Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics

Size: px
Start display at page:

Download "Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics"

Transcription

1 Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics Kelsie Betsch University of Virginia Departmentt of Physics AMO/Fourth Year Seminar April 13, 2009

2 Overarching Goal Application of asymmetric electric fields to molecular dynamics studies Two color fields Ultrashort Carrier- -Envelope (CE) phase stabilized pulses Synthesis of CEP stabilized pulses

3 A Bit about Laser Pulses E 0 (t)=exp(-(t/τ) 2 ) envelope E(t) = E 0 (t)cos(ωt+φ) 0.0 Carrier envelope phase carrier λ = 800 nm τ = 30 fs φ = Time (fsec)

4 1.0 E(t) = E 0 (t)cos(ωt+φ) E 0 (t)=exp(-(t/τ) 2 ); λ=800nm; φ= τ = 4 fs -0.5 τ = 6 fs Time (fsec) Time (fsec) Time (fsec) τ = 8 fs

5 Electric Field Asymmetryy vs Pulse Duration Forward Peak α = - 1 Backward Peak 1.0 τ = 4 fs Forward Peak Backward Peak Time (fsec)

6 Electric Field Asymmetry vs Pulse Duration Forward Peak α = - 1 Backward Peak τ = 2 fs Forward Peak 0.0 alpha Backward Peak Time (fsec) Pulse Duration (fs) 35

7 Electric Field Asymmetry vs Pulse Duration Forward Peak α = - 1 Backward Peak τ = 30 fs Forward Peak alpha Time (fsec) Backwards Peak Pulse Duration (fs) 35

8 E(t) = E 0 (t)cos(ωt+φ) E 0 (t)=exp(-(t/τ) 2 ); λ=800nm; τ=5fs φ φ = φ = π/ Time (fsec) Time (fsec) φ = π 0.0 α= Time (fsec)

9 E(t) = E E 0 (t)=exp(-(t/τ) 0 (t)cos(ωt+φ) 2 ); λ=800nm; τ=30fs 1.0 φ = φ = π Time (fsec) Time (fsec) α=0.002

10 Ultrashort laser pulses can look different Pulse Duration φ (Carrier Envelope Phase) Why would atoms or molecules care?

11 High Harmonic Generation

12 HHG: Three-Step Model 1. Ionization 2. Acceleration hυ hυ E max =I p +3.17U p 3. Recombination

13 T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000). Baltuska et al, IEEE J. Sel. Top. Quant. Electron. 9, 972 (2003).

14 Two-Color Asymmetric Fields for N 2 Ionization N 2+ tunnel ionization yield is sensitive to the electric field strength Highly non-linear field dependence 2 0 V(z) +Fz V(z) (a.u.) z-coordina ate (a.u.) 2 4 6

15 E(t) = E 0 (t)[cos(ωt)+ γcos(2ωt+ φ)] E 0 (t)=exp(-(t/τ) 2 ); λ=800nm; τ=30fs; γ= =1 2 φ = 0 2 φ = π Time (fsec) Time (fsec)

16 vacuum chamber TOF spectrometer +V χ (2) λ/2 Calcite plate 800nm Time (fsec) Time (fsec)

17 Phase Dependence of N φ=π N2 2+ Yield (a.u.) γ=0.15 α= Time (fsec) Relative Delay (blue periods) φ= γ=0.15; φ=π/2; α= Time (fsec) Time (fsec)

18 Asymmetric Molecular Dissociation Asymmetric dissociation Attributed to enhanced ionization at R c 2% field asymmetry g1 g2 from Dan Pinkham's dissertation

19 2 0 V(z) z-coordinate (a.u.) V(z) +Fz (a.u.) z-coordinate (a.u.) V(z) +Fz (a.u.) z-coordinate (a.u.)

20 CEP in D 2+ Dissociation D 2 D + +D Control forward/backward ejection of D+ by controlling φ shows optical control of electron localization Kling et al, Science 312, 246 (2006).

21 Towards Carrier-Envelope Phase Stabilized Pulses Origin of phase stabilization Laser Reconstruction process

22 Time Domain Frequency Comb Theory Ideal case: Pulse circulating in cavity of length L with carrier frequency ω c Output is a sequence of nearly identical pulses separated by the round trip time T=2L/v g where is the mean group velocity But v g v p => carrier/envelope phase shift φ per pulse Frequency Domain v g v p Spectrum is a comb of laser modes spaced by ω r centered at ω c Continuous shift => offset frequency ω 0 = φ/t from being exact harmonics of the repetition frequency ω n =nω r +ω 0

23 Frequency Comb Theory ω r easy to measure ω 0 need more than one optical octave: ω n =nω r +ω 0 Red side, mode number n ω n = nω r + ω 0 Blue side, mode number 2n ω 2n = 2nω r + ω 0 Beat them together: 2ω n - ω 2n = 2(nω r + ω 0 )- 2nω r + ω 0 = ω 0 Stabilizing ω r and ω 0 will stabilize f frequency comb

24 Light from laser oscillator Detects ω 0

25 Stabilizing ω 0 and ω r n=n(e) control ω 0 control ω r

26 Frequency Comb Block Diagram Diagnostic Equipment: Spectrum Analyzer, Oscilloscope, Frequency Counter Electronics to interface with 30 fs laser amplifier Offset locking electronics Photodiode APD** Pump laser AOM Oscillator PCF* Nonlinear interferometer Main base plate Photodiode Sound wave creates grating and diffracts an amount of the light *Photonic crystal fiber for spectral broadening **Avalanche photodiode

27 FC8004 Optical Frequency Synthesizer (MenloSy ystems GmbH) Photodiode APD Pump Laser Verdi V6 Oscillator Nonlinear interferometer

28 Conventional Laser Schematic Chirped Pulse Amplification ~5 ps 1 khz 2 W Grating Compressor ~30 fs 1 khz 1 W Evolution pump laser Ti:Sapphire laser amplifier PC ~5 ps 1 khz Millennia pump laser KM Labs laser oscillator ~20 fs 80 MHz 300 mw Grating Expander

29 CE Phase-Locked Laser Schematic Grating Compressor Fiber compressor ~30 fs ~20 fs 200 MHz 500 mw CE locked Evolution pump laser Ti:Sapphire laser amplifier PC Colinear f-to-2f Inter- ferometer 1 khz 1 W CE locked ~5 fs 1 khz 500 mw Verdi pump laser CEP locked laser oscillator Nonlinear f-to-2f interferometer Grating Expander Locking electronics CE locked Locking electronics

30 Laser Rebuild Former Setup Grating Expander Grating Compressor 30 fs amplifier KM Labs Oscillator Millennia Pump Pockels cell / seed beam separation optics Evolution Pump

31 Laser Rebuild New Setup Evolution pump Grating Compressor 30 fs amplifier Femtolasers oscillator Verdi pump Grating Expander f to 2f interferometer

32 Current output Oscillator is phase locked ~1 W, 800 nm, 1kHz, ~30 fs pulse output (?) Amplifier is not yet phase locked Working on coline ear f-to-2f interferometer Duration? Pulse shape?

33 Plans for the Future Extend two-color studies probe dissociation processes of O 2, CO 2 HOMO structure

34 e - e - e - e - R e R c t= 25 fs t

35 Plans for the Future Extend two-color studies probe dissociation processes of O 2, CO 2 HOMO structure CEP to study same proc cesses Greater time resolution Which step(s) is(are) phase-dependent Way to determine CE phase

36 e - e - e - e - R e R c t= 25 fs t

37 e - e - e - e - R e R c t= 25 fs t

38 e - e - e - e - R e R c t= 25 fs t

39 Acknowledgments Dr. Robert Jones Dr. Dan Pinkham Mary Kutteruf Dr. Brett Sickmiller

stabilized 10-fs lasers and their application to laser-based electron acceleration

stabilized 10-fs lasers and their application to laser-based electron acceleration Carrier-envelope envelope-phase-stabilized stabilized sub-10 10-fs lasers and their application to laser-based electron acceleration L. Veisz, E. Goulielmakis, A. Baltuška, and F. Krausz Vienna University

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators 9.10 Passive CEP-stabilization in parametric amplifiers 9.10.1 Active versus passive

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

WP-3: HHG and ultrafast electron imaging

WP-3: HHG and ultrafast electron imaging WORKPACKAGE WP-3: HHG and ultrafast electron imaging Coordinators: P. Salières (CEA), A. Assion (FEMTO, Spectra Physics Vienna) Period: Start Month 4 End Month 48 Leading Participants (Orange in the picture):

More information

Looking into the ultrafast dynamics of electrons

Looking into the ultrafast dynamics of electrons Looking into the ultrafast dynamics of electrons G. Sansone 1,2,3 1) Dipartimento di Fisica Politecnico Milano, Italy 2) Institute of Photonics and Nanotechnology, CNR Politecnico Milano Italy 3) Extreme

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Figure. X-ray diffraction pattern of CH 3 NH 3 PbI 3 film. Strong reflections of the () family of planes is characteristics of the preferred orientation of the perovskite

More information

High-Harmonic Generation II

High-Harmonic Generation II Soft X-Rays and Extreme Ultraviolet Radiation High-Harmonic Generation II Phasematching techniques Attosecond pulse generation Applications Specialized optics for HHG sources Dr. Yanwei Liu, University

More information

APPLICATION NOTE. Supercontinuum Generation in SCG-800 Photonic Crystal Fiber. Technology and Applications Center Newport Corporation

APPLICATION NOTE. Supercontinuum Generation in SCG-800 Photonic Crystal Fiber. Technology and Applications Center Newport Corporation APPLICATION NOTE Supercontinuum Generation in SCG-800 Photonic Crystal Fiber 28 Technology and Applications Center Newport Corporation 1. Introduction Since the discovery of supercontinuum generation (white

More information

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings

Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Assessment of Threshold for Nonlinear Effects in Ibsen Transmission Gratings Temple University 13th & Norris Street Philadelphia, PA 19122 T: 1-215-204-1052 contact: johanan@temple.edu http://www.temple.edu/capr/

More information

Generation and Applications of High Harmonics

Generation and Applications of High Harmonics First Asian Summer School on Aug. 9, 2006 Generation and Applications of High Harmonics Chang Hee NAM Dept. of Physics & Coherent X-ray Research Center Korea Advanced Institute of Science and Technology

More information

Introduction to intense laser-matter interaction

Introduction to intense laser-matter interaction Pohang, 22 Aug. 2013 Introduction to intense laser-matter interaction Chul Min Kim Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST) & Center for Relativistic

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Ultrafast Laser Physics

Ultrafast Laser Physics Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 7: Active modelocking Ultrafast Laser Physics ETH Zurich Mode locking by forcing

More information

Towards using molecular ions as qubits: Femtosecond control of molecular fragmentation with multiple knobs

Towards using molecular ions as qubits: Femtosecond control of molecular fragmentation with multiple knobs PRAMANA c Indian Academy of Sciences Vol. 75, No. 6 journal of December 2010 physics pp. 1065 1069 Towards using molecular ions as qubits: Femtosecond control of molecular fragmentation with multiple knobs

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

FROM FEW-CYCLE FEMTOSECOND PULSE TO SINGLE ATTOSECOND PULSE- CONTROLLING AND TRACKING ELECTRON DYNAMICS WITH ATTOSECOND PRECISION HE WANG

FROM FEW-CYCLE FEMTOSECOND PULSE TO SINGLE ATTOSECOND PULSE- CONTROLLING AND TRACKING ELECTRON DYNAMICS WITH ATTOSECOND PRECISION HE WANG FROM FEW-CYCLE FEMTOSECOND PULSE TO SINGLE ATTOSECOND PULSE- CONTROLLING AND TRACKING ELECTRON DYNAMICS WITH ATTOSECOND PRECISION by HE WANG B.A., University of Science and Technology of China, 005 AN

More information

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation Journal of the Korean Physical Society, Vol. 49, No. 1, July 2006, pp. 337 341 Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation G.

More information

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials International Workshop on Photonics and Applications. Hanoi, Vietnam. April 5-8,24 Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials Lap Van Dao,

More information

The structure of laser pulses

The structure of laser pulses 1 The structure of laser pulses 2 The structure of laser pulses Pulse characteristics Temporal and spectral representation Fourier transforms Temporal and spectral widths Instantaneous frequency Chirped

More information

Attosecond laser systems and applications

Attosecond laser systems and applications Attosecond laser systems and applications Adrian N. Pfeiffer Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 8th Annual Laser Safety Officer Workshop September

More information

Supplemental material for Bound electron nonlinearity beyond the ionization threshold

Supplemental material for Bound electron nonlinearity beyond the ionization threshold Supplemental material for Bound electron nonlinearity beyond the ionization threshold 1. Experimental setup The laser used in the experiments is a λ=800 nm Ti:Sapphire amplifier producing 42 fs, 10 mj

More information

Development of a compact Yb optical lattice clock

Development of a compact Yb optical lattice clock Development of a compact Yb optical lattice clock A. A. Görlitz, C. Abou-Jaoudeh, C. Bruni, B. I. Ernsting, A. Nevsky, S. Schiller C. ESA Workshop on Optical Atomic Clocks D. Frascati, 14 th 16 th of October

More information

attosecond laser pulse

attosecond laser pulse Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@atto.t.u-tokyo.ac.jp Advanced Plasma and Laser Science E attosecond laser pulse 1 attosecond pulse train (APT) isolated attosecond

More information

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme Li Hua Yu for DUV-FEL Team National Synchrotron Light Source Brookhaven National Laboratory FEL2004 Outline The DUVFEL

More information

Ionization of Rydberg atoms in Intense, Single-cycle THz field

Ionization of Rydberg atoms in Intense, Single-cycle THz field Ionization of Rydberg atoms in Intense, Single-cycle THz field 4 th year seminar of Sha Li Advisor: Bob Jones Dept. of Physics, Univ. of Virginia, Charlottesville, VA, 22904 April. 15 th, 2013 Outline

More information

Dmitriy Churin. Designing high power single frequency fiber lasers

Dmitriy Churin. Designing high power single frequency fiber lasers Dmitriy Churin Tutorial for: Designing high power single frequency fiber lasers Single frequency lasers with narrow linewidth have long coherence length and this is an essential property for many applications

More information

E( t) = e Γt 2 e iω 0t. A( t) = e Γt 2, Γ Γ 1. Frontiers in ultrafast laser technology. Time and length scales. Example: Gaussian pulse.

E( t) = e Γt 2 e iω 0t. A( t) = e Γt 2, Γ Γ 1. Frontiers in ultrafast laser technology. Time and length scales. Example: Gaussian pulse. Time and length scales Frontiers in ultrafast laser technology Prof. Ursula Keller Department of Physics, Insitute of Quantum Electronics, ETH Zurich International Summer School New Frontiers in Optical

More information

EO single-shot temporal measurements of electron bunches

EO single-shot temporal measurements of electron bunches EO single-shot temporal measurements of electron bunches and of terahertz CSR and FEL pulses. Steven Jamison, Giel Berden, Allan MacLeod Allan Gillespie, Dino Jaroszynski, Britta Redlich, Lex van der Meer

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Development of a table top TW laser accelerator for medical imaging isotope production

Development of a table top TW laser accelerator for medical imaging isotope production Development of a table top TW laser accelerator for medical imaging isotope production R U I Z, A L E X A N D R O 1 ; L E R A, R O B E R T O 1 ; T O R R E S - P E I R Ó, S A LVA D O R 1 ; B E L L I D O,

More information

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p.

Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. Preface p. xiii Fiber Gratings p. 1 Basic Concepts p. 1 Bragg Diffraction p. 2 Photosensitivity p. 3 Fabrication Techniques p. 4 Single-Beam Internal Technique p. 4 Dual-Beam Holographic Technique p. 5

More information

Second-Harmonic Generation Studies of Silicon Interfaces

Second-Harmonic Generation Studies of Silicon Interfaces Second-Harmonic Generation Studies of Silicon Interfaces Z. Marka 1, Y. D. Glinka 1, Y. Shirokaya 1, M. Barry 1, S. N. Rashkeev 1, W. Wang 1, R. D. Schrimpf 2,D. M. Fleetwood 2 and N. H. Tolk 1 1 Department

More information

XUV frequency comb development for precision spectroscopy and ultrafast science

XUV frequency comb development for precision spectroscopy and ultrafast science XUV frequency comb development for precision spectroscopy and ultrafast science R. Jason Jones (PI) College of Optical Sciences, University of Arizona email: rjjones@optics.arizona.edu Collaborators Graduate

More information

Hiromitsu TOMIZAWA XFEL Division /SPring-8

Hiromitsu TOMIZAWA XFEL Division /SPring-8 TUPLB10 (Poster: TUPB080) Non-destructive Real-time Monitor to measure 3D- Bunch Charge Distribution with Arrival Timing to maximize 3D-overlapping for HHG-seeded EUV-FEL Hiromitsu TOMIZAWA XFEL Division

More information

Dispersion and how to control it

Dispersion and how to control it Dispersion and how to control it Group velocity versus phase velocity Angular dispersion Prism sequences Grating pairs Chirped mirrors Intracavity and extra-cavity examples 1 Pulse propagation and broadening

More information

Photoelectron Spectroscopy using High Order Harmonic Generation

Photoelectron Spectroscopy using High Order Harmonic Generation Photoelectron Spectroscopy using High Order Harmonic Generation Alana Ogata Yamanouchi Lab, University of Tokyo ABSTRACT The analysis of photochemical processes has been previously limited by the short

More information

Layout of the HHG seeding experiment at FLASH

Layout of the HHG seeding experiment at FLASH Layout of the HHG seeding experiment at FLASH V. Miltchev on behalf of the sflash team: A. Azima, J. Bödewadt, H. Delsim-Hashemi, M. Drescher, S. Düsterer, J. Feldhaus, R. Ischebeck, S. Khan, T. Laarmann

More information

PHOTOIONIZATION DYNAMICS FOR NON-SYMMETRIC MOLECULES IN A HIGH INTENSITY LASER FIELD. Samantha Lee White

PHOTOIONIZATION DYNAMICS FOR NON-SYMMETRIC MOLECULES IN A HIGH INTENSITY LASER FIELD. Samantha Lee White PHOTOIONIZATION DYNAMICS FOR NON-SYMMETRIC MOLECULES IN A HIGH INTENSITY LASER FIELD by Samantha Lee White A thesis submitted to the Faculty of the University of Delaware in partial fulfillment of the

More information

Optical Frequency Combs

Optical Frequency Combs Optical Frequency Combs Ronald Holzwarth Max-Planck-Institute for Quantum Optics Garching, Germany And Menlo Systems GmbH Martinsried, Germany Engelberg, March 6th. 2007 The Team Team MPQ MenloSystems

More information

Ultrafast Laser Physics!

Ultrafast Laser Physics! Ultrafast Laser Physics! Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 10: Ultrafast Measurements Ultrafast Laser Physics ETH Zurich Ultrafast laser

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca Femtosecond laser microfabrication in polymers Prof. Dr. Cleber R. Mendonca laser microfabrication focus laser beam on material s surface laser microfabrication laser microfabrication laser microfabrication

More information

Jitter measurement by electro-optical sampling

Jitter measurement by electro-optical sampling Jitter measurement by electro-optical sampling VUV-FEL at DESY - Armin Azima S. Duesterer, J. Feldhaus, H. Schlarb, H. Redlin, B. Steffen, DESY Hamburg K. Sengstock, Uni Hamburg Adrian Cavalieri, David

More information

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. Yuri Saveliev on behalf of VELA and CLARA teams STFC, ASTeC, Cockcroft Institute Daresbury Lab., UK Outline VELA (Versatile Electron

More information

Concerted elimination of Cl + 2 from CCl 4 and of I + 2 from CH 2I 2 driven by intense ultrafast laser pulses

Concerted elimination of Cl + 2 from CCl 4 and of I + 2 from CH 2I 2 driven by intense ultrafast laser pulses Concerted elimination of Cl + 2 from CCl 4 and of I + 2 from CH 2I 2 driven by intense ultrafast laser pulses A Thesis Presented by Dominik Peter Michael Geissler to The Graduate School in Partial Fulfillment

More information

Experimental studies of the coherence of microstructure-fiber supercontinuum

Experimental studies of the coherence of microstructure-fiber supercontinuum Experimental studies of the coherence of microstructure-fiber supercontinuum Xun Gu, Mark Kimmel, Aparna P. Shreenath and Rick Trebino School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430,

More information

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity

SL_COMB. The SL_COMB experiment at SPARC_LAB will operate in the so-called quasinonlinear regime, defined by the dimensionless charge quantity SL_COMB E. Chiadroni (Resp), D. Alesini, M. P. Anania (Art. 23), M. Bellaveglia, A. Biagioni (Art. 36), S. Bini (Tecn.), F. Ciocci (Ass.), M. Croia (Dott), A. Curcio (Dott), M. Daniele (Dott), D. Di Giovenale

More information

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland  Chapter 4b: χ (2) -nonlinearities with ultrashort pulses. Ultrafast Laser Physics Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 4b: χ (2) -nonlinearities with ultrashort pulses Ultrafast Laser Physics ETH Zurich Contents Second

More information

Detecting Earth-Sized Planets with Laser Frequency Combs

Detecting Earth-Sized Planets with Laser Frequency Combs Detecting Earth-Sized Planets with Laser Frequency Combs Hayley Finley Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104 Abstract Detection of Earth-mass

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

HHG Sub-cycle dynamics

HHG Sub-cycle dynamics Quantum Optics and Laser Science Group Blackett Laboratory, Imperial College London HHG Sub-cycle dynamics 1. Chirp of electron recollision 2. Measuring ultra-fast intramolecular proton motion 3. Controlling

More information

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz

Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz Supplemental Material Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz spectroscopy H. Yada 1, R. Uchida 1, H. Sekine 1, T. Terashige 1, S. Tao 1, Y. Matsui 1, N. Kida

More information

STUDYING ULTRAFAST MOLECULAR DYNAMICS IN PUMP-PROBE EXPERIMENTS WITH FEMTOSECOND LASERS JOSEPH HARRINGTON, DR. ARTEM RUDENKO, AND DR.

STUDYING ULTRAFAST MOLECULAR DYNAMICS IN PUMP-PROBE EXPERIMENTS WITH FEMTOSECOND LASERS JOSEPH HARRINGTON, DR. ARTEM RUDENKO, AND DR. STUDYING ULTRAFAST MOLECULAR DYNAMICS IN PUMP-PROBE EXPERIMENTS WITH FEMTOSECOND LASERS JOSEPH HARRINGTON, DR. ARTEM RUDENKO, AND DR. DANIEL ROLLES PHYSICS DEPARTMENT 2018 REU KANSAS STATE UNIVERSITY MOTIVATION

More information

Connecting Attosecond Science and XUV FEL Research

Connecting Attosecond Science and XUV FEL Research Connecting Attosecond Science and XUV FEL Research Marc Vrakking Attosecond Workshop Imperial College, May 13th 2008 Overview Present status of attosecond science - recent example: electron localization

More information

PART 2 : BALANCED HOMODYNE DETECTION

PART 2 : BALANCED HOMODYNE DETECTION PART 2 : BALANCED HOMODYNE DETECTION Michael G. Raymer Oregon Center for Optics, University of Oregon raymer@uoregon.edu 1 of 31 OUTLINE PART 1 1. Noise Properties of Photodetectors 2. Quantization of

More information

Plasmon enhanced photoelectron spectroscopy and the generation of isolated attosecond XUV pulses for use with condensed matter targets

Plasmon enhanced photoelectron spectroscopy and the generation of isolated attosecond XUV pulses for use with condensed matter targets Plasmon enhanced photoelectron spectroscopy and the generation of isolated attosecond XUV pulses for use with condensed matter targets by Phillip Michael Nagel A dissertation submitted in partial satisfaction

More information

Bound-soliton fiber laser

Bound-soliton fiber laser PHYSICAL REVIEW A, 66, 033806 2002 Bound-soliton fiber laser D. Y. Tang, B. Zhao, D. Y. Shen, and C. Lu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore W. S.

More information

Developments for the FEL user facility

Developments for the FEL user facility Developments for the FEL user facility J. Feldhaus HASYLAB at DESY, Hamburg, Germany Design and construction has started for the FEL user facility including the radiation transport to the experimental

More information

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency

High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency EUROPHYSICS LETTERS 15 October 2005 Europhys. Lett., 72 (2), pp. 221 227 (2005) DOI: 10.1209/epl/i2005-10228-6 High-resolution hyperfine spectroscopy of excited states using electromagnetically induced

More information

Burst-train generation for femtosecond laser filamentation-driven micromachining. Saeid Rezaei

Burst-train generation for femtosecond laser filamentation-driven micromachining. Saeid Rezaei Burst-train generation for femtosecond laser filamentation-driven micromachining Saeid Rezaei A thesis submitted in conformity with the requirements for the degree of Master of Applied Science Graduate

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

C. D. Lin Kansas State U.

C. D. Lin Kansas State U. Dynamic Imaging of molecules using laser-induced Highorder harmonics and High-energy photoelectrons Goal: probing time-dependent structural changes Example: Isomerization of C 2 H 2 C. D. Lin Kansas State

More information

Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb 3+ Doped Fused Silica

Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb 3+ Doped Fused Silica Deterministic Nanosecond Laser-Induced Breakdown Thresholds In Pure and Yb 3+ Doped Fused Silica Arlee Smith, Binh Do Laser, Remote Sensing, Plasma and Complex System Science Department Sandia National

More information

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

System optimization of a long-range Brillouin-loss-based distributed fiber sensor System optimization of a long-range Brillouin-loss-based distributed fiber sensor Yongkang Dong, 1,2 Liang Chen, 1 and Xiaoyi Bao 1, * 1 Fiber Optics Group, Department of Physics, University of Ottawa,

More information

Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light

Slowing Down the Speed of Light Applications of Slow and Fast Light Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester with Mathew Bigelow, Nick Lepeshkin,

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1 Injection Locked Oscillators Injection Locked Oscillators Optoelectronic Applications Q, ω Q, ω E. Shumakher, J. Lasri,, B. Sheinman, G. Eisenstein, D. Ritter Electrical Engineering Dept. TECHNION Haifa

More information

CHAPTER FIVE. Optical Resonators Containing Amplifying Media

CHAPTER FIVE. Optical Resonators Containing Amplifying Media CHAPTER FIVE Optical Resonators Containing Amplifying Media 5 Optical Resonators Containing Amplifying Media 5.1 Introduction In this chapter we shall combine what we have learned about optical frequency

More information

hock-timing Measurements in ctly Driven Spherical ICF Targets

hock-timing Measurements in ctly Driven Spherical ICF Targets Spectrometer wo-beam SPIDER for dual-pulse single-shot characterization Doug French1, Christophe Dorrer2, and Igor Jovanovic1 hock-iming Measurements in ctly Driven Spherical ICF argets 1Department of

More information

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates:

Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: Supplementary Figure 1 Comparison of single quantum emitters on two type of substrates: a, Photoluminescence (PL) spectrum of localized excitons in a WSe 2 monolayer, exfoliated onto a SiO 2 /Si substrate

More information

PHOTO-ELECTRON MOMENTUM DISTRIBUTION AND ELECTRON LOCALIZATION STUDIES FROM LASER-INDUCED ATOMIC AND MOLECULAR DISSOCIATIONS DIPANWITA RAY

PHOTO-ELECTRON MOMENTUM DISTRIBUTION AND ELECTRON LOCALIZATION STUDIES FROM LASER-INDUCED ATOMIC AND MOLECULAR DISSOCIATIONS DIPANWITA RAY PHOTO-ELECTRON MOMENTUM DISTRIBUTION AND ELECTRON LOCALIZATION STUDIES FROM LASER-INDUCED ATOMIC AND MOLECULAR DISSOCIATIONS by DIPANWITA RAY B. Sc., Calcutta University, India, 2001 M. Sc., Pune University,

More information

Evaluation of white-light generation as possible seed for a mid-infrared optical parametric chirped pulse amplifier

Evaluation of white-light generation as possible seed for a mid-infrared optical parametric chirped pulse amplifier Department of Physics Division of Atomic Physics February 6, 2017 Evaluation of white-light generation as possible seed for a mid-infrared optical parametric chirped pulse amplifier Performed by: Chuang

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Richard Haight IBM TJ Watson Research Center PO Box 218 Yorktown Hts., NY 10598 Collaborators Al Wagner Pete Longo Daeyoung

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Probing and Driving Molecular Dynamics with Femtosecond Pulses

Probing and Driving Molecular Dynamics with Femtosecond Pulses Miroslav Kloz Probing and Driving Molecular Dynamics with Femtosecond Pulses (wavelengths above 200 nm, energies below mj) Why femtosecond lasers in biology? Scales of size and time are closely rerated!

More information

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015 MEFT / Quantum Optics and Lasers Suggested problems Set 4 Gonçalo Figueira, spring 05 Note: some problems are taken or adapted from Fundamentals of Photonics, in which case the corresponding number is

More information

Attosecond optics and technology: progress to date and future prospects [Invited]

Attosecond optics and technology: progress to date and future prospects [Invited] Review Vol. 33, No. 6 / June 2016 / Journal of the Optical Society of America B 1081 Attosecond optics and technology: progress to date and future prospects [Invited] ZENGHU CHANG, 1, *PAUL B. CORKUM,

More information

THz Electron Gun Development. Emilio Nanni 3/30/2016

THz Electron Gun Development. Emilio Nanni 3/30/2016 THz Electron Gun Development Emilio Nanni 3/30/2016 Outline Motivation Experimental Demonstration of THz Acceleration THz Generation Accelerating Structure and Results Moving Forward Parametric THz Amplifiers

More information

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Alberto Marino Ulrich Vogl Jeremy Clark (U Maryland) Quentin

More information

High average power ultrafast lasers

High average power ultrafast lasers High average power ultrafast lasers C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, and U. Keller Department of Physics, Institute for Quantum Electronics Zurich,

More information

Coherent control of light matter interaction

Coherent control of light matter interaction UNIVERSIDADE DE SÃO PAULO Instituto de Física de São Carlos Coherent control of light matter interaction Prof. Dr. Cleber Renato Mendonça Photonic Group University of São Paulo (USP), Institute of Physics

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Fig. S1: High-Harmonic Interferometry of a Chemical Reaction A weak femtosecond laser pulse excites a molecule from its ground state (on the bottom) to its excited state (on top) in which it dissociates.

More information

Recent improvement of the LHD Thomson scattering system

Recent improvement of the LHD Thomson scattering system Recent improvement of the LHD Thomson scattering system 1 National Institute for Fusion Science Oroshi 322-6, Toki, Gifu 509-5292, Japan E-mail: yamadai@lhd.nifs.ac.jp H. Funaba, R. Yasuhara, K. Narihara,

More information

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H.

Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces. S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Studies of the Spin Dynamics of Charge Carriers in Semiconductors and their Interfaces S. K. Singh, T. V. Shahbazyan, I. E. Perakis and N. H. Tolk Department of Physics and Astronomy Vanderbilt University,

More information

High Accuracy Strontium Ion Optical Clock

High Accuracy Strontium Ion Optical Clock High Accuracy Strontium Ion Optical Clock Helen Margolis, Geoff Barwood, Hugh Klein, Guilong Huang, Stephen Lea, Krzysztof Szymaniec and Patrick Gill T&F Club 15 th April 2005 Outline Optical frequency

More information

Thomson Scattering from Nonlinear Electron Plasma Waves

Thomson Scattering from Nonlinear Electron Plasma Waves Thomson Scattering from Nonlinear Electron Plasma Waves A. DAVIES, 1 J. KATZ, 1 S. BUCHT, 1 D. HABERBERGER, 1 J. BROMAGE, 1 J. D. ZUEGEL, 1 J. D. SADLER, 2 P. A. NORREYS, 3 R. BINGHAM, 4 R. TRINES, 5 L.O.

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components I 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field

Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field Wei Cao, Peixiang Lu, Pengfei Lan, Xinlin Wang, and Guang Yang Wuhan National Laboratory for Optoelectronics and

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

Noise and Frequency Control

Noise and Frequency Control Chapter 9 Noise and Frequency Control So far we only considered the deterministic steady state pulse formation in ultrashort pulse laser systems due to the most important pulse shaping mechanisms prevailing

More information

In-Situ Observation of the Phase of a Microwave Field using Single-Atom Nonlinear Optics

In-Situ Observation of the Phase of a Microwave Field using Single-Atom Nonlinear Optics 1 [Submitted to Nature] In-Situ Observation of the Phase of a Microwave Field using Single-Atom Nonlinear Optics George C. Cardoso 1, Prabhakar Pradhan 1 & Selim M. Shahriar 1,2 1 Department of Electrical

More information

Nonlinear effects and pulse propagation in PCFs

Nonlinear effects and pulse propagation in PCFs Nonlinear effects and pulse propagation in PCFs --Examples of nonlinear effects in small glass core photonic crystal fibers --Physics of nonlinear effects in fibers --Theoretical framework --Solitons and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1878 I. Experimental setup OPA, DFG Ti:Sa Oscillator, Amplifier PD U DC U Analyzer HV Energy analyzer MCP PS CCD Polarizer UHV Figure S1: Experimental setup used in mid infrared photoemission

More information

A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology. E.E. Serebryannikov, A.M.

A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology. E.E. Serebryannikov, A.M. A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology E.E. Serebryannikov, A.M. Zheltikov Physics Department, International Laser Center, M.V. Lomonosov

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p. Outline Phenomena in

More information