2-1s4p N VI 1s 2-1s5p N VI 1s 2-1s6p N VII 1s 2-1s3p N VII 1s 2-1s4p N VII 1s 2-1s5p Photonenenergie (ev) Isolated N VI 1s 2-1s2p nm (Ti filtered) Peak brillance [Photons/(s mrad 2 mm 2 0,1%BW)] ns laser: 6*10 17 (LLG, T. Wilhein) ps laser: 1,2*10 20 (LLG) Brightness (ps): ~10 14 photons/(pulse x sr)

26 Comprehensive beam characterization Wigner distribution = Fourier transform of Mutual Coherence Function Caustic of FLASH: Phosphor coated screen Long working distance microscope Translation stage CCD camera Intensity distribution Beam diameter

27 Determination of Wigner distribution function mapping measured data into 4D Wigner Fourier space FFT Wigner distribution function h x x, u = h x, y, u, v dydv h y y, v = h x, y, u, v dxdu Reconstruction of beam profiles B. Schäfer, T. Mey, K. Mann, K. Tiedtke et al, Nucl. Inst. Meth comprehensive beam characterization beam parameters coherence function mode content wavefront angular characteristics

28 Spectrum of electromagnetic radiation EUV Lithography 13.5 nm water window Wavelength 1µm 100nm 10nm 1nm 0.1nm Soft x-rays Extreme UV Hard x-rays 1eV 10eV High 100eV 1keV 10keV Excimer lasers Harmonics Free electron lasers Photon energy

29 Kompaktes Labor-Röntgenmikroskop Gepulstes Hochdruck-Gastarget A) monochromatische =2,88nm (N 2 + Ti-Filter) B) Bichromatisches Konzept zur elementspezifischen Mikroskopie um die Ca-Kante ( =3,58 nm) Spektro-Mikroskopie

30 NEXAFS measurements at athmospheric pressure Polyimide: 2 4mm

31 Improvements (2): Plasma generation with barrel shock Schlieren image Nitrogen 10 bar Helium 170 mbar Nitrogen 10 bar Vacuum ~10-3 mbar 500 µm 500 µm 31

32 Improvements (3): Barrel shock Nitrogen 10bar Schlieren images: ambient pressure: 1 bar 10-3 mbar 500µm 32

33 Beam characterization: Hartmann-Shack wavefront sensor Spot distribution - Beam profile Propagation analysis - Wavefront Zernike Analysis: Beam parameters: M x 2 x x x x 2 B.Schäfer, K. Mann, Rev. Sci. Instr. 77, (2006) 33

34 EXAFS: Cl L-edge of NaCl EXAFS structures 200nm NaCl film L-edge of Cl (EUV range) Bond lengths: Excellent agreement with Synchrotron data R i E i C E Streu

35 Results and discussion I - Overview 17 November 2013 Emission properties of ns and ps laser-induced soft x-ray sources 35

36 Results and discussion III different pulse energies N 2 Kr The higher emission intensity of the ps plasma and shift to shorter wavelengths (considering the same pulse energy of ns and ps laser) is attributed to the higher electron density and higher electron temperature, respectively. 17 November 2013 Emission properties of ns and ps laser-induced soft x-ray sources 36

37 Results and discussion VI Parameter ns laser ps laser Wavelength (λ) 1064 nm 1064 nm Pulse duration (τ) (FWHM) 7 ns 0.17 ns Laser pulse energy (Q) 450 mj 380 mj Diameter of focal spot 30 µm 20 µm Maximum power density 2.2 x W/cm² 1.7 x W/cm² Plasma size 470 µm x 190 µm 310 µm x 150 µm Brightness 5 x photons/(pulse x sr) 8 x photons/(pulse x sr) Peak 2.88 nm 1 x photons/(s x mrad² x mm²) 4 x photons/(s x mrad² x mm²) 37

38 Soft x-ray microscopy II caustic measurement FWHM 500 µm z [mm] 38

39 depth [nm] Soft x-ray microscopy III Ablation of 2.88nm EUV energy density 13.5 nm fragmentation ablation dose [mj/cm² x number of pulses] 5000 pulses, N 15 bar, 3 min ultrasonic bath energy density between 0.3 mj/cm² nm in the focal spot of the elliptical mirror 8.5*10 9 photons/pulse 17 November 2013 Applications of ns and ps laser-induced soft x-ray sources 39

40 Soft x-ray microscopy IV 2.3*10 12 photons/(sr*pulse ) 1.8*10 11 photons/(sr*pulse ) R 8% 17 November 2013 Applications of ns and ps laser-induced soft x-ray sources 40

41 Caustic of HHG Source 25. Harmonic ( =32nm) 90.0 mm d 0y 2 d 0y z 0y z Ry x y Waist diameter d µm µm Waist position z mm mm Rayleigh length z R 10.7 mm 30.1 mm Beam propagation factor M² Aberrations!

42 Real-time wavefront measurement 25. Harmonic ( =32nm) Yaw angle Pitch angle! 42

43 Spatial coherence: Young s experiment: 2a x + s/2 interference of elementary waves x s/2 s Contrast of fringes local degree of coherence γ x, s : d 43

44 Caustic of Free Electron Laser FLASH / DESY Beam parameter Waist position z 0x / z 0y [mm] Waist diameter d 0x / d 0y [µm] Rayleigh length z Rx / z Ry [mm] Beam propagation factor M² x / M² y Value / / / / 13 d 0x z 0x 2 d 0x z Rx coherence??? 44

45 Wigner distribution y h = Fourier transform of Mutual Coherence Function: v z x Wigner distribution h x, u = 1 2π 2 mutual coherence function Γ x, s e iu s d 2 s spatial coordinate x = x y angular coordinate u = u v Interpretation: radiance at position x in direction of u h = W m² sr M. J. Bastiaans, 1986, Opt. Acta

Wavefront metrology and beam characterization in the EUV/soft X-ray spectral range

Wavefront metrology and beam characterization in the EUV/soft X-ray spectral range 2 nd Swedish-German Workshop on X-Ray Optics HZB Berlin-Adlershof, 28-30 April 2015 Wavefront metrology and beam characterization in the EUV/soft X-ray spectral range K. Mann J.O. Dette, J. Holburg, F.

More information

Wigner distribution measurement of the spatial coherence properties of FLASH

Wigner distribution measurement of the spatial coherence properties of FLASH Wigner distribution measurement of the spatial coherence properties of FLASH Tobias Mey Laser-Laboratorium Göttingen e.v. Hans-Adolf-Krebs Weg 1 D-37077 Göttingen EUV wavefront sensor Experimental setup

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

EUV ablation. C. Liberatore1,2, A. Bartnik5, K. Mann4, M. Müller4, L. Pina2, L. Juha3, J. J. Rocca6, A. Endo1, T. Mocek1

EUV ablation. C. Liberatore1,2, A. Bartnik5, K. Mann4, M. Müller4, L. Pina2, L. Juha3, J. J. Rocca6, A. Endo1, T. Mocek1 EUV ablation C. Liberatore1,2, A. Bartnik5, K. Mann4, M. Müller4, L. Pina2, L. Juha3, J. J. Rocca6, A. Endo1, T. Mocek1 1 Hilase Center, Dolni Brezany, Czech Republic 2 Czech Technical University, Prague,

More information

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Chapter 7 EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Hot dense plasma lasing medium d θ λ λ Visible laser pump Ch07_00VG.ai The Processes of Absorption, Spontaneous Emission, and Stimulated Emission Absorption

More information

Laser Plasma Monochromatic Soft X-ray Source Using Nitrogen Gas Puff Target

Laser Plasma Monochromatic Soft X-ray Source Using Nitrogen Gas Puff Target Laser Plasma Monochromatic Soft X-ray Source Using Nitrogen Gas Puff Target M. Vrbova 1, P. Vrba 2, S.V. Zakharov 3, V.S. Zakharov 4, M. Müller 5, D. Pánek 1, T. Parkman 1, P.Brůža 1 1 Czech Technical

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

EUV lithography and Source Technology

EUV lithography and Source Technology EUV lithography and Source Technology History and Present Akira Endo Hilase Project 22. September 2017 EXTATIC, Prague Optical wavelength and EUV (Extreme Ultraviolet) VIS 13.5nm 92eV Characteristics of

More information

X-Rays From Laser Plasmas

X-Rays From Laser Plasmas X-Rays From Laser Plasmas Generation and Applications I. C. E. TURCU CLRC Rutherford Appleton Laboratory, UK and J. B. DANCE JOHN WILEY & SONS Chichester New York Weinheim Brisbane Singapore Toronto Contents

More information

Fundamental investigation on CO 2 laser-produced Sn plasma for an EUVL source

Fundamental investigation on CO 2 laser-produced Sn plasma for an EUVL source Fundamental investigation on CO 2 laser-produced Sn plasma for an EUVL source Yezheng Tao*, Mark Tillack, Kevin Sequoia, Russel Burdt, Sam Yuspeh, and Farrokh Najmabadi University of California, San Diego

More information

Laser and pinching discharge plasmas spectral characteristics in water window region

Laser and pinching discharge plasmas spectral characteristics in water window region Laser and pinching discharge plasmas spectral characteristics in water window region P Kolar 1, M Vrbova 1, M Nevrkla 2, P Vrba 2, 3 and A Jancarek 2 1 Czech Technical University in Prague, Faculty of

More information

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION

SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION SOFT X-RAYS AND EXTREME ULTRAVIOLET RADIATION Principles and Applications DAVID ATTWOOD UNIVERSITY OF CALIFORNIA, BERKELEY AND LAWRENCE BERKELEY NATIONAL LABORATORY CAMBRIDGE UNIVERSITY PRESS Contents

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10721 Experimental Methods The experiment was performed at the AMO scientific instrument 31 at the LCLS XFEL at the SLAC National Accelerator Laboratory. The nominal electron bunch charge

More information

Course 2: Basic Technologies

Course 2: Basic Technologies Course 2: Basic Technologies Part II: X-ray optics What do you see here? Seite 2 wavefront distortion http://www.hyperiontelescopes.com/performance12.php http://astronomy.jawaid1.com/articles/spherical%20ab

More information

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

Construction of an extreme ultraviolet polarimeter based on highorder harmonic generation

Construction of an extreme ultraviolet polarimeter based on highorder harmonic generation Construction of an extreme ultraviolet polarimeter based on highorder harmonic generation N. Brimhall *, J. C. Painter, M. Turner, S. V. Voronov, R. S. Turley, M. Ware, and J. Peatross Department of Physics

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

EUV Reflectivity measurements on Acktar Sample Magic Black

EUV Reflectivity measurements on Acktar Sample Magic Black Report EUV Reflectivity measurements on Acktar Sample Magic Black S. Döring, Dr. K. Mann Laser-Laboratorium Göttingen e.v. October 28, 2011 Contents 1 Introduction 3 2 Setup 3 3 Measurements 4 4 Conclusion

More information

Damage to Molecular Solids Irradiated by X-ray Laser Beam

Damage to Molecular Solids Irradiated by X-ray Laser Beam WDS'11 Proceedings of Contributed Papers, Part II, 247 251, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Damage to Molecular Solids Irradiated by X-ray Laser Beam T. Burian, V. Hájková, J. Chalupský, L. Juha,

More information

EUV-Technology with Discharge EUV-Lamp"

EUV-Technology with Discharge EUV-Lamp EUV-Technology with Discharge EUV-Lamp" Rainer Lebert, Larissa Juschkin, Christian Wies, Bernhard Jägle, Manfred Meisen, Ulrich Bieberle, Willi Neff, Juri Barthel, Konstantin Walter, Klaus Bergmann, Fraunhofer

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application

Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application Laser-produced extreme ultraviolet (EUV) light source plasma for the next generation lithography application EUV light source plasma Tin icrodroplet Main pulse (CO2 laser pulse) Pre-pulse (Nd:YAG laser

More information

Optimization of laser-produced plasma light sources for EUV lithography

Optimization of laser-produced plasma light sources for EUV lithography page 1 of 17 Optimization of laser-produced plasma light sources for EUV lithography M. S. Tillack and Y. Tao 1 University of California, San Diego Center for Energy Research 1 Currently at Cymer Inc.

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Physik und Anwendungen von weicher Röntgenstrahlung I (Physics and applications of soft X-rays I)

Physik und Anwendungen von weicher Röntgenstrahlung I (Physics and applications of soft X-rays I) Physik und Anwendungen von weicher Röntgenstrahlung I (Physics and applications of soft X-rays I) Sommersemester 2015 Veranstalter : Prof. Dr. Ulf Kleineberg (ulf.kleineberg@physik.uni-muenchen.de) LMU,

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

High-Harmonic Generation II

High-Harmonic Generation II Soft X-Rays and Extreme Ultraviolet Radiation High-Harmonic Generation II Phasematching techniques Attosecond pulse generation Applications Specialized optics for HHG sources Dr. Yanwei Liu, University

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

Research with Synchrotron Radiation. Part I

Research with Synchrotron Radiation. Part I Research with Synchrotron Radiation Part I Ralf Röhlsberger Generation and properties of synchrotron radiation Radiation sources at DESY Synchrotron Radiation Sources at DESY DORIS III 38 beamlines XFEL

More information

The European XFEL in Hamburg: Status and beamlines design

The European XFEL in Hamburg: Status and beamlines design UVX 2010 (2011) 63 67 DOI: 10.1051/uvx/2011009 C Owned by the authors, published by EDP Sciences, 2011 The European XFEL in Hamburg: Status and beamlines design J. Gaudin, H. Sinn and Th. Tschentscher

More information

LASER. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

LASER. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe LSER hallenging MQ questions by The Physics afe ompiled and selected by The Physics afe www.thephysicsafe.com www.pmc.sg 1 laser point creates a spot on a screen as it reflects 70% of the light striking

More information

A laser-produced plasma extreme ultraviolet (EUV) source by use of liquid microjet target

A laser-produced plasma extreme ultraviolet (EUV) source by use of liquid microjet target A laser-produced plasma extreme ultraviolet (EUV) source by use of liquid microjet target Takeshi Higashiguchi E-mail: higashi@opt.miyazaki-u.ac.jp Keita Kawasaki, Naoto Dojyo, Masaya Hamada, Wataru Sasaki,

More information

X-ray photoelectron spectroscopy with a laser-plasma source

X-ray photoelectron spectroscopy with a laser-plasma source Proc. SPIE Vol.3157 (1997) pp.176-183 X-ray photoelectron spectroscopy with a laser-plasma source Toshihisa TOMIE a, Hiroyuki KONDO b, Hideaki SHIMIZU a, and Peixiang Lu a a Electrotechnical Laboratory,

More information

plasma optics Amplification of light pulses: non-ionised media

plasma optics Amplification of light pulses: non-ionised media Amplification of light pulses: non-ionised media since invention of laser: constant push towards increasing focused intensity of the light pulses Chirped pulse amplification D. Strickland, G. Mourou, Optics

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

Investigations on warm dense plasma with PHELIX facility

Investigations on warm dense plasma with PHELIX facility 2 nd EMMI Workshop on Plasma Physics with Intense Laser and Heavy Ion Beams, May 14-15, Moscow Investigations on warm dense plasma with PHELIX facility S.A. Pikuz Jr., I.Yu. Skobelev, A.Ya. Faenov, T.A.

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

High Brightness Electrodeless Z-Pinch TM EUV Source for Mask Inspection Tools

High Brightness Electrodeless Z-Pinch TM EUV Source for Mask Inspection Tools High Brightness Electrodeless Z-Pinch TM EUV Source for Mask Inspection Tools Stephen F. Horne, Matthew M. Besen, Matthew J. Partlow, Donald K. Smith, Paul A. Blackborow, Deborah S. Gustafson Agenda Background

More information

Electron-Acoustic Wave in a Plasma

Electron-Acoustic Wave in a Plasma Electron-Acoustic Wave in a Plasma 0 (uniform ion distribution) For small fluctuations, n ~ e /n 0

More information

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of Polarization control experiences in single pass seeded FELs Carlo Spezzani on behalf of the FERMI team & the storage ring FEL group Outline Introduction Storage Ring FEL test facility characterization

More information

Modern optics Lasers

Modern optics Lasers Chapter 13 Phys 322 Lecture 36 Modern optics Lasers Reminder: Please complete the online course evaluation Last lecture: Review discussion (no quiz) LASER = Light Amplification by Stimulated Emission of

More information

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik Laserphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet Angewandte Nanophysik, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Heisenbergbau V 202, Unterpörlitzer Straße

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Small Quantum Systems Scientific Instrument

Small Quantum Systems Scientific Instrument Small Quantum Systems Scientific Instrument WP-85 A. De Fanis, T. Mazza, H. Zhang, M. Meyer European XFEL GmbH TDR_2012: http://www.xfel.eu/documents/technical_documents XFEL Users Meeting 2014, January

More information

Generation and Applications of High Harmonics

Generation and Applications of High Harmonics First Asian Summer School on Aug. 9, 2006 Generation and Applications of High Harmonics Chang Hee NAM Dept. of Physics & Coherent X-ray Research Center Korea Advanced Institute of Science and Technology

More information

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use.

Check the LCLS Project website to verify 2 of 6 that this is the correct version prior to use. 1. Introduction The XTOD Offset Systems are designed to spatially separate the useful FEL radiation from high-energy spontaneous radiation and Bremsstrahlung γ-rays. These unwanted radiations are generated

More information

Laser Ablation Studies at UCSD and Plans for Time and Space Resolved Ejecta Measurements

Laser Ablation Studies at UCSD and Plans for Time and Space Resolved Ejecta Measurements Laser Ablation Studies at UCSD and Plans for Time and Space Resolved Ejecta Measurements M. S. Tillack, Y. Tao, Y. Ueno*, R. Burdt, S. Yuspeh, A. Farkas, 2 nd TITAN workshop on MFE/IFE common research

More information

attosecond laser pulse

attosecond laser pulse Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@atto.t.u-tokyo.ac.jp Advanced Plasma and Laser Science E attosecond laser pulse 1 attosecond pulse train (APT) isolated attosecond

More information

Developments for the FEL user facility

Developments for the FEL user facility Developments for the FEL user facility J. Feldhaus HASYLAB at DESY, Hamburg, Germany Design and construction has started for the FEL user facility including the radiation transport to the experimental

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2397 Strong-field physics with singular light beams M. Zürch, C. Kern, P. Hansinger, A. Dreischuh, and Ch. Spielmann Supplementary Information S.1 Spectrometric

More information

COST MP0601 Short Wavelength Laboratory Sources

COST MP0601 Short Wavelength Laboratory Sources Background: Short wavelength radiation has been used in medicine and materials studies since immediately after the 1895 discovery of X-rays. The development of synchrotron sources over the last ~25 years

More information

The BESSY - FEL Collaboration

The BESSY - FEL Collaboration The BESSY - FEL Collaboration Planning the Revolution for Research with soft X-Rays Photon Energy Range : 20 ev up to 1 kev λ/λ 10-2 to 10-4 Peak Power: 1mJ in 200 fs >> 5 GW Time Structure: 200 fs (

More information

Photothermal measurement of absorption and wavefront deformations in UV optics

Photothermal measurement of absorption and wavefront deformations in UV optics Journal of Physics: Conference Series Photothermal measurement of absorption and wavefront deformations in UV optics To cite this article: K Mann et al 21 J. Phys.: Conf. Ser. 214 1215 View the article

More information

Laser-driven intense X-rays : Studies at RRCAT

Laser-driven intense X-rays : Studies at RRCAT Laser-driven intense X-rays : Studies at RRCAT B. S. Rao Laser Plasma Division Team Effort Principal contributors : Experiment: P. D. Gupta, P. A. Naik, J. A. Chakera, A. Moorti, V. Arora, H. Singhal,

More information

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2 T. Plath, L. L. Lazzarino, Universität Hamburg, Hamburg, Germany K. E. Hacker, T.U. Dortmund, Dortmund, Germany Abstract We present a conceptual study

More information

Experimental study of nonlinear laser-beam Thomson scattering

Experimental study of nonlinear laser-beam Thomson scattering Experimental study of nonlinear laser-beam Thomson scattering T. Kumita, Y. Kamiya, T. Hirose Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan I.

More information

Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses

Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses Rajendran Rajeev, Johannes Hellwagner, Anne Schumacher, Inga Jordan, Martin Huppert, Andres

More information

Padraig Dunne, UCD School of Physics Dublin, Ireland.

Padraig Dunne, UCD School of Physics Dublin, Ireland. Padraig Dunne, UCD School of Physics Dublin, Ireland. Contents Zurich Prague Dublin Padova Carl Zeiss Aachen ASML IMEC EPPRA Xtreme ISAN ISAN Progress in on line MLM carbon cleaning Progress in radiative

More information

ELISS

ELISS ELISS 2016 22. 8. 2016 Study nature in smaller spatial and shorter time scales Spatial resolution d = 0.61 λ NA Motivation Phys. Today 65, 9, 44 (2012) Temporal resolution ~pulse duration in pump-probe

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1 Laser Optics-II 1 Outline Absorption Modes Irradiance Reflectivity/Absorption Absorption coefficient will vary with the same effects as the reflectivity For opaque materials: reflectivity = 1 - absorptivity

More information

Extatic welcome week, 22/9/2017

Extatic welcome week, 22/9/2017 Extatic welcome week, 22/9/2017 Motivation Phys. Today 65, 9, 44 (2012) 2 Need for short X-ray pulses Motivation Synchrotrons: 100 ps (fs) XFEL (X-ray Free Electron Lasers): >10 fs Superbright, but large

More information

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region

Waseda University. Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region Waseda University Research Institute for Science and Engineering Design of High Brightness Laser-Compton Light Source for EUV Lithography Research in Shorter Wavelength Region Research Institute for Science

More information

X-Ray Radiation Channeling through Micro-Channel Plates: spectroscopy with a Synchrotron Radiation Beam

X-Ray Radiation Channeling through Micro-Channel Plates: spectroscopy with a Synchrotron Radiation Beam X-Ray Radiation Channeling through Micro-Channel Plates: spectroscopy with a Synchrotron Radiation Beam M.I. Mazuritskiy a, S.B. Dabagov b,c, A. Marcelli b, K. Dziedzic-Kocurek d and A.M. Lerer a a Southern

More information

Layout of the HHG seeding experiment at FLASH

Layout of the HHG seeding experiment at FLASH Layout of the HHG seeding experiment at FLASH V. Miltchev on behalf of the sflash team: A. Azima, J. Bödewadt, H. Delsim-Hashemi, M. Drescher, S. Düsterer, J. Feldhaus, R. Ischebeck, S. Khan, T. Laarmann

More information

Ultrafast Single-Shot X-Ray Emission Spectrometer Design. Katherine Spoth

Ultrafast Single-Shot X-Ray Emission Spectrometer Design. Katherine Spoth Ultrafast Single-Shot X-Ray Emission Spectrometer Design Katherine Spoth O ce of Science, Science Undergraduate Laboratory Internship (SULI) State University of New York at Bu alo SLAC National Accelerator

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source

High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source Eric Gullikson Lawrence Berkeley National Laboratory 1 Reflectometry and Scattering Beamline (ALS 6.3.2) Commissioned Fall 1994

More information

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials

Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials Ultrafast X-ray Spectroscopy of Solvated Transition-metal Complexes and Oxide Materials Robert Schoenlein Materials Sciences Division Chemical Sciences Division - UXSL Matteo Rini ils Huse F. Reboani &

More information

Rare-earth plasma extreme ultraviolet sources at nm for next generation semiconductor lithography

Rare-earth plasma extreme ultraviolet sources at nm for next generation semiconductor lithography Rare-earth plasma extreme ultraviolet sources at 6.5-6.7 nm for next generation semiconductor lithography Takeshi Higashiguchi 1 Takamitsu Otsuka 1, Deirdre Kilbane 3, John White 3, Noboru Yugami 1,2,

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

Photoelectron Spectroscopy using High Order Harmonic Generation

Photoelectron Spectroscopy using High Order Harmonic Generation Photoelectron Spectroscopy using High Order Harmonic Generation Alana Ogata Yamanouchi Lab, University of Tokyo ABSTRACT The analysis of photochemical processes has been previously limited by the short

More information

At-wavelength figure metrology of hard x-ray focusing mirrors

At-wavelength figure metrology of hard x-ray focusing mirrors REVIEW OF SCIENTIFIC INSTRUMENTS 77, 063712 2006 At-wavelength figure metrology of hard x-ray focusing mirrors Hirokatsu Yumoto, a Hidekazu Mimura, Satoshi Matsuyama, Soichiro Handa, and Yasuhisa Sano

More information

Institute for Laser Technology

Institute for Laser Technology Shinsuke Fujioka, Teruyuki Ugomori, Kensuke Yoshida, Chaogang Li, Atsushi Sunahara A, Katsunobu Nishihara, Nozomi Tanaka, Hiroaki Nishimura Institute of Laser Engineering, Osaka University A Institute

More information

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I Light Source I Takashi TANAKA (RIKEN SPring-8 Center) Light Source I Light Source II CONTENTS Introduction Fundamentals of Light and SR Overview of SR Light Source Characteristics of SR (1) Characteristics

More information

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 The Lund Attosecond Science Centre in the MEDEA network PER JOHNSSON @ THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 Lund University Founded in 1666 47 700 students (individuals) 7 500 employees - 840

More information

Efficient EUV source by use of a micro-target containing tin nanoparticles

Efficient EUV source by use of a micro-target containing tin nanoparticles 2008 International Workshop on EUV Lithography Efficient EUV source by use of a micro-target containing tin nanoparticles Takeshi Higashiguchi higashi@cc.utsunomiya-u.ac.jp Utsunomiya University, Japan

More information

A Straight Forward Path (Roadmap) to EUV High Brightness LPP Source

A Straight Forward Path (Roadmap) to EUV High Brightness LPP Source Introduction and Outline A Straight Forward Path (Roadmap) to EUV High Brightness LPP Source Rainer Lebert, AIXUV Target Features of High Brightness EUV Source LPP Concept to reach Specification Target

More information

SEMATECH 157nm Technical Review

SEMATECH 157nm Technical Review SEMATECH 157nm Technical Review Technical Status Report on F2 - Lasers for 157nm Lithography I. Klaft a), F. Voss a), I. Bragin a), E. Bergmann a), T. Nagy a), N. Niemöller a), K.Vogler a), S. Spratte

More information

EUV and Soft X-Ray Optics

EUV and Soft X-Ray Optics EUV and Soft X-Ray Optics David Attwood University of California, Berkeley Cheiron School September 2011 SPring-8 1 The short wavelength region of the electromagnetic spectrum n = 1 δ + iβ δ, β

More information

EUV and Soft X-Ray Optics

EUV and Soft X-Ray Optics EUV and Soft X-Ray Optics David Attwood University of California, Berkeley and Advanced Light Source, LBNL Cheiron School October 2010 SPring-8 1 The short wavelength region of the electromagnetic spectrum

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

X-Ray Emission Spectrometer Design with Single-Shot. Pump-Probe and Resonant Excitation Capabilities. Katherine Spoth

X-Ray Emission Spectrometer Design with Single-Shot. Pump-Probe and Resonant Excitation Capabilities. Katherine Spoth X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities Katherine Spoth Office of Science, Science Undergraduate Laboratory Internship (SULI) State University

More information

X-ray Optics needs for 3 rd and 4 th generation Light Source. Mourad Idir BNL/NSLS II 1 BROOKHAVEN SCIENCE ASSOCIATES

X-ray Optics needs for 3 rd and 4 th generation Light Source. Mourad Idir BNL/NSLS II 1 BROOKHAVEN SCIENCE ASSOCIATES X-ray Optics needs for 3 rd and 4 th generation Light Source Mourad Idir midir@bnl.gov BNL/NSLS II 1 BROOKHAVEN SCIENCE ASSOCIATES OUTLINE 3 rd and 4 th generation Light source Optics needs NSLS II Example

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Looking into the ultrafast dynamics of electrons

Looking into the ultrafast dynamics of electrons Looking into the ultrafast dynamics of electrons G. Sansone 1,2,3 1) Dipartimento di Fisica Politecnico Milano, Italy 2) Institute of Photonics and Nanotechnology, CNR Politecnico Milano Italy 3) Extreme

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Overview: Attosecond optical technology based on recollision and gating

Overview: Attosecond optical technology based on recollision and gating Overview: Attosecond optical technology based on recollision and gating Zenghu Chang Kansas State University Team members Kansas State University Zenghu Chang (Dept. of Phys.) Lew Cocke (Dept. of Phys.)

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

WP-3: HHG and ultrafast electron imaging

WP-3: HHG and ultrafast electron imaging WORKPACKAGE WP-3: HHG and ultrafast electron imaging Coordinators: P. Salières (CEA), A. Assion (FEMTO, Spectra Physics Vienna) Period: Start Month 4 End Month 48 Leading Participants (Orange in the picture):

More information

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS www.arpapress.com/volumes/vol19issue1/ijrras_19_1_06.pdf HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS M. Eslamifar Physics Department, BehbahanKhatamAl-Anbia

More information

PHY410 Optics Exam #3

PHY410 Optics Exam #3 PHY410 Optics Exam #3 NAME: 1 2 Multiple Choice Section - 5 pts each 1. A continuous He-Ne laser beam (632.8 nm) is chopped, using a spinning aperture, into 500 nanosecond pulses. Compute the resultant

More information

RADIATION SOURCES AT SIBERIA-2 STORAGE RING

RADIATION SOURCES AT SIBERIA-2 STORAGE RING RADIATION SOURCES AT SIBERIA-2 STORAGE RING V.N. Korchuganov, N.Yu. Svechnikov, N.V. Smolyakov, S.I. Tomin RRC «Kurchatov Institute», Moscow, Russia Kurchatov Center Synchrotron Radiation undulator undulator

More information

PIs: Louis DiMauro & Pierre Agostini

PIs: Louis DiMauro & Pierre Agostini Interaction of Clusters with Intense, Long Wavelength Fields PIs: Louis DiMauro & Pierre Agostini project objective: explore intense laser-cluster interactions in the strong-field limit project approach:

More information

Spectroscopy with Free Electron Lasers. David Bernstein SASS Talk January 28 th, 2009

Spectroscopy with Free Electron Lasers. David Bernstein SASS Talk January 28 th, 2009 Spectroscopy with Free Electron Lasers David Bernstein SASS Talk January 28 th, 2009 Overview Who am I?! What is FLASH?! The promise of Free Electron Lasers (FELs) The Trouble with Spectroscopy Sample

More information

Harmonic Generation for Photoionization Experiments Christian J. Kornelis Physics REU Kansas State University

Harmonic Generation for Photoionization Experiments Christian J. Kornelis Physics REU Kansas State University Harmonic Generation for Photoionization Experiments Christian J. Kornelis Physics REU Kansas State University The Basic Setup for the KLS Photoionization Experiment V. Kumarappan Femtosecond Pump-Probe

More information