attosecond laser pulse

Size: px
Start display at page:

Download "attosecond laser pulse"

Transcription

1 Kenichi Ishikawa ( ) ishiken@atto.t.u-tokyo.ac.jp Advanced Plasma and Laser Science E attosecond laser pulse 1

2 attosecond pulse train (APT) isolated attosecond pulse (IAP) 2

3 High-order harmonics are generated as attosecond bursts repeated each half cycle of the fundamental laser (attosecond pulse train) Paul et al., Science 292, 1689 (2001) Nabekawa et al., Phys. Rev. Lett. 97, (2006) time [fs] Optical cycle(2.7 fs) Only one burst Isolated attosecond pulse (IAP) 3

4 Isolated attosecond pulse generation by a few-cycle laser pulse Baltuska et al. Nature 421, 611 (2003) Hentschel et al. Nature 414, 509 (2001) X-ray intensity (arbitrary units) Energy (ev) Time (fs) 530 as τ x = 530 as Laser electric field (arbitrary units) 5fs Light emission takes place only once. Zhao et al. (2012) Attosecond (10-18 sec) pulse 4

5 10-15 sec sec Molecular rotation Molecular vibration Electronic dynamics Pulse duration (fs) Year increase in intensity Single cycle at 800 nm (courtesy of Prof. J. Itatani) 5

6 0.1attosecond! 0.1 6

7 How to generate IAP 7

8 Isolated attosecond pulse generation by a few-cycle laser pulse Baltuska et al. Nature 421, 611 (2003) Hentschel et al. Nature 414, 509 (2001) X-ray intensity (arbitrary units) Energy (ev) Time (fs) 530 as τ x = 530 as Laser electric field (arbitrary units) 5fs XUV intensity (arb.u.) Ne C 80 as τ x = 80 ±5 as phase (rad) Goulielmakis et al. Science 320, 1614 (2008) Light emission takes place only once. Fig Time (as) A Attosecond (10-18 sec) pulse 8

9 IONIZATION SHUTTER domain, and the autocorrelation functions were then calculated. HHG is suppressed when neutral atoms are depleted density of neutral Ar atoms 9th harmonic (of 400 nm) = 27.9 ev fundamental field envelope (400 nm) 9 tion traces were 1.3 ^ 0.1 and 1.8 ^ 0.1 fs, resulting in pulse durations of 950 ^ 90 as and 1.3 ^ 0.1 fs, respectively. In the 950-as pulse, however, bumps appeared around the main peak and the gaussian function does not seem to be appropriate to describe the pulse shape. To check the validity of the experimental results, the spectra of the ninth harmonic (Fig. 3c) were Fouriertransformed with an assumption of a flat phase in the frequency The results are shown by the blue lines in Fig 3a, b. Both the autocorrelation trace of the 1.3-fs pulse and that of 8.3-fs pulse are reproduced well. The bumps are therefore attributable to the spectrum shape. Consequently, no other pulses were observed within the scanned time range of 20 fs, showing the isolated single 950 as from 8.3 fs 1.3 fs from 12 fs Isolated sub-fs pulse generation from a ~10 fs pulse Ar Sekikawa et al., Nature 432, 605 (2004) The spec Ti:sapphire around 800 amplifier of with two pea duration, al spectra are m For furth use of a mu generate hig earlier than duration. H attosecond p duration is the tempor (650 as). Th to induce no Finally, w two-photon volume V ( ¼ cm cross-sectio the pulse du were was set to e electrons pe efficiencies, Methods Driving laser Blue laser pulses pulses to obtain the laser pulse, b spectrum comp pulse energies o durations were system. The opt configuration fo tilt and phase m coherence of th pulses. The puls and were found Autocorrelatio In the present produced by sp conventional a

10 POLARIZATION GATING (PG) FOCUS REVIEW ARTICLE HHG is suppressed when circular polarization is used counter-rotating circularly polarized pulses with a delay b Circularly polarized laser field Linearly polarized laser field EUV intensity Ar 130 as Phase (rad) L = 0.8 µm Contributing subcycle Time (as) Sansone et al., Science 314, 443 (2006) 5 = 0.8 µm 10

11 e information of encoded in I ωl, pulse are guessed DOUBLE OPTICAL GATING (DOG) Polarization gating + two-color gating PRL 100, (2008) week ending 14 MARCH 2008 PHYSICAL REVIEW LETTERS 2 2 Egate "t# $ E0 "e'2ln2&"t%td =2'T0 =4# ="! ( 2 2 ' e'2ln2&"t'td =2'T0 =4# ="! ( #sin"!0 t % CE #; (2) where E0 is the amplitude of the circularly polarized fundamental laser field with carrier frequency!0 (period T0 ), pulse duration "!, and CE phase CE. Td is the time delay between the two circular pulses. The delay, T0 =4, between the gating and the driving fields is introduced by the quarter-wave plate. #!;2! is the relative phase between the fundamental and second harmonic pulses. The duration of the SH pulse is "2!. Finally, a represents the strength of the second harmonic field relative to the fundamental field. Figure 2(a) shows harmonic spectra of argon for onecolor (linearly polarized fundamental field only, Td $ 0, a $ 0), two-color (a second harmonic field added to a fundamental field polarized in the same direction, Td $ 0), conventional PG (a $ 0), and DOG fields. Notice that +2 Ne with secondharmonic field Fig. 3. (Color online) Characterization of a 67 as XUV pulse. (a) Streaked photoelectron spectrogram obtained experimentally. (b) Filtered I ωl trace (left) from the spectrogram in (a) and the retrieved I ωl trace (right). (c) Photoelectron specnerated by DOG in trum obtained experimentally (thick solid) and retrieved specal., PRL and 2008,FROG-CRAB (2008) e gas cell is 1 mm. tra and spectral phases from Mashiko PROOFet(solid) Zhao etprofiles al., Opt. Lett (2012) polarization gate is FIG. 1 (color). (dashed). (d) Retrieved temporal and 37, phases from The driving filed components for PG correspond to (a) without and (b) with the second harmonic field, PROOF (solid) (dashed). respectively. The driving field is shown as theand red line. FROG-CRAB The two 11 IAP generation from a ~10 fs pulse vertical lines represent the gate width. Here, the filled curves are

12 GENERALIZED DOUBLE OPTICAL GATING (GDOG) = 0.8 µm L Elliptical instead of circular polarization c Laser field Bi-colour field with shaped polarization L HHG bursts = 0.8 µm Single HHG burst EUV intensity 1.0 Ar as Time (as) Phase (rad) L = 0.8 µm IAP generation from a v > 20 fs pulse without L = c initial need E L of carrierenvelope E L final stabilization initial E X-ray Gilbertson et al., PRL 105, (2010) final Gilbertson et al., PRA 81, (2010) E X-ray v X-ray = c L = 2.0 µm 12

13 2 INFRARED TWO-COLOR SYNTHESIS mix [arb. units] nm nm two-color driving field 800 nm 800 nm nm (a) ( 10 3 a. ( 10 3 a.u.) autocorrelation trace Xe 500 as 29 ev Time [fs] Δt (fs) Takahashi et al., PRL 104, (2010) Takahashi et al., Nat. e 3 Measured AC traces of an IAP obtained from the side peak of N þ Commun. 4, 2691 (2013) ion signals. The time resolutio 8 and 28 as, respectively. The error bars show the s.d. of each data point. The grey solid profiles are AC tr High-energy (1.3 micro J), high-power (2.6 GW) IAP more than 100 times more energetic than previously reported NATURE COMMUNICATIONS 4:2691 DOI: /nco & 2013 Macmillan 13 Publishers Limited. All rights K. reserved. L. Ishikawa

14 FROM FEMTOSECOND TO ATTOSECOND Molecular rotation Molecular vibration Electronic dynamics Pulse duration (fs) Year increase in intensity Single cycle at 800 nm (courtesy of Prof. J. Itatani) 14

15 Quest for higher photon energy (shorter wavelength) cutoff E c = I p +3.17U p U p (ev) = e2 E 2 0 4m 2 = I(W/cm 2 ) 2 (µm) Longer fundamental wavelength is advantageous Optical parametric chirped-pulse amplification (OPCPA) 15

16 WATER-WINDOW HHG spectral range between the K-absorption edges of C (284 ev) and O (543 ev) absorbed by biological samples but not by water attractive for high-contrast biological imaging 0 =1.55 µm I = W/cm µm He HHG [arb. units] He Space Carbon K edge Photon energy Transmission of Mylar filter Photon energy [ev] Takahashi et al., PRL 101, (2008)

17 kev HHG almost x-ray! 0 =3.9 µm Popmintchev et al., Science 336, 1287 (2012) a new type of laser- based radiation source 17

18 ATTOSECOND SCIENCE atomic unit of time = 24 attoseconds Orbital period of the Bohr electron mω 2 r = 1 4πϵ 0 e 2 r 2 T = 2! =2 r 4 0 mr 3 e 2 = 152 as = 2 a.u. real-time observation and time-domain control of atomic-scale electron dynamics 18

4. High-harmonic generation

4. High-harmonic generation Advanced Laser and Photn Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Kenichi Ishikawa () http://ishiken.free.fr/english/lecture.html ishiken@n.t.u-tokyo.ac.jp Advanced Laser and Photon

More information

Looking into the ultrafast dynamics of electrons

Looking into the ultrafast dynamics of electrons Looking into the ultrafast dynamics of electrons G. Sansone 1,2,3 1) Dipartimento di Fisica Politecnico Milano, Italy 2) Institute of Photonics and Nanotechnology, CNR Politecnico Milano Italy 3) Extreme

More information

Overview: Attosecond optical technology based on recollision and gating

Overview: Attosecond optical technology based on recollision and gating Overview: Attosecond optical technology based on recollision and gating Zenghu Chang Kansas State University Team members Kansas State University Zenghu Chang (Dept. of Phys.) Lew Cocke (Dept. of Phys.)

More information

High-Harmonic Generation II

High-Harmonic Generation II Soft X-Rays and Extreme Ultraviolet Radiation High-Harmonic Generation II Phasematching techniques Attosecond pulse generation Applications Specialized optics for HHG sources Dr. Yanwei Liu, University

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

Generation and Applications of High Harmonics

Generation and Applications of High Harmonics First Asian Summer School on Aug. 9, 2006 Generation and Applications of High Harmonics Chang Hee NAM Dept. of Physics & Coherent X-ray Research Center Korea Advanced Institute of Science and Technology

More information

Attosecond laser systems and applications

Attosecond laser systems and applications Attosecond laser systems and applications Adrian N. Pfeiffer Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 8th Annual Laser Safety Officer Workshop September

More information

Attosecond Science (1) (1)

Attosecond Science (1) (1) Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@atto.t.u-tokyo.ac.jp Advanced Plasma and Laser Science E Attosecond Science (1) (1) 1 m n f a 3 10 8 (m/s) 30 10 15 (s) = 9 10 6

More information

HHG Sub-cycle dynamics

HHG Sub-cycle dynamics Quantum Optics and Laser Science Group Blackett Laboratory, Imperial College London HHG Sub-cycle dynamics 1. Chirp of electron recollision 2. Measuring ultra-fast intramolecular proton motion 3. Controlling

More information

High order harmonic generation and applications

High order harmonic generation and applications High order harmonic generation and applications E. CONSTANT Centre Laser Intenses et Applications H39 H69 ELI & Hilase Summer School 2016 1 21 26 August 2016 Introduction Laser are unique light sources:

More information

Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom

Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom J. Chen 1, 3, Ya Cheng 2,, and Zhizhan Xu 2, 1 Institute of Applied Physics and Computational Mathematics,

More information

High Harmonic Generation of Coherent EUV/SXR Radiation. David Attwood University of California, Berkeley

High Harmonic Generation of Coherent EUV/SXR Radiation. David Attwood University of California, Berkeley High Harmonic Generation of Coherent EUV/SXR Radiation David Attwood University of California, Berkeley Prof. David Attwood / UC Berkeley EE213 & AST21 / Spring 29 14_HHG_29.ppt HHG: Extreme nonlinear

More information

Effects of driving laser jitter on the attosecond streaking measurement

Effects of driving laser jitter on the attosecond streaking measurement Effects of driving laser jitter on the attosecond streaking measurement Shiyang Zhong, 1 Xinkui He, 1, Peng Ye, 1 Minjie Zhan, 1 Hao Teng 1 and Zhiyi Wei 1,* 1 Beijing National Laboratory for Condensed

More information

Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS. 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay

Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS. 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay Characteristic times Krausz: RevModPhys 81, 163 (2009) Fs light

More information

stabilized 10-fs lasers and their application to laser-based electron acceleration

stabilized 10-fs lasers and their application to laser-based electron acceleration Carrier-envelope envelope-phase-stabilized stabilized sub-10 10-fs lasers and their application to laser-based electron acceleration L. Veisz, E. Goulielmakis, A. Baltuška, and F. Krausz Vienna University

More information

Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements

Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements Z. X. Zhao, Zenghu Chang, X. M. Tong and C. D. Lin Physics Department, Kansas State University, Manhattan,

More information

XUV attosecond pulses

XUV attosecond pulses XUV attosecond pulses D. Charalambidis / Univ. of Crete chara@iesl.forth.gr E. Benis E. Goulielmakis E. Hert L. Nikolopoulos N.A. Papadogiannis P. Tallas In collaboration with G. Tsakiris P. Tallas K.

More information

High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions

High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions,, Ofer Kfir, Zvi Diskin, Pavel Sidorenko and Oren Cohen Department of Physics and Optical Engineering,

More information

CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 1-II February Intense Few-Cycle Infrared Laser Pulses at the Advanced Laser Light Source

CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 1-II February Intense Few-Cycle Infrared Laser Pulses at the Advanced Laser Light Source CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 1-II February 2014 Review Intense Few-Cycle Infrared Laser Pulses at the Advanced Laser Light Source B. E. Schmidt, 1 A. D. Shiner, 2 M. Giguère, 1 C. Trallero-Herrero,

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Ideal laser waveform construction for the generation of super-bright attosecond pulses

Ideal laser waveform construction for the generation of super-bright attosecond pulses Home Search Collections Journals About Contact us My IOPscience Ideal laser waveform construction for the generation of super-bright attosecond pulses This content has been downloaded from IOPscience.

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

PIs: Louis DiMauro & Pierre Agostini

PIs: Louis DiMauro & Pierre Agostini Interaction of Clusters with Intense, Long Wavelength Fields PIs: Louis DiMauro & Pierre Agostini project objective: explore intense laser-cluster interactions in the strong-field limit project approach:

More information

A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology. E.E. Serebryannikov, A.M.

A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology. E.E. Serebryannikov, A.M. A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology E.E. Serebryannikov, A.M. Zheltikov Physics Department, International Laser Center, M.V. Lomonosov

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. S1: High-Harmonic Interferometry of a Chemical Reaction A weak femtosecond laser pulse excites a molecule from its ground state (on the bottom) to its excited state (on top) in which it dissociates.

More information

Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv: v1 [physics.atom-ph] 12 Jun 2014

Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv: v1 [physics.atom-ph] 12 Jun 2014 Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv:1406.3137v1 [physics.atom-ph] 1 Jun 014 J Herrmann 1, M Lucchini 1, S Chen, M Wu, A Ludwig 1, L Kasmi 1, K J Schafer,

More information

Author(s): Niikura, Hiromichi; Wörner, Hans Jakob; Villeneuve, David M.; Corkum, Paul B.

Author(s): Niikura, Hiromichi; Wörner, Hans Jakob; Villeneuve, David M.; Corkum, Paul B. Research Collection Journal Article Probing the Spatial Structure of a Molecular Attosecond Electron Wave Packet Using Shaped Recollision Trajectories Author(s): Niikura, Hiromichi; Wörner, Hans Jakob;

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1878 I. Experimental setup OPA, DFG Ti:Sa Oscillator, Amplifier PD U DC U Analyzer HV Energy analyzer MCP PS CCD Polarizer UHV Figure S1: Experimental setup used in mid infrared photoemission

More information

Attosecond optics and technology: progress to date and future prospects [Invited]

Attosecond optics and technology: progress to date and future prospects [Invited] Review Vol. 33, No. 6 / June 2016 / Journal of the Optical Society of America B 1081 Attosecond optics and technology: progress to date and future prospects [Invited] ZENGHU CHANG, 1, *PAUL B. CORKUM,

More information

Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope

Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope 1 Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope J. Mauritsson 1, P. Johnsson 1, E. Gustafsson 1, M. Swoboda 1, T. Ruchon 1, A. L Huillier 1 & K. J. Schafer 2 1 Department of

More information

time is defined by physical processes

time is defined by physical processes frontiers in attosecond science Louis F. DiMauro as 100 as as as n as 10-18 s 25 as 1 as 10-18 s 1 as n as modified from LCLS/SLAC website time is defined by physical processes a history of ultra-fast:

More information

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 The Lund Attosecond Science Centre in the MEDEA network PER JOHNSSON @ THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 Lund University Founded in 1666 47 700 students (individuals) 7 500 employees - 840

More information

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators 9.10 Passive CEP-stabilization in parametric amplifiers 9.10.1 Active versus passive

More information

Measurement and control of the frequency chirp rate of high-order harmonic pulses

Measurement and control of the frequency chirp rate of high-order harmonic pulses Measurement and control of the frequency chirp rate of high-order harmonic pulses Mauritsson, Johan; Johnsson, Per; Lopez, Rodrigo; Varju, Katalin; Kornelis, W; Biegert, J; Keller, U; Gaarde, MB; Schafer,

More information

Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field

Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field Wei Cao, Peixiang Lu, Pengfei Lan, Xinlin Wang, and Guang Yang Wuhan National Laboratory for Optoelectronics and

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

plasma optics Amplification of light pulses: non-ionised media

plasma optics Amplification of light pulses: non-ionised media Amplification of light pulses: non-ionised media since invention of laser: constant push towards increasing focused intensity of the light pulses Chirped pulse amplification D. Strickland, G. Mourou, Optics

More information

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Chapter 7 EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Hot dense plasma lasing medium d θ λ λ Visible laser pump Ch07_00VG.ai The Processes of Absorption, Spontaneous Emission, and Stimulated Emission Absorption

More information

Attosecond spectroscopy on solids

Attosecond spectroscopy on solids Attosecond spectroscopy on solids Reinhard Kienberger Technische Universität München Max-Planck Institut für Quantenoptik, Garching X-Ray Science in the 21 st Century KITP 06/Aug/2010 Overview Needs for

More information

WP-3: HHG and ultrafast electron imaging

WP-3: HHG and ultrafast electron imaging WORKPACKAGE WP-3: HHG and ultrafast electron imaging Coordinators: P. Salières (CEA), A. Assion (FEMTO, Spectra Physics Vienna) Period: Start Month 4 End Month 48 Leading Participants (Orange in the picture):

More information

ATTOSECOND TRANSIENT ABSORPTION SPECTROSCOPY OF ATOMS AND MOLECULES YAN CHENG

ATTOSECOND TRANSIENT ABSORPTION SPECTROSCOPY OF ATOMS AND MOLECULES YAN CHENG ATTOSECOND TRANSIENT ABSORPTION SPECTROSCOPY OF ATOMS AND MOLECULES by YAN CHENG M.S., Kansas State University, 2011 B.S., University of Science and Technology of China, 2009 A dissertation submitted in

More information

53-attosecond X-ray pulses reach the carbon K-edge

53-attosecond X-ray pulses reach the carbon K-edge ARTICLE DOI: 10.1038/s41467-017-00321-0 OPEN 53-attosecond X-ray pulses reach the carbon K-edge Jie Li 1, Xiaoming Ren 1, Yanchun Yin 1, Kun Zhao 1,2, Andrew Chew 1, Yan Cheng 1, Eric Cunningham 1, Yang

More information

High-Harmonic Generation

High-Harmonic Generation High-Harmonic Generation Kenichi L. Ishikawa Photon Science Center, Graduate School of Engineering, University of Tokyo Japan 1. Introduction We present theoretical aspects of high-harmonic generation

More information

GENERATION OF HIGH-FLUX ATTOSECOND PULSES AND TOWARDS ATTOSECOND-ATTOSECOND PUMP-PROBE EXPERIMENTS

GENERATION OF HIGH-FLUX ATTOSECOND PULSES AND TOWARDS ATTOSECOND-ATTOSECOND PUMP-PROBE EXPERIMENTS GENERATION OF HIGH-FLUX ATTOSECOND PULSES AND TOWARDS ATTOSECOND-ATTOSECOND PUMP-PROBE EXPERIMENTS by YANG WANG B.S., University of Science and Technology of China, 2006 M.S., Wuhan Institute of Physics

More information

Introduction to intense laser-matter interaction

Introduction to intense laser-matter interaction Pohang, 22 Aug. 2013 Introduction to intense laser-matter interaction Chul Min Kim Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST) & Center for Relativistic

More information

C. D. Lin Kansas State U.

C. D. Lin Kansas State U. Dynamic Imaging of molecules using laser-induced Highorder harmonics and High-energy photoelectrons Goal: probing time-dependent structural changes Example: Isomerization of C 2 H 2 C. D. Lin Kansas State

More information

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Presented at ISCS21 June 4, 21 Session # FrP3 Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures Hideo

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

Attosecond Science. Jon Marangos, Director Extreme Light Consortium, Imperial College London

Attosecond Science. Jon Marangos, Director Extreme Light Consortium, Imperial College London Attosecond Science Jon Marangos, Director Extreme Light Consortium, Imperial College London Electron Orbit in Bohr Model T orbit 150 as for H ground state Electron Motion In most matter electrons are in

More information

Yuantao Ding 8/25/2015

Yuantao Ding 8/25/2015 Generating Femtosecond to Sub-Femtosecond X-ray pulses in free-electron lasers Yuantao Ding 8/25/2015 SLAC National Accelerator Laboratory Outline Introduction/motivation SASE FELs: Few-fs x-rays with

More information

Chapter 13. High Harmonic Generation

Chapter 13. High Harmonic Generation Chapter 13 High Harmonic Generation High harmonic generation (HHG) is a technique for producing spatially and temporally coherent extreme-ultraviolet (EUV) light, as well as light pulses as short as hundred

More information

Electron dynamics in a strong laser field

Electron dynamics in a strong laser field Available online at www.worldscientificnews.com WSN 35 (2016) 1-16 EISSN 2392-2192 Electron dynamics in a strong laser field C. C. Gunatilaka, K. A. I. L. Wijewardena Gamalath* Department of Physics, University

More information

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation Journal of the Korean Physical Society, Vol. 49, No. 1, July 2006, pp. 337 341 Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation G.

More information

Part II. Interaction with Single Atoms. Multiphoton Ionization Tunneling Ionization Ionization- Induced Defocusing High Harmonic Generation in Gases

Part II. Interaction with Single Atoms. Multiphoton Ionization Tunneling Ionization Ionization- Induced Defocusing High Harmonic Generation in Gases - Part II 27 / 115 - 2-28 / 115 Bohr model recap. At the Bohr radius - a B = the electric field strength is: 2 me 2 = 5.3 10 9 cm, E a = e ab 2 (cgs) 5.1 10 9 Vm 1. This leads to the atomic intensity:

More information

Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry February 2013

Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry February 2013 2443-11 Winter College on Optics: Trends in Laser Development and Multidisciplinary Applications to Science and Industry 4-15 February 2013 From Femtosecond to Attosecond Pulses: an overview of science

More information

FROM FEW-CYCLE FEMTOSECOND PULSE TO SINGLE ATTOSECOND PULSE- CONTROLLING AND TRACKING ELECTRON DYNAMICS WITH ATTOSECOND PRECISION HE WANG

FROM FEW-CYCLE FEMTOSECOND PULSE TO SINGLE ATTOSECOND PULSE- CONTROLLING AND TRACKING ELECTRON DYNAMICS WITH ATTOSECOND PRECISION HE WANG FROM FEW-CYCLE FEMTOSECOND PULSE TO SINGLE ATTOSECOND PULSE- CONTROLLING AND TRACKING ELECTRON DYNAMICS WITH ATTOSECOND PRECISION by HE WANG B.A., University of Science and Technology of China, 005 AN

More information

Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization

Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization Luo Mu-Hua( ) and Zhang Qiu-Ju( ) College of Physics and Electronics, Shandong

More information

Physik und Anwendungen von weicher Röntgenstrahlung I (Physics and applications of soft X-rays I)

Physik und Anwendungen von weicher Röntgenstrahlung I (Physics and applications of soft X-rays I) Physik und Anwendungen von weicher Röntgenstrahlung I (Physics and applications of soft X-rays I) Sommersemester 2015 Veranstalter : Prof. Dr. Ulf Kleineberg (ulf.kleineberg@physik.uni-muenchen.de) LMU,

More information

Peculiarities of Modeling LPP Source at 6.X nm

Peculiarities of Modeling LPP Source at 6.X nm V.Novikov, V.Ivanov, K.Koshelev, V.Krivtsun, A.Grushin, R.Kildiyarova, A.Solomyannaya Peculiarities of Modeling LPP Source at 6.X nm Outline Theoretical base Optimal plasma parameters Band position Scaling

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10721 Experimental Methods The experiment was performed at the AMO scientific instrument 31 at the LCLS XFEL at the SLAC National Accelerator Laboratory. The nominal electron bunch charge

More information

Thomson Scattering from Nonlinear Electron Plasma Waves

Thomson Scattering from Nonlinear Electron Plasma Waves Thomson Scattering from Nonlinear Electron Plasma Waves A. DAVIES, 1 J. KATZ, 1 S. BUCHT, 1 D. HABERBERGER, 1 J. BROMAGE, 1 J. D. ZUEGEL, 1 J. D. SADLER, 2 P. A. NORREYS, 3 R. BINGHAM, 4 R. TRINES, 5 L.O.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS2029 Generalized Molecular Orbital Tomography Supplementary Information C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira

More information

Electron dynamics in a strong laser field with Gaussian Potential well

Electron dynamics in a strong laser field with Gaussian Potential well Available online at www.worldscientificnews.com WSN 40 (2016) 265-284 EISSN 2392-2192 Electron dynamics in a strong laser field with Gaussian Potential well C. C. Gunatilaka, K. A. I. L. Wijewardena Gamalath*

More information

XUV frequency comb development for precision spectroscopy and ultrafast science

XUV frequency comb development for precision spectroscopy and ultrafast science XUV frequency comb development for precision spectroscopy and ultrafast science R. Jason Jones (PI) College of Optical Sciences, University of Arizona email: rjjones@optics.arizona.edu Collaborators Graduate

More information

Beam manipulation with high energy laser in accelerator-based light sources

Beam manipulation with high energy laser in accelerator-based light sources Beam manipulation with high energy laser in accelerator-based light sources Ming-Chang Chou High Brightness Injector Group FEL winter school, Jan. 29 ~ Feb. 2, 2018 Outline I. Laser basic II. III. IV.

More information

Photoelectron Spectroscopy using High Order Harmonic Generation

Photoelectron Spectroscopy using High Order Harmonic Generation Photoelectron Spectroscopy using High Order Harmonic Generation Alana Ogata Yamanouchi Lab, University of Tokyo ABSTRACT The analysis of photochemical processes has been previously limited by the short

More information

Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams. Abstract

Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams. Abstract Febrary 2009 SLAC-PUB-13533 Generating intense attosecond x-ray pulses using ultraviolet-laser-induced microbunching in electron beams D. Xiang, Z. Huang and G. Stupakov SLAC National Accelerator Laboratory,

More information

Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics

Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics Kelsie Betsch University of Virginia Departmentt of Physics AMO/Fourth Year Seminar April 13, 2009 Overarching

More information

Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses

Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses Rajendran Rajeev, Johannes Hellwagner, Anne Schumacher, Inga Jordan, Martin Huppert, Andres

More information

Time-resolved spectroscopy

Time-resolved spectroscopy Time-resolved spectroscopy Chih-Wei Luo ( 羅志偉 ) Department of Electrophysics, National Chiao Tung University, Taiwan Ultrafast Dynamics Lab Outline 1. Introduction of pulses. Spectroscopic methods for

More information

ATTOSECOND AND ANGSTROM SCIENCE

ATTOSECOND AND ANGSTROM SCIENCE ADVANCES IN ATOMIC, MOLECULAR AND OPTICAL PHYSICS, VOL. 54 ATTOSECOND AND ANGSTROM SCIENCE HIROMICHI NIIKURA 1,2 and P.B. CORKUM 1 1 National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario,

More information

EUV lithography and Source Technology

EUV lithography and Source Technology EUV lithography and Source Technology History and Present Akira Endo Hilase Project 22. September 2017 EXTATIC, Prague Optical wavelength and EUV (Extreme Ultraviolet) VIS 13.5nm 92eV Characteristics of

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p. Outline Phenomena in

More information

The structure of laser pulses

The structure of laser pulses 1 The structure of laser pulses 2 The structure of laser pulses Pulse characteristics Temporal and spectral representation Fourier transforms Temporal and spectral widths Instantaneous frequency Chirped

More information

An investigation of harmonic generation in liquid media with a mid-infrared laser

An investigation of harmonic generation in liquid media with a mid-infrared laser An investigation of harmonic generation in liquid media with a mid-infrared laser Anthony D. DiChiara 1 *, Emily Sistrunk 1, Terry A. Miller, Pierre Agostini 1 and Louis F. DiMauro 1 1 Department of Physics,

More information

Synthesis of Two-Color Laser Pulses for the Harmonic Cutoff Extension

Synthesis of Two-Color Laser Pulses for the Harmonic Cutoff Extension Commun. Theor. Phys. 65 (2016) 601 605 Vol. 65, No. 5, May 1, 2016 Synthesis of Two-Color Laser Pulses for the Harmonic Cutoff Extension Guo-Li Wang ( Á ), Li-Hua Zhou ( ÛÙ), Song-Feng Zhao ( Øô), and

More information

Two- and three-photon ionization of rare gases using femtosecond harmonic pulses generated in a gas medium

Two- and three-photon ionization of rare gases using femtosecond harmonic pulses generated in a gas medium Two- and three-photon ionization of rare gases using femtosecond harmonic pulses generated in a gas medium Descamps, D; Roos, L; Delfin, C; Lhuillier, A; Wahlström, Claes-Göran Published in: Physical Review

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Lecture on: Multiphoton Physics. Carsten Müller

Lecture on: Multiphoton Physics. Carsten Müller Lecture on: Multiphoton Physics Carsten Müller Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf Max-Planck-Institut für Kernphysik, Heidelberg IMPRS-QD Annual Event, MPIK, Heidelberg,

More information

Ultrafast nanoscience with ELI ALPS

Ultrafast nanoscience with ELI ALPS Ultrafast nanoscience with ELI ALPS Péter Dombi Wigner Research Centre for Physics, Budapest & Max Planck Institute of Quantum Optics, Garching Overview ultrafast (femtosecond/attosecond) dynamicsin metal

More information

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015 MEFT / Quantum Optics and Lasers Suggested problems Set 4 Gonçalo Figueira, spring 05 Note: some problems are taken or adapted from Fundamentals of Photonics, in which case the corresponding number is

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.2013.97 Supplementary Information Far-field Imaging of Non-fluorescent Species with Sub-diffraction Resolution Pu Wang et al. 1. Theory of saturated transient absorption microscopy

More information

Recollision processes in strong-field QED

Recollision processes in strong-field QED Recollision processes in strong-field QED Antonino Di Piazza Program on Frontiers of Intense Laser Physics Santa Barbara, California, August 21st 2014 Outline Introduction to recollision processes in atomic

More information

Enhanced high-order harmonic generation from Xe, Kr, and Ar in a capillary discharge

Enhanced high-order harmonic generation from Xe, Kr, and Ar in a capillary discharge Enhanced high-order harmonic generation from Xe, Kr, and Ar in a capillary discharge B. A. Reagan, 1 T. Popmintchev, 2 M. E. Grisham, 1 D. M. Gaudiosi, 2 M. Berrill, 1 O. Cohen, 2 B. C. Walker, 3 M. M.

More information

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Models for Time-Dependent Phenomena I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein, TDDFT school Benasque 22 p. Outline Laser-matter

More information

Extreme timescale core-level spectroscopy with tailored XUV pulses

Extreme timescale core-level spectroscopy with tailored XUV pulses Extreme timescale core-level spectroscopy with tailored XUV pulses R. Singla 1, D.C. Haynes 1, K. Hanff 2, I. Grguraš 1,3, S. Schulz 1,4, H.Y. Liu 1, A. Simoncig 1,5, F. Tellkamp 1, S. Bajt 4, K. Rossnagel

More information

In situ calibration of an extreme ultraviolet spectrometer for attosecond transient absorption experiments

In situ calibration of an extreme ultraviolet spectrometer for attosecond transient absorption experiments In situ calibration of an extreme ultraviolet spectrometer for attosecond transient absorption experiments Xiaowei Wang, 1,2 Michael Chini, 2 Yan Cheng, 2 Yi Wu, 2 and Zenghu Chang 2, * 1 Department of

More information

Progress in LPP EUV Source Development by Japan MEXT Project

Progress in LPP EUV Source Development by Japan MEXT Project Progress in LPP EUV Source Development by Japan MEXT Project Y. Izawa, N. Miyanaga, H. Nishimura, S. Fujioka, T. Aota, K. Nagai, T. Norimatsu,K. Nishihara, M. Murakami, Y. -G. Kang, M. Nakatsuka, H. Fujita,

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland  Chapter 4b: χ (2) -nonlinearities with ultrashort pulses. Ultrafast Laser Physics Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 4b: χ (2) -nonlinearities with ultrashort pulses Ultrafast Laser Physics ETH Zurich Contents Second

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p.1 Outline Phenomena

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

Part II Course Content. Outline Lecture 9. Frequency Correlations & Lineshapes. Nonlinear Spectroscopic Methods

Part II Course Content. Outline Lecture 9. Frequency Correlations & Lineshapes. Nonlinear Spectroscopic Methods Part II Course Content Outline Lecture 9 Optical Bloch equations Nonlinear polarizations in matter: the perturbative expansion approach. Ultrafast Fourier-transform spectroscopy: two and more dimensions.

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Brief, Incomplete Summary of Some Literature on Ionization

Brief, Incomplete Summary of Some Literature on Ionization Page 1 Brief, Incomplete Summary of Some Literature on Ionization Regimes of Photo Ionization There are two limiting regimes for ionization in strong optical fields. From reference [1]. The ratio γ of

More information

Lecture Notes: March C.D. Lin Attosecond X-ray pulses issues:

Lecture Notes: March C.D. Lin Attosecond X-ray pulses issues: Lecture Notes: March 2003-- C.D. Lin Attosecon X-ray pulses issues: 1. Generation: Nee short pulses (less than 7 fs) to generate HHG HHG in the frequency omain HHG in the time omain Issues of attosecon

More information

Radiative Hydrodynamic Simulation of Laser-produced Tin Plasma for Extreme Ultraviolet Lithography

Radiative Hydrodynamic Simulation of Laser-produced Tin Plasma for Extreme Ultraviolet Lithography P10 Radiative Hydrodynamic Simulation of Laser-produced Tin Plasma for Extreme Ultraviolet Lithography A. Sunahara 1 K. Nishihara 2 A. Sasaki 3 1 Institute for Laser Technology (ILT) 2 Institute of Laser

More information