Quantum Optical Coherence Tomography

Size: px
Start display at page:

Download "Quantum Optical Coherence Tomography"

Transcription

1 Quantum Optical Coherence Tomography Bahaa Saleh Alexander Sergienko Malvin Teich Quantum Imaging Lab Department of Electrical & Computer Engineering & Photonics Center QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. MURI 6/9/05 1

2 Quantum Optical Coherence Tomography = Axial imaging (ranging) by use of: 1) 2-photon light in an entangled state, 2) a quantum interferometer, 3) a photon coincidence detector Source Interferometer x Detector Sample MURI 6/9/05 2

3 Outline 1. Two-Photon Imaging 2. QOCT: Prior Work 3. New Results MURI 6/9/05 3

4 Outline 1. Two-Photon Imaging 2. QOCT: Prior Work 3. New Results MURI 6/9/05 4

5 Two-Photon light σ 1 k 1 k q X=(q,ω,σ) spatial spectral polarization σ 2 k 2 = a state of exactly two photons in multimodes (spatial/spectral/polarization) Ψ = dx 1 dx 2 ϕ( X 1,X ) 2 1 X1, 1 X2 non-separable function entangled state Entanglement: Spatial (momentum) Spectral Polarization MURI 6/9/05 5

6 Measurement of Two-Photon light ϕ x C = ϕ ( X 1,X 2 ) 2 dx 1 dx 2 ϕ X 1,X 2 ( ) obeys propagation laws of coherence function (Wolf s equations), although it is not a coherence function MURI 6/9/05 6

7 Two Configurations for Metrology / Imaging H r A. Direct ϕ x ϕ s C H o B. Interferometric H r ϕ s ϕ ϕ d H o x C H = Spatial, spectral, or polarization system ϕ (X,X ) = 1 d ϕ(x 1,X 2 ) ϕ(x 2,X 1 ) MURI 6/9/05 7

8 A. Applications of Direct 2-Photon Imaging ϕ s ϕ x C H o 1. Absolute Measurement 2. Ghost Imaging (transverse) x C 2-photon absorber 3. 2-Photon Microscopy (transverse) 4. 2-Photon Lithography (transverse) MURI 6/9/05 8

9 B. Applications of Interferometric 2-Photon Imaging H r ϕ s ϕ x C H o C = 1 4 ϕ(x 1,X 2 ) ϕ(x 2,X 1 ) 2 dx 1 dx 2 QOCT MURI 6/9/05 9

10 Outline 1. Two-Photon Imaging 2. QOCT: Prior Work 3. New Results MURI 6/9/05 10

11 Axial Imaging/Ranging Spectral Modes H r (ω) ϕ s ϕ x C H o (ω) ϕ s (ω 1,ω 2 )= F(ω 1 )δ(ω 1 +ω 2 ω p ) H r (ω)= e iωτ ϕ(ω 1,ω 2 )= H r (ω 1 )H o (ω 2 )F(ω 1 )δ(ω 1 +ω 2 ω p ) C = 1 4 ϕ(ω 1,ω 2 ) ϕ(ω 2,ω 1 ) 2 dω 1 dω 2 Interference term in C H o (ω 1 )H o * (ω 2 ) e i(ω 1 ω 2 )τ δ(ω 1 +ω 2 ω p )F(ω 1 )F * (ω 2 ) i.e., insensitive to even-order dispersion (GVD) in H o, MURI 6/9/05 11

12 Q-OCT cτ H(ω) x C(τ) z C(τ ) 2Λ(0) 2Re{ Λ(2τ )} Λ( τ)= dωh (ω o +Ω) H * (ω o Ω)S(Ω)e iωτ C(τ) Dispersion-Cancellation τ Hong-Ou-Mandel Interferometer Abouraddy et al. PRA, , 2002 MURI 6/9/05 12

13 Experimental Setup for Hybrid OCT & QOCT cτ Detector 55 mw 2.2 mm Filter x C(τ) NLC 8-mm LiIO 3 Filter Detector Kr nm Sample I(τ) Nasr et al. PRL, 91, August 2003 MURI 6/9/05 13

14 Two Boundaries + dispersive layer 5-mm ZnSe Air 90 μm fused silica Air 53 μm Classical Quantum 19 μm MURI 6/9/05 14

15 Four Boundaries + dispersive medium in-between NORM. QOCT C (τ q ) NORM. OCT I (τ c ) μm AIR FW HM = 19.3 um Vis.=9% FWHM = 104 um Vis.=7.2% mm ZnSe β s 2 m -1 FWHM = 35.5 um AIR 90-μm FWHM = 18.5 um Vis.=27.5% FWHM = 37 um Vis.=23% PATH DELAY c τ / 2 (μ m) M. B. Nasr et al., Opt. Express 12, (2004) MURI 6/9/05 15

16 Four Boundaries + dispersive medium in-between MURI 6/9/05 16 M. B. Nasr et al., Opt. Express 12, (2004)

17 Outline 1. Two-Photon Imaging 2. QOCT: Theory & Prior Experimental Work 3. New Results MURI 6/9/05 17

18 Goals Design and build new QOCT system with performance competitive with OCT for acquisition of dispersioncancelled B-scan images Improve efficiency (reduced run time) Improve axial resolution Include transverse effects & nonplanar samples Approach New source (PPLN) Sergienko New detectors ( ) Improved layout (miniaturization) Study of transverse effects MURI 6/9/05 18

19 Minitiarization Standard: C DS = 1.3 m Mini: DM = 0.6 m C MURI 6/9/05 19

20 Transverse Effects Single reflector sample OCT Scan of Mirror Sample Normalized Single Counts Focusing in Conventional OCT Lens in sample & reference arms Position (mm) Lens in Sample Arm Only Lenses in Sample and Reference Arms Lens in sample arm only MURI 6/9/05 20

21 Focusing in QOCT Single reflector sample Lens in sample arm Different filter No Lens mm MURI 6/9/05 21

22 Compensation using two lenses in reference arm MURI 6/9/05 22

23 Depth of Focus DSM Variation of Axial Position of Sample Mirror in Dual 4-f Lens System in QOCT Vary Position of Mirror (DSM) Visibility of HOM Dip Sample Mirror Displacement from Ideal Alignment DSM (microns) Detector Pinholes = open; FWHM = 13 microns MURI 6/9/05 Pinholes = 4mm; FWHM = 15 microns 23 Pinholes = 2.5mm; FWHM = 19 microns

24 QOCT with Chirped-QPM Crystal After Carrasco et al., Opt. Lett. 29, (2004) MURI 6/9/05 24

25 Experimental Demonstration of Submicron OCT Spectral Width FWHM (nm) Counts 12 x μm Path Delay(μm) Counts 6 x μm Path Delay(μm) Pump Beam Width (microns) Non-Collinear Angle, 9.1º Counts 6 x μm Path Delay(μm) MURI 6/9/

26 The Promise of Q-OCT Q-OCT promises x2 improved axial resolution in comparison with conventional OCT for sources of same spectral bandwidth Self-interference at each boundary is immune to GVD introduced by upper layers Inter-boundary interference is sensitive to dispersion of interboundary layers; dispersion parameters can thus be estimated Preliminary experiments demonstrated viability of technique Technique can be extended to transverse imaging (Q-OCM) Technique can be extended to polarization-sensitive Q-OCT MURI 6/9/05 26

27 Q-OCT: Challenges & Plans State-of-the-art linewidth is not sufficiently large (Axial resolution is only 19 μm). Two-photon flux is low. Duration of experiment is too long. A better 2-photon source is needed! Faster broadband single-photon detector is needed! Applications to scattering media (e.g., tissue). Theoretical & experimental research is necessary. Algorithms for data processing need to be developed. MURI 6/9/05 27

Spatial coherence effects on second- and fourth-order temporal interference

Spatial coherence effects on second- and fourth-order temporal interference Spatial coherence effects on second- and fourth-order temporal interference Timothy Yarnall 1,, Ayman F. Abouraddy 3, Bahaa E. A. Saleh, and Malvin C. Teich 1 Lincoln Laboratory, Massachusetts Institute

More information

Frequency and time... dispersion-cancellation, etc.

Frequency and time... dispersion-cancellation, etc. Frequency and time... dispersion-cancellation, etc. (AKA: An old experiment of mine whose interpretation helps illustrate this collapse-vs-correlation business, and which will serve as a segué into time

More information

Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors

Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors Magued B. Nasr, 1 Olga Minaeva, 1,2 Gregory N. Goltsman, 2 Alexander V. Sergienko,

More information

Variations on the theme of quantum optical coherence tomography: a review

Variations on the theme of quantum optical coherence tomography: a review Quantum Inf Process DOI 10.1007/s11128-011-0266-6 Variations on the theme of quantum optical coherence tomography: a review Malvin Carl Teich Bahaa E. A. Saleh Franco N. C. Wong Jeffrey H. Shapiro Received:

More information

arxiv: v1 [quant-ph] 1 Nov 2012

arxiv: v1 [quant-ph] 1 Nov 2012 On the Purity and Indistinguishability of Down-Converted Photons arxiv:111.010v1 [quant-ph] 1 Nov 01 C. I. Osorio, N. Sangouard, and R. T. Thew Group of Applied Physics, University of Geneva, 111 Geneva

More information

Toward Single-Cycle Biphotons

Toward Single-Cycle Biphotons Toward Single-Cycle Biphotons Stephen E. Harris and Steven Sensarn Ginzton Laboratory, Stanford University, Stanford, California, 9435 seharris@stanford.edu Abstract: The paper describes a technique for

More information

Quantum measurement with entangled-photon states

Quantum measurement with entangled-photon states Quantum measurement with entangled-photon states Alexander Sergienko Alexander Sergienko is a Resident Consultant in ELSAG spa, Genoa, Italy and a Professor of Electrical & Computer Engineering and Professor

More information

Generation of high-flux ultra-broadband light by bandwidth amplification in spontaneous parametric down conversion

Generation of high-flux ultra-broadband light by bandwidth amplification in spontaneous parametric down conversion Optics Communications 246 (2005) 521 528 www.elsevier.com/locate/optcom Generation of high-flux ultra-broadband light by bandwidth amplification in spontaneous parametric down conversion Magued B. Nasr

More information

Path Entanglement. Liat Dovrat. Quantum Optics Seminar

Path Entanglement. Liat Dovrat. Quantum Optics Seminar Path Entanglement Liat Dovrat Quantum Optics Seminar March 2008 Lecture Outline Path entangled states. Generation of path entangled states. Characteristics of the entangled state: Super Resolution Beating

More information

10. OPTICAL COHERENCE TOMOGRAPHY

10. OPTICAL COHERENCE TOMOGRAPHY 1. OPTICAL COHERENCE TOMOGRAPHY Optical coherence tomography (OCT) is a label-free (intrinsic contrast) technique that enables 3D imaging of tissues. The principle of its operation relies on low-coherence

More information

Hong-Ou-Mandel dip using photon pairs from a PPLN waveguide

Hong-Ou-Mandel dip using photon pairs from a PPLN waveguide Hong-Ou-Mandel dip using photon pairs from a PPLN waveguide Qiang Zhang 1, Hiroki Takesue, Carsten Langrock 1, Xiuping Xie 1, M. M. Fejer 1, Yoshihisa Yamamoto 1,3 1. Edward L. Ginzton Laboratory, Stanford

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

arxiv: v1 [quant-ph] 19 Nov 2010

arxiv: v1 [quant-ph] 19 Nov 2010 Polarization-Sensitive Quantum Optical Coherence Tomography: Experiment arxiv:1011.4338v1 [quant-ph] 19 Nov 2010 Mark C. Booth, 1 Bahaa E. A. Saleh, 2,3 and Malvin Carl Teich 1,2,4, 1 Department of Biomedical

More information

Erwin Schrödinger and his cat

Erwin Schrödinger and his cat Erwin Schrödinger and his cat How to relate discrete energy levels with Hamiltonian described in terms of continгous coordinate x and momentum p? Erwin Schrödinger (887-96) Acoustics: set of frequencies

More information

Optics Communications

Optics Communications Optics Communications 284 (211) 2542 2549 Contents lists available at ScienceDirect Optics Communications journal homepage: www.elsevier.com/locate/optcom Polarization-sensitive quantum optical coherence

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Harnessing high-dimensional hyperentanglement through a biphoton frequency comb Zhenda Xie,, Tian Zhong 3, Sajan Shrestha, XinAn Xu, Junlin Liang,Yan-Xiao Gong 4, Joshua C. Bienfang 5, Alessandro Restelli

More information

Spectrally engineered broadband photon source for two-photon quantum interferometry

Spectrally engineered broadband photon source for two-photon quantum interferometry Vol. 24, No. 22 31 Oct 2016 OPTICS EXPRESS 24947 Spectrally engineered broadband photon source for two-photon quantum interferometry A BU T HOMAS, 1,2,* M ACKENZIE VAN C AMP, 1,2 O LGA M INAEVA, 2,3 DAVID

More information

Noise in Classical and Quantum Photon-Correlation Imaging

Noise in Classical and Quantum Photon-Correlation Imaging Chapter Noise in Classical and Quantum Photon-Correlation Imaging Bahaa E. A. Saleh and Malvin Carl Teich Photonics Center and Department of Electrical and Computer Engineering, Boston University, Boston,

More information

Simultaneous measurement of group and phase delay between two photons

Simultaneous measurement of group and phase delay between two photons Simultaneous measurement of group and phase delay between two photons D. Branning and A. L. Migdall Optical Technology Division, NIST, Gaithersburg, Maryland 2899-8441 A. V. Sergienko Department of Electrical

More information

Supplementary Materials for

Supplementary Materials for advances.sciencemag.org/cgi/content/full/2//e50054/dc Supplementary Materials for Two-photon quantum walk in a multimode fiber Hugo Defienne, Marco Barbieri, Ian A. Walmsley, Brian J. Smith, Sylvain Gigan

More information

The Two-Photon State Generated by Spontaneous Parametric Down-Conversion. C. H. Monken and A. G. da Costa Moura

The Two-Photon State Generated by Spontaneous Parametric Down-Conversion. C. H. Monken and A. G. da Costa Moura The Two-Photon State Generated by C. H. Monken and A. G. da Costa Moura Universidade Federal de Minas Gerais Brazil Funding C A P E S Conselho Nacional de Desenvolvimento Científico e Tecnológico Instituto

More information

Photon Pair Production using non-linear waveguides

Photon Pair Production using non-linear waveguides Photon Pair Production using non-linear waveguides Alexander Ling J. Chen, J. Fan, A. Pearlmann, A. Migdall Joint Quantum Institute NIST and University of Maryland, College Park Motivation Correlated photon-pairs

More information

arxiv:quant-ph/ v1 8 Aug 2005

arxiv:quant-ph/ v1 8 Aug 2005 Shape of the spatial mode function of photons generated in noncollinear spontaneous parametric downconversion Gabriel Molina-Terriza, 1 Stefano Minardi, 1, Yana Deyanova, 1,2 Clara I. Osorio, 1,2 Martin

More information

Nonlocal Dispersion Cancellation using Entangled Photons

Nonlocal Dispersion Cancellation using Entangled Photons Nonlocal Dispersion Cancellation using Entangled Photons So-Young Baek, Young-Wook Cho, and Yoon-Ho Kim Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea

More information

arxiv:quant-ph/ v1 3 Jun 2003

arxiv:quant-ph/ v1 3 Jun 2003 Experimental verification of energy correlations in entangled photon pairs Jan Soubusta, 1,2, Jan Peřina Jr., 1,2 Martin Hendrych, 1,2 Ondřej Haderka, 1,2 Pavel Trojek, 2 and Miloslav Dušek 2 1 Joint Laboratory

More information

Supplementary Materials for

Supplementary Materials for wwwsciencemagorg/cgi/content/full/scienceaaa3035/dc1 Supplementary Materials for Spatially structured photons that travel in free space slower than the speed of light Daniel Giovannini, Jacquiline Romero,

More information

Hong-Ou-Mandel Interference

Hong-Ou-Mandel Interference Hong-Ou-Mandel Interference Agata M. Brańczyk Perimeter Institute for Theoretical Physics, Waterloo, Ontario, NL Y5, Canada abranczyk@pitp.ca arxiv:1711.00080v1 [quant-ph] 31 Oct 017 This article is a

More information

Quantum imaging of faint objects

Quantum imaging of faint objects Italian Quantum Information Science Conference 008, Camerino Quantum imaging of faint objects Theory : Lucia Caspani, Enrico Brambilla, Luigi Lugiato, Alessandra Gatti Experiment: Ottavia Jederkiewicz,

More information

Single-photon propagation through dielectric bandgaps

Single-photon propagation through dielectric bandgaps Single-photon propagation through dielectric bandgaps Natalia Borjemscaia, 1,2 * Sergey V. Polyakov, 2 Paul D. Lett, 2 and Alan Migdall 2 1 Department of Physics, Georgetown University, 37th and O Streets,

More information

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a).

Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). 7.1. Low-Coherence Interferometry (LCI) Let us consider a typical Michelson interferometer, where a broadband source is used for illumination (Fig. 1a). The light is split by the beam splitter (BS) and

More information

Top Le# side TEST Right side bo.om

Top Le# side TEST Right side bo.om Top bo.om e# side TEST Right side Correlation functions in optics and quantum optics, 4 University of Science and Technology of China Hefei, China Luis A. Orozco www.jqi.umd.edu The slides of the course

More information

Correlation functions in optics and quantum optics, 4

Correlation functions in optics and quantum optics, 4 Correlation functions in optics and quantum optics, 4 State Key Laboratory of Precision Spectroscopy East China Normal University, Shanghai, China Luis A. Orozco www.jqi.umd.edu The slides of the course

More information

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup

Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup 1 Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown and Twiss Photon Antibunching Setup Abstract Jacob Begis The purpose of this lab was to prove that a source of light can be

More information

The structure of laser pulses

The structure of laser pulses 1 The structure of laser pulses 2 The structure of laser pulses Pulse characteristics Temporal and spectral representation Fourier transforms Temporal and spectral widths Instantaneous frequency Chirped

More information

arxiv: v1 [physics.optics] 12 Feb 2013

arxiv: v1 [physics.optics] 12 Feb 2013 Characterization of a Quantum Light Source Based on Spontaneous Parametric Down-Conversion Thomas J. Huisman, Simon R. Huisman, Allard P. Mosk, Pepijn W.H. Pinkse MESA+ Institute for Nanotechnology, University

More information

Spatial effects in two- and four-beam interference of partially entangled biphotons

Spatial effects in two- and four-beam interference of partially entangled biphotons PHYSICAL REVIEW A VOLUME 57 NUMBER 5 MAY 1998 Spatial effects in two- and four-beam interference of partially entangled biphotons Bahaa E. A. Saleh Quantum Imaging Laboratory Department of Electrical and

More information

Single Photon Generation & Application

Single Photon Generation & Application Single Photon Generation & Application Photon Pair Generation: Parametric down conversion is a non-linear process, where a wave impinging on a nonlinear crystal creates two new light beams obeying energy

More information

Schemes to generate entangled photon pairs via spontaneous parametric down conversion

Schemes to generate entangled photon pairs via spontaneous parametric down conversion Schemes to generate entangled photon pairs via spontaneous parametric down conversion Atsushi Yabushita Department of Electrophysics National Chiao-Tung University? Outline Introduction Optical parametric

More information

Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light

Slowing Down the Speed of Light Applications of Slow and Fast Light Slowing Down the Speed of Light Applications of "Slow" and "Fast" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester with Mathew Bigelow, Nick Lepeshkin,

More information

Quantum random walks and wave-packet reshaping at the single-photon level

Quantum random walks and wave-packet reshaping at the single-photon level Quantum random walks and wave-packet reshaping at the single-photon level P. H. Souto Ribeiro,* S. P. Walborn, C. Raitz, Jr., L. Davidovich, and N. Zagury Instituto de Física, Universidade Federal do Rio

More information

Two-color ghost imaging

Two-color ghost imaging Two-color ghost imaging Kam Wai Clifford Chan,* Malcolm N. O Sullivan, and Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, New York 14627, USA Received 10 September 2008; published

More information

Two-photon double-slit interference experiment

Two-photon double-slit interference experiment 1192 J. Opt. Soc. Am. B/Vol. 15, No. 3/March 1998 C. K. Hong and T. G. Noh Two-photon double-slit interference experiment C. K. Hong and T. G. Noh Department of Physics, Pohang University of Science and

More information

Single photons. how to create them, how to see them. Alessandro Cerè

Single photons. how to create them, how to see them. Alessandro Cerè Single photons how to create them, how to see them Alessandro Cerè Intro light is quantum light is cheap let s use the quantum properties of light Little interaction with the environment We can send them

More information

Quantum information processing using linear optics

Quantum information processing using linear optics Quantum information processing using linear optics Karel Lemr Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic web: http://jointlab.upol.cz/lemr

More information

arxiv:quant-ph/ v1 30 Sep 2005

arxiv:quant-ph/ v1 30 Sep 2005 Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer Taehyun Kim, Marco Fiorentino, and Franco N. C. Wong Research Laboratory of lectronics, Massachusetts Institute

More information

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating Where are the Fringes? (in a real system) Fringe Localisation Double Slit spatial modulation transverse fringes? everywhere or well localised? affected by source properties: coherence, extension Plane

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

QUANTUM ENTANGLEMENT FOR OPTICAL LITHOGRAPHY AND MICROSCOPY BEYOND THE RAYLEIGH LIMIT

QUANTUM ENTANGLEMENT FOR OPTICAL LITHOGRAPHY AND MICROSCOPY BEYOND THE RAYLEIGH LIMIT QUANTUM ENTANGLEMENT FOR OPTICAL LITHOGRAPHY AND MICROSCOPY BEYOND THE RAYLEIGH LIMIT SEAN J. BENTLEY, ROBERT W. BOYD, ELNA M. NAGASAKO, & GIRISH S. AGARWAL May 8, 2001 NONLINEAR OPTICS LABORATORY INSTITUTE

More information

Linear pulse propagation

Linear pulse propagation Ultrafast Laser Physics Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Linear pulse propagation Ultrafast Laser Physics ETH Zurich Superposition of many monochromatic

More information

Performance Limits of Delay Lines Based on "Slow" Light. Robert W. Boyd

Performance Limits of Delay Lines Based on Slow Light. Robert W. Boyd Performance Limits of Delay Lines Based on "Slow" Light Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester Representing the DARPA Slow-Light-in-Fibers Team:

More information

Novel Cascaded Ultra Bright Pulsed Source of Polarization Entangled Photons

Novel Cascaded Ultra Bright Pulsed Source of Polarization Entangled Photons Novel Cascaded Ultra Bright Pulsed Source of Polarization Entangled Photons G. Bitton, W.P. Grice, J. Moreau 1, and L. Zhang 2 Center for Engineering Science Advanced Research, Computer Science and Mathematics

More information

All Optical Quantum Gates

All Optical Quantum Gates All Optical Quantum Gates T.C.Ralph Centre for Quantum Computer Technology Department of Physics University of Queensland ralph@physics.uq.edu.au LOQC People Staff T.C.Ralph A.G.White G.J.Milburn Postdocs

More information

arxiv: v1 [quant-ph] 28 Mar 2011

arxiv: v1 [quant-ph] 28 Mar 2011 Evaluation of Polarization Mode Dispersion and Chromatic Dispersion using Quantum Interferometry arxiv:1103.5471v1 [quant-ph] 8 Mar 011 A. Fraine 1, D.S. Simon 1,, O. Minaeva, R. Egorov 1, A.V. Sergienko

More information

Two-photon interference of temporally separated photons

Two-photon interference of temporally separated photons Two-photon interference of temporally separated photons Heonoh Kim, Sang Min Lee,, and Han Seb Moon Department of Physics, Pusan National University, Geumjeong-Gu, Busan 609-735, Korea Currently with Korea

More information

Heralded Generation of Ultrafast Single Photons in Pure Quantum States

Heralded Generation of Ultrafast Single Photons in Pure Quantum States Heralded Generation of Ultrafast Single Photons in Pure Quantum States Peter J. Mosley, 1, Jeff S. Lundeen, 1 Brian J. Smith, 1 Piotr Wasylczyk, 1, 2 Alfred B. U Ren, 3 Christine Silberhorn, 4 and Ian

More information

Metrology and Sensing

Metrology and Sensing Metrology and Sensing Lecture 5: Interferometry I 06--09 Herbert Gross Winter term 06 www.iap.uni-jena.de Preliminary Schedule No Date Subject Detailed Content 8.0. Introduction Introduction, optical measurements,

More information

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions

Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions Ph.D. Dissertation Defense September 5, 2012 Digital Holographic Measurement of Nanometric Optical Excitation on Soft Matter by Optical Pressure and Photothermal Interactions David C. Clark Digital Holography

More information

arxiv:quant-ph/ v1 15 Jun 1999

arxiv:quant-ph/ v1 15 Jun 1999 EPJ manuscript No. will be inserted by the editor) Properties of pulsed entangled two-photon fields Jan Peřina Jr. 1 arxiv:quant-ph/990605v1 15 Jun 1999 Joint Laboratory of Optics of Palacký University

More information

Engineering entangled-photon states using two-dimensional PPLN crystals

Engineering entangled-photon states using two-dimensional PPLN crystals Engineering entangled-photon states using two-dimensional PPLN crystals Hugues Guillet de Chatellus a,giovanni Di Giuseppe a,alexanderv.sergienko a,b, Bahaa E. A. Saleh a,malvinc.teich a,b, a Quantum Imaging

More information

Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera

Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera Spatial correlations of spontaneously down-converted photon pairs detected with a single-photon-sensitive CCD camera References Bradley M. Jost, Alexander V. Sergienko, Ayman F. Abouraddy, Bahaa E. A.

More information

QUANTUM INFORMATION PROCESSING AND PRECISE OPTICAL MEASUREMENT WITH HYPER-ENTANGLED QUANTUM STATES

QUANTUM INFORMATION PROCESSING AND PRECISE OPTICAL MEASUREMENT WITH HYPER-ENTANGLED QUANTUM STATES QUANTUM INFORMATION PROCESSING AND PRECISE OPTICAL MEASUREMENT WITH HYPER-ENTANGLED QUANTUM STATES A. V. Sergienko Quantum Imaging Laboratory, Department of Electrical and Computer Engineering, Boston

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

Restoring dispersion cancellation for entangled photons produced by ultrashort pulses

Restoring dispersion cancellation for entangled photons produced by ultrashort pulses Restoring dispersion cancellation for entangled photons produced by ultrashort pulses Reinhard Erdmann* Air Force Research Laboratory, SNDP, Rome, New York 13441 David Branning NIST, 1 Bureau Drive, Stop

More information

Top Le# side TEST Right side bo.om

Top Le# side TEST Right side bo.om Top bo.om e# side TEST Right side Correlation functions in optics; classical and quantum 4. TUW, Vienna, Austria, April 2018 Luis A. Orozco www.jqi.umd.edu Some review papers on this topic: Baris I. Erkmen

More information

arxiv: v2 [quant-ph] 29 May 2017

arxiv: v2 [quant-ph] 29 May 2017 Complementarity Analysis of Interference between Frequency-Displaced Photonic Wave-Packets arxiv:1701.08103v2 [quant-ph] 29 May 2017 Gustavo C. Amaral, Elisa F. Carneiro, Guilherme P. Temporão and Jean

More information

Comparing quantum and classical correlations in a quantum eraser

Comparing quantum and classical correlations in a quantum eraser Comparing quantum and classical correlations in a quantum eraser A. Gogo, W. D. Snyder, and M. Beck* Department of Physics, Whitman College, Walla Walla, Washington 99362, USA Received 14 February 2005;

More information

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland Chapter 4b: χ (2) -nonlinearities with ultrashort pulses.

Lukas Gallmann. ETH Zurich, Physics Department, Switzerland  Chapter 4b: χ (2) -nonlinearities with ultrashort pulses. Ultrafast Laser Physics Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 4b: χ (2) -nonlinearities with ultrashort pulses Ultrafast Laser Physics ETH Zurich Contents Second

More information

arxiv: v3 [quant-ph] 14 Apr 2009

arxiv: v3 [quant-ph] 14 Apr 2009 Tailored photon-pair generation in optical fibers Offir Cohen, Jeff S. Lundeen, Brian J. Smith, Graciana Puentes, Peter J. Mosley, and Ian A. Walmsley Clarendon Laboratory, University of Oxford, Parks

More information

arxiv:quant-ph/ v2 3 Oct 2000

arxiv:quant-ph/ v2 3 Oct 2000 Quantum coherence and control in one- and two-photon optical systems Andrew J. Berglund Department of Physics and Astronomy, Dartmouth College, Hanover, NH 3755, USA Physics Division, P-3, Los Alamos National

More information

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology Highlights of 2004 Micronova Department of Electrical and Communications Engineering Micronova Seminar 3 December 2004 Group Leader: Hanne Ludvigsen Postdoctoral researcher: Goëry Genty Postgraduate students:

More information

Quantum Ghost Imaging by Measuring Reflected Photons

Quantum Ghost Imaging by Measuring Reflected Photons Copyright c 2008 ICCES ICCES, vol.8, no.3, pp.101-106 Quantum Ghost Imaging by Measuring Reflected Photons R. E. Meyers 1 and K. S. Deacon 1 Summary A new type of imaging, Quantum ghost imaging, is described

More information

Entanglement and Bell s Inequalities. Benjamin Feifke, Kara Morse. Professor Svetlana Lukishova

Entanglement and Bell s Inequalities. Benjamin Feifke, Kara Morse. Professor Svetlana Lukishova Entanglement and Bell s Inequalities Benjamin Feifke, Kara Morse Professor Svetlana Lukishova Abstract The purpose of this is experiment was to observe quantum entanglement by calculating Bell s Inequality

More information

Imaging with spatial correlation

Imaging with spatial correlation Società Italiana di Fisica XCVI Congresso Nazionale, Bologna, 0-4 Settembre, 010 Imaging with spatial correlation Alessandra Gatti Lucia Caspani Enrico Brambilla Luigi Lugiato The Theoretical Quantum Optics

More information

Double-slit interference of biphotons generated in spontaneous parametric downconversion from a thick crystal

Double-slit interference of biphotons generated in spontaneous parametric downconversion from a thick crystal INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF OPTICS B: QUANTUM AND SEMICLASSICAL OPTICS J. Opt. B: Quantum Semiclass. Opt. 3 (2001 S50 S54 www.iop.org/journals/ob PII: S1464-4266(0115159-1 Double-slit intererence

More information

Quantum Imaging: New Methods and Applications. Robert W. Boyd

Quantum Imaging: New Methods and Applications. Robert W. Boyd Quantum Imaging: New Methods and Applications Robert W. Boyd The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY 14627 http://www.optics.rochester.edu

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Coherence. This is based on. Chapter 10. Statistical Optics, Fundamentals of Photonics Bahaa E. A. Saleh, Malvin Carl Teich. and

Coherence. This is based on. Chapter 10. Statistical Optics, Fundamentals of Photonics Bahaa E. A. Saleh, Malvin Carl Teich. and Coherence This is based on Chapter 10. Statistical Optics, Fundamentals of Photonics Bahaa E. A. Saleh, Malvin Carl Teich and Lecture Note on Laser Technology and Optics Prof. Matti Kaivola Optics and

More information

XUV attosecond pulses

XUV attosecond pulses XUV attosecond pulses D. Charalambidis / Univ. of Crete chara@iesl.forth.gr E. Benis E. Goulielmakis E. Hert L. Nikolopoulos N.A. Papadogiannis P. Tallas In collaboration with G. Tsakiris P. Tallas K.

More information

4 Classical Coherence Theory

4 Classical Coherence Theory This chapter is based largely on Wolf, Introduction to the theory of coherence and polarization of light [? ]. Until now, we have not been concerned with the nature of the light field itself. Instead,

More information

Entangled lithography and microscopy

Entangled lithography and microscopy Entangled lithography and microscopy FRISNO8 Ein Bokek, Israel February 21-25, 2005 Lorenzo Maccone QUIT - Quantum Information Theory Group, Dip. di Fisica "A. Volta", PAVIA-ITALY Vittorio Giovannetti

More information

Physical Optics. Lecture 7: Coherence Herbert Gross.

Physical Optics. Lecture 7: Coherence Herbert Gross. Physical Optics Lecture 7: Coherence 07-05-7 Herbert Gross www.iap.uni-jena.de Physical Optics: Content No Date Subject Ref Detailed Content 05.04. Wave optics G Complex fields, wave equation, k-vectors,

More information

Constructive vs. destructive interference; Coherent vs. incoherent interference

Constructive vs. destructive interference; Coherent vs. incoherent interference Constructive vs. destructive interference; Coherent vs. incoherent interference Waves that combine in phase add up to relatively high irradiance. = Constructive interference (coherent) Waves that combine

More information

Robust and Miniaturized Interferometric Distance Sensor for In-Situ Turning Process Monitoring

Robust and Miniaturized Interferometric Distance Sensor for In-Situ Turning Process Monitoring Robust and Miniaturized Interferometric Distance Sensor for In-Situ Turning Process Monitoring F. Dreier, P. Günther, T. Pfister, J. Czarske, Technische Universität Dresden, Laboratory for Measuring and

More information

arxiv: v3 [physics.optics] 4 Feb 2016

arxiv: v3 [physics.optics] 4 Feb 2016 Spatial interference of light: transverse coherence and the Alford and Gold effect arxiv:1510.04397v3 [physics.optics] 4 Feb 2016 Jefferson Flórez, 1, Juan-Rafael Álvarez, 1 Omar Calderón-Losada, 1 Luis-José

More information

The spectrogram in acoustics

The spectrogram in acoustics Measuring the power spectrum at various delays gives the spectrogram 2 S ω, τ = dd E t g t τ e iii The spectrogram in acoustics E ssssss t, τ = E t g t τ where g t is a variable gating function Frequency

More information

Hong Ou Mandel experiment with atoms

Hong Ou Mandel experiment with atoms BEC on an MCP Hong Ou Mandel experiment with atoms Chris Westbrook Laboratoire Charles Fabry, Palaiseau FRISNO 13, Aussois 18 march 2015 2 particles at a beam splitter 1 particle at each input 4 possibilities:

More information

Downloaded from SPIE Digital Library on 02 Nov 2010 to Terms of Use:

Downloaded from SPIE Digital Library on 02 Nov 2010 to Terms of Use: High-delity entangled-photon link for Quantum Key Distribution testbed Giovanni Di Giuseppe a, Alexander V. Sergienko a,b, Bahaa E. A. Saleh a, and Malvin C. Teich a,b Quantum Imaging Laboratory a Department

More information

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators 9.10 Passive CEP-stabilization in parametric amplifiers 9.10.1 Active versus passive

More information

Polarization-sensitive quantum-optical coherence tomography

Polarization-sensitive quantum-optical coherence tomography PHYSICAL REVIEW A 69, 043815 (2004) Polarization-sensitive quantum-optical coherence tomography Mark C. Booth, 1 Giovanni Di Giuseppe, 2, * Bahaa E. A. Saleh, Alexer V. Sergienko, 2,3 Malvin C. Teich 1,2,3,

More information

Interference, Complementarity, Entanglement and all that Jazz

Interference, Complementarity, Entanglement and all that Jazz nterference, Complementarity, Entanglement and all that Jazz Mark Beck Dept. of Physics, Whitman College With lots of help from: Faculty: obert Davies (Seattle U) Students: Ashifi ogo, William Snyder,

More information

SPIN CORRELATED INTERFEROMETRY FOR POLARIZED AND UNPOLARIZED PHOTONS ON A BEAM SPLITTER

SPIN CORRELATED INTERFEROMETRY FOR POLARIZED AND UNPOLARIZED PHOTONS ON A BEAM SPLITTER Physical Review A 50, 3486 3491 (1994) SPIN CORRELATED INTERFEROMETRY FOR POLARIZED AND UNPOLARIZED PHOTONS ON A BEAM SPLITTER Mladen Pavičić Institut für Theoretische Physik, TU Berlin, Hardenbergstraße

More information

Unbalanced lensless ghost imaging with thermal light

Unbalanced lensless ghost imaging with thermal light 886 J. Opt. Soc. Am. A / Vol. 3, No. 4 / April 04 Gao et al. Unbalanced lensless ghost imaging with thermal light Lu Gao,,3 Xiao-long Liu, hiyuan heng, and Kaige Wang, * School of Science, China University

More information

Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion

Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion Statistics of Heralded Single Photon Sources in Spontaneous Parametric Downconversion Nijil Lal C.K. Physical Research Laboratory, Ahmedabad YouQu-2017 27/02/2017 Outline Single Photon Sources (SPS) Heralded

More information

Theory, developments and applications of optical coherence tomography

Theory, developments and applications of optical coherence tomography INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 38 (2005) 2519 2535 doi:10.1088/0022-3727/38/15/002 Theory, developments and applications of optical coherence

More information

F. Elohim Becerra Chavez

F. Elohim Becerra Chavez F. Elohim Becerra Chavez Email:fbecerra@unm.edu Office: P&A 19 Phone: 505 277-2673 Lectures: Monday and Wednesday, 5:30-6:45 pm P&A Room 184. Textbook: Many good ones (see webpage) Lectures follow order

More information

Course Syllabus. OSE6211 Imaging & Optical Systems, 3 Cr. Instructor: Bahaa Saleh Term: Fall 2017

Course Syllabus. OSE6211 Imaging & Optical Systems, 3 Cr. Instructor: Bahaa Saleh Term: Fall 2017 Course Syllabus OSE6211 Imaging & Optical Systems, 3 Cr Instructor: Bahaa Saleh Term: Fall 2017 Email: besaleh@creol.ucf.edu Class Meeting Days: Tuesday, Thursday Phone: 407 882-3326 Class Meeting Time:

More information

Is the speed of light in free-space always c? Miles Padgett FRS Kelvin Chair of Natural Philosophy

Is the speed of light in free-space always c? Miles Padgett FRS Kelvin Chair of Natural Philosophy Is the speed of light in free-space always c? Miles Padgett FRS Kelvin Chair of Natural Philosophy 1 What s the speed of light in free space? Always? The team www.physics.gla.ac.uk/optics Jacqui Romero

More information

Pulsed Sagnac source of polarization-entangled photon pairs in telecommunication band

Pulsed Sagnac source of polarization-entangled photon pairs in telecommunication band Pulsed Sagnac source of polarization-entangled photon pairs in telecommunication band Heonoh Kim 1, Osung Kwon 2, & Han Seb Moon 1,* 1 Department of Physics, Pusan National University, Geumjeong-Gu, Busan

More information

34. Even more Interference Effects

34. Even more Interference Effects 34. Even more Interference Effects The Fabry-Perot interferometer Thin-film interference Anti-reflection coatings Single- and multi-layer Advanced topic: Photonic crystals Natural and artificial periodic

More information