Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light

Size: px
Start display at page:

Download "Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light"

Transcription

1 Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester with Mathew Bigelow, Nick Lepeshkin, Aaron Schweinsberg, Petros Zerom, Giovanni Piredda, Zhimin Shi, Heedeuk Shin, and others. Presented at SPIE, July 2005.

2 Interest in Slow Light Intrigue: Can (group) refractive index really be 10 6? Fundamentals of optical physics Velocity of light and the historical development of physics Optical delay lines, optical storage, optical memories Implications for quantum information And what about fast light (v > c or negative)? Boyd and Gauthier, Slow and Fast Light, in Progress in Optics, 43, 2002.

3 Slow Light and Optical Buffers All-Optical Switch input ports switch output ports Use Optical Buffering to Resolve Data-Packet Contention slow-light medium But what happens if two data packets arrive simultaneously? Controllable slow light for optical buffering can dramatically increase system performance. Daniel Blumenthal, UC Santa Barbara; Alexander Gaeta, Cornell University; Daniel Gauthier, Duke University; Alan Willner, University of Southern California; Robert Boyd, John Howell, University of Rochester

4 Challenge/Goal Slow light in a room-temperature solid-state material. Solution: Slow light enabled by coherent population oscillations (a quantum coherence effect that is relatively insensitive to dephasing processes).

5 Slow Light in Ruby Need a large dn/dw. (How?) Kramers-Kronig relations: Want a very narrow absorption line. Well-known (to the few people how know it well) how to do so: Make use of spectral holes due to population oscillations. Hole-burning in a homogeneously broadened line; requires T 2 << T 1. 1/T 2 1/T 1 inhomogeneously broadened medium homogeneously broadened medium (or inhomogeneously broadened) PRL 90,113903(2003); see also news story in Nature.

6 Spectral Holes in Homogeneously Broadened Materials Occurs only in collisionally broadened media (T 2 << T 1 ) pump-probe detuning (units of 1/T 2 ) Boyd, Raymer, Narum and Harter, Phys. Rev. A24, 411, 1981.

7 Slow Light Experimental Setup Function Generator Argon Ion Laser or EO modulator Digital Oscilloscope 40 cm Reference Detector Signal Detector Ruby Pinhole 7.25-cm-long ruby laser rod (pink ruby)

8 Measurement of Delay Time for Harmonic Modulation P = 0.25 W 1.0 Delay (ms) P = 0.1 W solid lines are theoretical predictions Modulation Frequency (Hz) For 1.2 ms delay, v = 60 m/s and ng = 5 x 10 6

9 Gaussian Pulse Propagation Through Ruby µs 1.0 Normalized Intensity Input Pulse Output Pulse v = 140 m/s ng = 2 x Time (ms) No pulse distortion!

10 Matt Bigelow and Nick Lepeshkin in the Lab

11 Advantages of Coherent Population Oscillations for Slow Light Works in solids Works at room temperature Insensitive of dephasing processes Laser need not be frequency stabilized Works with single beam (self-delayed) Delay can be controlled through input intensity

12 Alexandrite Displays both Saturable and Reverse-Saturable Absorption Both slow and fast propagation observed in alexandrite Mirror Sites: 4 T 2 or 4 T 1 σ 2,m rapid Al, Cr σ 1,m rapid 2 E T 1,m = 260 µs 4 A 2 O Inversion Sites: Be 4 T 2 or 4 T 1 rapid 2 E a σ 1,i T 1,i ~ 50 ms 4 A 2 b Bigelow, Lepeshkin, and Boyd, Science 301, 200 (2003).

13 Inverse-Saturable Absorption Produces Superluminal Propagation in Alexandrite At 476 nm, alexandrite is an inverse saturable absorber Negative time delay of 50 ms correponds to a velocity of -800 m/s M. Bigelow, N. Lepeshkin, and RWB, Science, 2003

14 Numerical Modeling of Pulse Propagation Through Slow and Fast-Light Media Numerically integrate the paraxial wave equation A z 1 v g A t = 0 and plot A(z,t) versus distance z. Assume an input pulse with a Gaussian temporal profile. Study three cases: Slow light v g = 0.5 c Fast light v g = 5 c and v g = -2 c

15 Pulse Propagation through a Slow-Light Medium (ng = 2, vg = 0.5 c)

16 Pulse Propagation through a Fast-Light Medium (n g =.2, v g = 5 c)

17 Pulse Propagation through a Fast-Light Medium (n g = -.5, v g = -2 c)

18 Are these predictions physical? (We simply postulated a negative group velocity) Consider a causal medium, for which Re n and Im n obey KK relations Treat a gain doublet, which leads to superluminal effects* 2 x 10-8 n-1 0 refractive index -2 pulse spectrum g 0.4 gain x 10 7 detuning δ (Hz) * see also Chiao, Steinberg, Wang, Kuzmich, Gauthier, etc.

19 Superluminal Pulse Propagation through a Causal Medium χ ( ω) = A (ω 0 Δω) ω iγ + A (ω 0 + Δω) ω iγ pulse duration = 10 µs Γ = (2π) 0.25 khz A = 250 / s Δω = (2π) 100 MHz = half frequency separation of gain lines

20 Propagation of a Truncated Pulse through Alexandrite as a Fast-Light Medium normalized intensity output pulse input pulse time (ms) Smooth part of pulse propagates at group velocity Discontinuity propagates at phase velocity (information velocity)

21 Limits on the Time Delay Induced by Slow-Light Propagation Robert W. Boyd Institute of Optics, University of Rochester Daniel J. Gauthier Department of Physics, Duke University Alexander L. Gaeta Applied and Engineering Physics, Cornell Alan E. Willner ECE Dept, USC See also Phys. Rev. A 71, (2005)

22 Motivation: Maximum Slow-Light Time Delay Slow light : group velocities < 10-6 c! Proposed applications: controllable optical delay lines optical buffers, true time delay for synthetic aperture radar. Key figure of merit: normalized time delay = total time delay / input pulse duration information storage capacity of medium Best result to date: delay by 4 pulse lengths (Kasapi et al. 1995) But data packets used in telecommunications contain 10 3 bits What are the prospects for obtaining slow-light delay lines with 10 3 bits capacity?

23 Review of Slow-Light Fundamentals L group velocity: v g = c n g group index: n g = n + ω dn dω group delay: T g = L v g = Ln g c slow-light medium, n g >> 1 controllable delay: T del = T g L/c = L c (n g 1) To make controllable delay as large as possible: make L as large as possible (reduce residual absorption) maximize the group index

24

25

26

27

28

29 Modeling of Slow-Light Systems We conclude that there are no fundamental limitations to the maximum fractional pulse delay [1]. Our model includes gvd and spectral reshaping of pulses. However, there are serious practical limitations, primarily associated with residual absorption. Another recent study [2] reaches a more pessimistic (although entirely mathematically consistent) conclusion by stressing the severity of residual absorption, especially in the presence of Doppler broadening. Our challenge is to minimize residual absorption. [1] Boyd, Gauthier, Gaeta, and Willner, Phys. Rev. A 71, , [2] Matsko, Strekalov, and Maleki, Opt. Express 13, 2210, 2005.

30 Slow Light via Coherent Population Oscillations E 3, ω + δ E 1, ω saturable medium ω + δ measure absorption 2γ ba = 2 T 2 b Γ ba = 1 T 1 a absorption profile 1/T 1 Ground state population oscillates at beat frequency δ (for δ < 1/T 1 ). Population oscillations lead to decreased probe absorption (by explicit calculation), even though broadening is homogeneous. Rapid spectral variation of refractive index associated with spectral hole leads to large group index. Ultra-slow light (ng > 10 6 ) observed in ruby and ultra-fast light (n g = 4 x 10 5 ) observed in alexandrite by this process. Slow and fast light effects occur at room temperature! PRL 90,113903(2003); Science, 301, 200 (2003)

31 Prospects for Large Fractional Delays Using CPO ω + δ ω collection of two-level atoms ω + δ Strong pumping leads to high transparency, large bandwidth, and increased fractional delay. maximum delay in pulse widths = 0 T1/T2 = 100 Maximum fractional delay Rabi frequency times T1 ω probe absorption group index /ω T Absorption ΩT 1 = 40 ΩT 1 = 2 = 0 T 1 /T 2 = 100 ΩT 1 = 5 ΩT 1 = 10 ΩT 1 = δ T 1 Group index = 0 T 1 /T 2 = 100 ΩT 1 = 20 ΩT 1 = 10 ΩT 1 = 5 ΩT 1 = 2 ΩT 1 = 40 Boyd et al., Laser Physics δ T 1

32 Summary There are no fundamental limitations to the maximum normalized pulse delay. However, there are serious practical limitations, primarily associated with residual absorption. To achieve a longer fractional delay saturate deeper to propagate farther Exciting possibilities exist for optical buffering and other photonics applications if normalized time delays in the range of can be achieved. Next: Find material with faster response (semiconductors?) (to allow delay of shorter pulses)

33 Some New Results

34 Slow and Fast Light in an Erbium Doped Fiber Amplifier Fiber geometry allows long propagation length Saturable gain or loss possible depending on pump intensity Output Advance = 0.32 ms Input FWHM = 1.8 ms 0.15 Time 6 ms Fractional Advancement mw mw mw mw mw - 0 mw in out Modulation Frequency (Hz)

35 Slow-Light via Stimulated Brillouin Scattering Rapid spectral variation of the refractive response associated with SBS gain leads to slow light propagation Supports bandwidth of 100 MHz, group index of about 100 Even faster modulation for SRS Joint project with Gaeta and Gauthier Diode Laser Fiber Amplifier Oscilloscope typical data SBS Generator Polarization Control Circulator Variable Attenuator 50/50 Circulator Detector Modulator Isolator Pulse Generator RF Amplifier SBS Amplifier in out PRL 94, (2005).

36 Thank you for your attention. And thanks to NSF and DARPA for financial support!

Limits on the Time Delay Induced by Slow-Light Propagation

Limits on the Time Delay Induced by Slow-Light Propagation Limits on the Time Delay Induced by Slow-Light Propagation Robert W. Boyd Institute of Optics, University of Rochester Daniel J. Gauthier Department of Physics, Duke University Alexander L. Gaeta Applied

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Robert W. Boyd. Institute of Optics and Department of Physics and Astronomy University of Rochester

Robert W. Boyd. Institute of Optics and Department of Physics and Astronomy University of Rochester Slow Light, Fast Light, and their Applications Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester with Yuping Chen, George Gehring, Giovanni Piredda, Aaron

More information

Slow, Fast, and Backwards Light Propagation in Erbium-Doped Optical Fibers. Zhimin Shi

Slow, Fast, and Backwards Light Propagation in Erbium-Doped Optical Fibers. Zhimin Shi Slow, Fast, and Backwards Light Propagation in Erbium-Doped Optical Fibers Zhimin Shi Institute of Optics and Department of Physics and Astronomy University of Rochester www.optics.rochester.edu/~boyd

More information

Brief Research Update

Brief Research Update Brief Research Update Interferometry and Slow Light Under certain (but not all) circumstances, the sensitivity of an interferomter is increased by the group index of the material within the interferometer!

More information

Slow, Fast, and Backwards Light: Fundamentals and Applications Robert W. Boyd

Slow, Fast, and Backwards Light: Fundamentals and Applications Robert W. Boyd Slow, Fast, and Backwards Light: Fundamentals and Applications Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester www.optics.rochester.edu/~boyd with George

More information

Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications. Robert W. Boyd

Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications. Robert W. Boyd Slow and Fast Light in Room-Temperature Solids: Fundamental and Applications Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY 14627

More information

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd

Ultra-Slow Light Propagation in Room Temperature Solids. Robert W. Boyd Ultra-Slow Light Propagation in Room Temperature Solids Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY USA http://www.optics.rochester.edu

More information

Ultra-Slow (and Superluminal) Light Propagation in Room Temperature Solids. Robert W. Boyd

Ultra-Slow (and Superluminal) Light Propagation in Room Temperature Solids. Robert W. Boyd Ultra-Slow (and Superluminal) Light Propagation in Room Temperature Solids Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY 14627 http://www.optics.rochester.edu

More information

Applications of Slow Light. Robert W. Boyd. Institute of Optics and Department of Physics and Astronomy University of Rochester

Applications of Slow Light. Robert W. Boyd. Institute of Optics and Department of Physics and Astronomy University of Rochester Applications of Slow Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester http://www.optics.rochester.edu/~boyd with special thanks to George M. Gehring,

More information

The speed of light in a vacuum

The speed of light in a vacuum : From Basics to Future Prospects How can the speed of light be reduced a millionfold, and why does this matter? The answers to these questions are intriguing and important. by Daniel J. Gauthier, Duke

More information

Slow Light in Crystals

Slow Light in Crystals With Department of Physics & Astronomy Faculty of Science Utrecht University Photon Physics Course 2007 Outline Introduction 1 Introduction Slow Light Electromagnetically Induced Transparency 2 CPO Phenomenon

More information

Slow- and fast-light: fundamental limitations

Slow- and fast-light: fundamental limitations Journal of Modern Optics Vol. 54, Nos. 16 17, 10 20 November 2007, 2403 2411 Slow- and fast-light: fundamental limitations ROBERT W. BOYD*y and PAUL NARUMz ythe Institute of Optics, University of Rochester,

More information

Superluminal Light Pulses, Subluminal Information Transmission

Superluminal Light Pulses, Subluminal Information Transmission 1 Superluminal Light Pulses, Subluminal Information Transmission Dan Gauthier and Michael Stenner* Duke University, Department of Physics, Fitzpatrick Center for Photonics and Communication Systems Mark

More information

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion

All-Optical Delay with Large Dynamic Range Using Atomic Dispersion All-Optical Delay with Large Dynamic Range Using Atomic Dispersion M. R. Vanner, R. J. McLean, P. Hannaford and A. M. Akulshin Centre for Atom Optics and Ultrafast Spectroscopy February 2008 Motivation

More information

Slow Light and Superluminal Propagation M. A. Bouchene

Slow Light and Superluminal Propagation M. A. Bouchene Slow Light and Superluminal Propagation M. A. Bouchene Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Interest in Slow and Fast light Fundamental aspect in optical

More information

A Review of Slow Light Physics and Its Applications

A Review of Slow Light Physics and Its Applications A Review of Slow Light Physics and Its Applications Stéphane Virally École Polytechnique de Montréal, 2500 chemin de Polytechnique, Montréal, QC H3T 1J4, Canada stephane.virally@polymtl.ca Abstract: An

More information

arxiv:quant-ph/ v1 2 Oct 2003

arxiv:quant-ph/ v1 2 Oct 2003 Slow Light in Doppler Broadened Two level Systems G. S. Agarwal and Tarak Nath Dey Physical Research Laboratory, Navrangpura, Ahmedabad-38 9, India (October 31, 218) We show that the propagation of light

More information

Analytical Investigation of Slow Light Systems with Strained Quantum Wells Structure under Applied Magnetic and Electric Fields Based on V-type EIT

Analytical Investigation of Slow Light Systems with Strained Quantum Wells Structure under Applied Magnetic and Electric Fields Based on V-type EIT International Journal of Optics and Applications 27, 7(2): 42-48 DOI:.5923/j.optics.2772.3 Analytical Investigation of Slow Light Systems with Strained Quantum Wells Structure under Applied Magnetic and

More information

FAST LIGHT ENHANCEMENT BY BIDIRECTIONAL PUMPING IN ERBIUM-DOPED FIBERS

FAST LIGHT ENHANCEMENT BY BIDIRECTIONAL PUMPING IN ERBIUM-DOPED FIBERS Journal of Nonlinear Optical Physics & Materials Vol. 19, No. 1 (21) 153 165 c World Scientific Publishing Company DOI: 1.1142/S21886351498X FAST LIGHT ENHANCEMENT BY BIDIRECTIONAL PUMPING IN ERBIUM-DOPED

More information

Optical delay with spectral hole burning in Doppler broadened cesium vapor

Optical delay with spectral hole burning in Doppler broadened cesium vapor University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Air Force Research U.S. Department of Defense 2012 Optical delay with spectral hole burning in Doppler broadened cesium

More information

Slow light with a swept-frequency source

Slow light with a swept-frequency source Slow light with a swept-frequency source Rui Zhang,* Yunhui Zhu, Jing Wang, and Daniel J. Gauthier Department of Physics, Duke University, Durham, North Carolina, 7708, USA *rz10@phy.duke.edu Abstract:

More information

Quantum Information Storage with Slow and Stopped Light

Quantum Information Storage with Slow and Stopped Light Quantum Information Storage with Slow and Stopped Light Joseph A. Yasi Department of Physics, University of Illinois at Urbana-Champaign (Dated: December 14, 2006) Abstract This essay describes the phenomena

More information

Photon Physics. Week 5 5/03/2013

Photon Physics. Week 5 5/03/2013 Photon Physics Week 5 5/3/213 1 Rate equations including pumping dn 2 = R 2 N * σ 21 ( ω L ω ) I L N 2 R 2 2 dn 1 = R 1 + N * σ 21 ( ω L ω ) I L N 1 + N 2 A 21 ss solution: dn 2 = dn 1 = N 2 = R 2 N *

More information

Maximizing the opening of eye diagrams for slow-light systems

Maximizing the opening of eye diagrams for slow-light systems Maximizing the opening of eye diagrams for slow-light systems Ravi Pant, 1, * Michael D. Stenner, 1,2 Mark A. Neifeld, 1,2 Zhimin Shi, 3 Robert W. Boyd, 3 and Daniel J. Gauthier 4 1 College of Optical

More information

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015

MEFT / Quantum Optics and Lasers. Suggested problems Set 4 Gonçalo Figueira, spring 2015 MEFT / Quantum Optics and Lasers Suggested problems Set 4 Gonçalo Figueira, spring 05 Note: some problems are taken or adapted from Fundamentals of Photonics, in which case the corresponding number is

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 14 Dispersion engineering part 1 - Introduction. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 14 Dispersion engineering part 1 - Introduction EEC 598-2 Winter 26 Nanophotonics and Nano-scale Fabrication P.C.Ku chedule for the rest of the semester Introduction to light-matter interaction

More information

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

Distortion management in slow-light pulse delay

Distortion management in slow-light pulse delay Distortion management in slow-light pulse delay Michael D. Stenner and Mark A. Neifeld University of Arizona, Department of Electrical and Computer Engineering and The Optical Sciences Center, Tucson,

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor

Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor Petros Zerom, Matthew S. Bigelow and Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, New York 14627 Now

More information

Slow light in various media: a tutorial

Slow light in various media: a tutorial Slow light in various media: a tutorial Jacob B. Khurgin Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA (jakek@jhu.edu) Received October 26,

More information

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber

Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Copyright 2009 by YASHKIR CONSULTING LTD Computer Modelling and Numerical Simulation of the Solid State Diode Pumped Nd 3+ :YAG Laser with Intracavity Saturable Absorber Yuri Yashkir 1 Introduction The

More information

THz experiments at the UCSB FELs and the THz Science and Technology Network.

THz experiments at the UCSB FELs and the THz Science and Technology Network. THz experiments at the UCSB FELs and the THz Science and Technology Network. Mark Sherwin UCSB Physics Department and Institute for Quantum and Complex Dynamics UCSB Center for Terahertz Science and Technology

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Cavity decay rate in presence of a Slow-Light medium

Cavity decay rate in presence of a Slow-Light medium Cavity decay rate in presence of a Slow-Light medium Laboratoire Aimé Cotton, Orsay, France Thomas Lauprêtre Fabienne Goldfarb Fabien Bretenaker School of Physical Sciences, Jawaharlal Nehru University,

More information

OPTICAL COMMUNICATIONS S

OPTICAL COMMUNICATIONS S OPTICAL COMMUNICATIONS S-108.3110 1 Course program 1. Introduction and Optical Fibers 2. Nonlinear Effects in Optical Fibers 3. Fiber-Optic Components I 4. Transmitters and Receivers 5. Fiber-Optic Measurements

More information

Nonlinear Optics. Second Editio n. Robert W. Boyd

Nonlinear Optics. Second Editio n. Robert W. Boyd Nonlinear Optics Second Editio n Robert W. Boyd Preface to the Second Edition Preface to the First Edition xiii xv 1. The Nonlinear Optical Susceptibility 1 1.1. Introduction to Nonlinear Optics 1 1.2.

More information

Photon Physics. Week 4 26/02/2013

Photon Physics. Week 4 26/02/2013 Photon Physics Week 4 6//13 1 Classical atom-field interaction Lorentz oscillator: Classical electron oscillator with frequency ω and damping constant γ Eqn of motion: Final result: Classical atom-field

More information

Ho:YLF pumped HBr laser

Ho:YLF pumped HBr laser Ho:YLF pumped HBr laser L R Botha, 1,2,* C Bollig, 1 M J D Esser, 1 R N Campbell 4, C Jacobs 1,3 and D R Preussler 1 1 National Laser Centre, CSIR, Pretoria, South Africa 2 Laser Research Institute, Department

More information

Gain dependence of measured spectra in coherent Brillouin optical time-domain analysis sensors

Gain dependence of measured spectra in coherent Brillouin optical time-domain analysis sensors Gain dependence of measured spectra in coherent Brillouin optical time-domain analysis sensors Jon Mariñelarena, Javier Urricelqui, Alayn Loayssa Universidad Pública de Navarra, Campus Arrosadía s/n, 316,

More information

Dmitriy Churin. Designing high power single frequency fiber lasers

Dmitriy Churin. Designing high power single frequency fiber lasers Dmitriy Churin Tutorial for: Designing high power single frequency fiber lasers Single frequency lasers with narrow linewidth have long coherence length and this is an essential property for many applications

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

Nonlinear Refraction Spectroscopy

Nonlinear Refraction Spectroscopy UNIVERSIDADE DE SÃO PAULO Instituto de Física de São Carlos Nonlinear Refraction Spectroscopy of Ion Doped Laser Materials Tomaz Catunda Instituto de Física de São Carlos, Universidade de São Paulo São

More information

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors Frank Ceballos 1, Ming-Gang Ju 2 Samuel D. Lane 1, Xiao Cheng Zeng 2 & Hui Zhao 1 1 Department of Physics and Astronomy,

More information

Engineering Medical Optics BME136/251 Winter 2017

Engineering Medical Optics BME136/251 Winter 2017 Engineering Medical Optics BME136/251 Winter 2017 Monday/Wednesday 2:00-3:20 p.m. Beckman Laser Institute Library, MSTB 214 (lab) Teaching Assistants (Office hours: Every Tuesday at 2pm outside of the

More information

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, NY 14627, USA with special thanks to: Nick Lepeshkin,

More information

The Generation of Ultrashort Laser Pulses II

The Generation of Ultrashort Laser Pulses II The Generation of Ultrashort Laser Pulses II The phase condition Trains of pulses the Shah function Laser modes and mode locking 1 There are 3 conditions for steady-state laser operation. Amplitude condition

More information

All-optical tunable group-velocity control of femtosecond pulse by quadratic nonlinear cascading interactions

All-optical tunable group-velocity control of femtosecond pulse by quadratic nonlinear cascading interactions All-optical tunable group-velocity control of femtosecond pulse by quadratic nonlinear cascading interactions Wenjie Lu 1, Yuping Chen 1*, Lihong Miu 1, Xianfeng Chen 1**, Yuxing Xia 1 and Xianglong Zeng

More information

Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity

Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity PHYSICAL REVIEW A, VOLUE 63, 053806 Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity A. Dogariu, A. Kuzmich, and L. J. Wang NEC Research Institute,

More information

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

LASERS. Amplifiers: Broad-band communications (avoid down-conversion) L- LASERS Representative applications: Amplifiers: Broad-band communications (avoid down-conversion) Oscillators: Blasting: Energy States: Hydrogen atom Frequency/distance reference, local oscillators,

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Quantum Optical Coherence Tomography

Quantum Optical Coherence Tomography Quantum Optical Coherence Tomography Bahaa Saleh Alexander Sergienko Malvin Teich Quantum Imaging Lab Department of Electrical & Computer Engineering & Photonics Center QuickTime and a TIFF (Uncompressed)

More information

Nonlinear Fiber Optics and its Applications in Optical Signal Processing

Nonlinear Fiber Optics and its Applications in Optical Signal Processing 1/44 Nonlinear Fiber Optics and its Applications in Optical Signal Processing Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Introduction

More information

Slow and fast light: fundamentals and applications Robert W. Boyd a a

Slow and fast light: fundamentals and applications Robert W. Boyd a a This article was downloaded by: [University of Rochester] On: 8 December 2009 Access details: Access Details: [subscription number 906602655] Publisher Taylor & Francis Informa Ltd Registered in England

More information

Optical Fiber Signal Degradation

Optical Fiber Signal Degradation Optical Fiber Signal Degradation Effects Pulse Spreading Dispersion (Distortion) Causes the optical pulses to broaden as they travel along a fiber Overlap between neighboring pulses creates errors Resulting

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier

Quantum Electronics Laser Physics. Chapter 5. The Laser Amplifier Quantum Electronics Laser Physics Chapter 5. The Laser Amplifier 1 The laser amplifier 5.1 Amplifier Gain 5.2 Amplifier Bandwidth 5.3 Amplifier Phase-Shift 5.4 Amplifier Power source and rate equations

More information

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state Lecture 15 Stimulated Emission Devices- Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

EE 472 Solutions to some chapter 4 problems

EE 472 Solutions to some chapter 4 problems EE 472 Solutions to some chapter 4 problems 4.4. Erbium doped fiber amplifier An EDFA is pumped at 1480 nm. N1 and N2 are the concentrations of Er 3+ at the levels E 1 and E 2 respectively as shown in

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University

Quantum Memory with Atomic Ensembles. Yong-Fan Chen Physics Department, Cheng Kung University Quantum Memory with Atomic Ensembles Yong-Fan Chen Physics Department, Cheng Kung University Outline Laser cooling & trapping Electromagnetically Induced Transparency (EIT) Slow light & Stopped light Manipulating

More information

Fast Light, Slow Light

Fast Light, Slow Light Light pulses can be made to propagate with group velocities exceeding the speed of light in a vacuum or, at the opposite extreme, to come to a complete stop. Fast Light, Slow Light Raymond Y. Chiao and

More information

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms

Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Squeezed Light and Quantum Imaging with Four-Wave Mixing in Hot Atoms Alberto Marino Ulrich Vogl Jeremy Clark (U Maryland) Quentin

More information

Nonlinear Optics: Past Successes and Future Challenges

Nonlinear Optics: Past Successes and Future Challenges Nonlinear Optics: Past Successes and Future Challenges Presented at the Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (CLEO: 2012), 6-11 May 2012 in San Jose,

More information

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky

Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Do we need quantum light to test quantum memory? M. Lobino, C. Kupchak, E. Figueroa, J. Appel, B. C. Sanders, Alex Lvovsky Outline EIT and quantum memory for light Quantum processes: an introduction Process

More information

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

System optimization of a long-range Brillouin-loss-based distributed fiber sensor

System optimization of a long-range Brillouin-loss-based distributed fiber sensor System optimization of a long-range Brillouin-loss-based distributed fiber sensor Yongkang Dong, 1,2 Liang Chen, 1 and Xiaoyi Bao 1, * 1 Fiber Optics Group, Department of Physics, University of Ottawa,

More information

CHIP-SCALE CONTROLLED STORAGE ALL- OPTICAL MEMORY

CHIP-SCALE CONTROLLED STORAGE ALL- OPTICAL MEMORY AFRL-SN-RS-TR-2007-41 Final Technical Report February 2007 CHIP-SCALE CONTROLLED STORAGE ALL- OPTICAL MEMORY University of California Sponsored by Defense Advanced Research Projects Agency DARPA Order

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful Main Requirements of the Laser Optical Resonator Cavity Laser Gain Medium of 2, 3 or 4 level types in the Cavity Sufficient means of Excitation (called pumping) eg. light, current, chemical reaction Population

More information

Quantum enhanced magnetometer and squeezed state of light tunable filter

Quantum enhanced magnetometer and squeezed state of light tunable filter Quantum enhanced magnetometer and squeezed state of light tunable filter Eugeniy E. Mikhailov The College of William & Mary October 5, 22 Eugeniy E. Mikhailov (W&M) Squeezed light October 5, 22 / 42 Transition

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

CHAPTER FIVE. Optical Resonators Containing Amplifying Media

CHAPTER FIVE. Optical Resonators Containing Amplifying Media CHAPTER FIVE Optical Resonators Containing Amplifying Media 5 Optical Resonators Containing Amplifying Media 5.1 Introduction In this chapter we shall combine what we have learned about optical frequency

More information

QUESTION BANK IN PHYSICS

QUESTION BANK IN PHYSICS QUESTION BANK IN PHYSICS LASERS. Name some properties, which make laser light different from ordinary light. () {JUN 5. The output power of a given laser is mw and the emitted wavelength is 630nm. Calculate

More information

Observation of the nonlinear phase shift due to single post-selected photons

Observation of the nonlinear phase shift due to single post-selected photons Observation of the nonlinear phase shift due to single post-selected photons Amir Feizpour, 1 Matin Hallaji, 1 Greg Dmochowski, 1 and Aephraim M. Steinberg 1, 2 1 Centre for Quantum Information and Quantum

More information

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light amplification) Optical Resonator Cavity (greatly increase

More information

Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing

Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing Optics Communications 66 (6) 64 68 www.elsevier.com/locate/optcom Experimental constraints of using slow-light in sodium vapor for light-drag enhanced relative rotation sensing Renu Tripathi *, G.S. Pati,

More information

EIT and diffusion of atomic coherence

EIT and diffusion of atomic coherence Journal of Modern Optics Vol. 52, No. 16, 10 November 2005, 2381 2390 EIT and diffusion of atomic coherence I. NOVIKOVA*y, Y. XIAOy, D. F. PHILLIPSy and R. L. WALSWORTHyz yharvard-smithsonian Center for

More information

Observation of laser-jitter-enhanced hyperfine spectroscopy and two-photon spectral hole-burning

Observation of laser-jitter-enhanced hyperfine spectroscopy and two-photon spectral hole-burning 1 June 1999 Ž. Optics Communications 164 1999 129 136 www.elsevier.comrlocateroptcom Full length article Observation of laser-jitter-enhanced hyperfine spectroscopy and two-photon spectral hole-burning

More information

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium

Absorption-Amplification Response with or Without Spontaneously Generated Coherence in a Coherent Four-Level Atomic Medium Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 425 430 c International Academic Publishers Vol. 42, No. 3, September 15, 2004 Absorption-Amplification Response with or Without Spontaneously Generated

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

TUNABLE ALL-OPTICAL DELAY VIA NONLINEAR OPTICAL PROCESSES IN SEMICONDUCTOR QUANTUM WELLS SUSANTA KUMAR SARKAR A DISSERTATION.

TUNABLE ALL-OPTICAL DELAY VIA NONLINEAR OPTICAL PROCESSES IN SEMICONDUCTOR QUANTUM WELLS SUSANTA KUMAR SARKAR A DISSERTATION. TUNABLE ALL-OPTICAL DELAY VIA NONLINEAR OPTICAL PROCESSES IN SEMICONDUCTOR QUANTUM WELLS by SUSANTA KUMAR SARKAR A DISSERTATION Presented to the Department of Physics and the Graduate School of the University

More information

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid

Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid Stopped Light With Storage Times Greater than 1 second using Electromagnetically Induced Transparency in a Solid J.J Londell, E. Fravel, M.J. Sellars and N.B. Manson, Phys. Rev. Lett. 95 063601 (2005)

More information

OPTI 511L Fall Objectives:

OPTI 511L Fall Objectives: RJ Jones OPTI 511L Fall 2017 Optical Sciences Experiment: Saturated Absorption Spectroscopy (2 weeks) In this experiment we explore the use of a single mode tunable external cavity diode laser (ECDL) to

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials

Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials International Workshop on Photonics and Applications. Hanoi, Vietnam. April 5-8,24 Multidimensional femtosecond coherence spectroscopy for study of the carrier dynamics in photonics materials Lap Van Dao,

More information

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY 14627, USA with

More information

Spatial evolution of laser beam profiles in an SBS amplifier

Spatial evolution of laser beam profiles in an SBS amplifier Spatial evolution of laser beam profiles in an SBS amplifier Edward J. Miller, Mark D. Skeldon, and Robert W. Boyd We have performed an experimental and theoretical analysis of the modification of the

More information

Highly Nonlinear Fibers and Their Applications

Highly Nonlinear Fibers and Their Applications 1/32 Highly Nonlinear Fibers and Their Applications Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Introduction Many nonlinear effects inside optical

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Transit time broadening contribution to the linear evanescent susceptibility

Transit time broadening contribution to the linear evanescent susceptibility Supplementary note 1 Transit time broadening contribution to the linear evanescent susceptibility In this section we analyze numerically the susceptibility of atoms subjected to an evanescent field for

More information

Slowdown of group velocity of light in PPLN by employing electro-optic effect

Slowdown of group velocity of light in PPLN by employing electro-optic effect Journal of Nonlinear Optical Physics & Materials Vol. 23, No. 1 (2014) 1450006 (8 pages) c World Scientific Publishing Company DOI: 10.1142/S0218863514500064 Slowdown of group velocity of light in PPLN

More information

Analytical Solution of Brillouin Amplifier Equations for lossless medium

Analytical Solution of Brillouin Amplifier Equations for lossless medium Analytical Solution of Brillouin Amplifier Equations for lossless medium Fikri Serdar Gökhan a,* Hasan Göktaş, b a Department of Electrical and Electronic Engineering, Alanya Alaaddin Keykubat University,

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. p. 10-0 10..

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information