Attosecond spectroscopy on solids

Size: px
Start display at page:

Download "Attosecond spectroscopy on solids"

Transcription

1 Attosecond spectroscopy on solids Reinhard Kienberger Technische Universität München Max-Planck Institut für Quantenoptik, Garching X-Ray Science in the 21 st Century KITP 06/Aug/2010

2 Overview Needs for generating isolated attosecond x-ray pulses via HHG: Phase-stable few-cycle driver pulses at long wavelengths attosecond measurement technique: streaking What to do with attosecond pulses? Pulse duration measurement at LCLS

3 The Laser System Hollow Fiber/ Chirped Mirror Pulse Compressor <3.5 fs pulse duration 400 µj energy Experiment Booster: 4 khz, 4 mj, 28 fs CPA Amplifier 20 fs pulse duration 1.3 mj energy 3 khz repetition rate Ti:Sapphire Oscillator sub-10 fs pulse duration 4.6 nj energy 82 MHz repetition rate

4 key tools of attosecond technology: synthesized few-cycle wave & synchronized sub-fs xuv pulse hollow fiber neon gas intensity spectrum normalized intensity pulse duration < 3.5 fs pulse energy > 0.4 mj < 1.5 cycles > 0.1 TW λ [nm] A. L. Cavalieri et al, New J. Phys. 9, 242 (2007); E. Goulielmakis et al, Science 317, 769 (2007) delay [fs]

5 Few-Cycle Laser Pulses Control of the Waveform E(t) = E a (t)cos(ω L t + φ) Cosine waveform φ = 0 Sine waveform φ = π/2 T 0 /4 625 as (@ λ µm) T 0 = λ 0 /c 2.5 fs Requires measurement & control of φ

6 Detection of the absolute phase Electron detection: MCP Shielded drift tube Trigger:PD Left-right ATI spectra Ionized gas: Xenon slit MCP Laser beam Phase change by glass wedges Previous results: average of shots Paulus et al. Nature, (200

7 CEP of consecutive phase-stabilized pulses consecutive time-of-flight ATI spectra of rescattered electrons (laser rep. rate = 3kHz) phase distribution of CEP-stabilized shots (4500 shots; 3kHz) Std single shot = 278mrad shot-to-shot evolution of the CEP

8 Parametric (Lissajous-like) representation Wittmann et al. Nature Physics 4 (200 single shot left-right TOF spectra CEP=0 CEP=π Non-phase-stabilized single shots- random distribution asymm 2 7π/6 π 5π/6 4π/3 Left- Left+Righ Right t phase scan- limited by fluctuations asymm. 2 11π/6 5π/3 3π/2 mean std asymm 1 π/2 2π/3 High precision asymm. 1 2π π/6 π/3 No phase ambiguit y

9 Non-phase-stabilized laser shots as they re arriving non-stabilized shots has random phase distribution first principle calibration: phase difference between shots is immediately given real CEP retrieved by TDSE Wittmann et al. Nature Physics 4 (200

10 Phase-scan with a stabilized laser Wittmann et al. Nature Physics 4 (200

11 High-order Harmonic Generation in the gas phase Step 1 Optical field ionization E(t) L e - Step 2 Step 3 XUV emission on recollision e - E(t) L Spectral Intensity - e Acceleration E(t) L e - P.B. Corkum, PRL 71 (1993)

12 Extending the cutoff using an IR driving field

13 Comparison VIS / IR driver V. Tosa and V. Yakovlev

14 2.1 μm few-cycle OPCPA system New pump laser Disc regen 3 khz / ps mj/ 27 mj > 0.9 2mJ mj,.?? 15 fs

15 IR driven HHG Cut-off ~1.6 kev

16 Recombination Emission from Strongly-Driven Atoms Multi-cycle driver pulse : τ p» T o High-order odd harmonics of the driver laser Spectral intensity 25 nm 12.5 nm 7.5 nm Harmonic order Cut-off harmonics: train of attosecond bursts L Huillier, Balcou, 1993, PRL 70, 774 Macklin et al, 1993, PRL 70, 766 Paul et al, Science 292, 1689 (2001) Tsakiris, Charalambidis et al, 2003

17 steering bound electrons with controlled light fields: the birth of an attosecond pulse A. Baltuska et al, Nature 421, 611 (2003) xuv-filter 1000 intensity [a.u.] E L (t) E L (t) E L (t) E L (t) E L (t) photon energy [ev] E L (t) ħω x electron trajectories cosine wave

18 attosecond xuv/x-ray pulse generation 1000 intensity [counts] photon energy [ev] sine wave A. Baltuska et al., Nature 421, 611 (2003)

19 attosecond pulse generationand measurement time-of-light electron spectrometer few-femtosecond, femtosecond, few-cycle laser pulse λ L 750 nm τ L = fs W L = mj Ne gas xuv pulse knocks electrons free in the presence of the few-cycle laser field 1000 intensity [a.u.] 0 50 atomic gas XUV spot near- diffraction-limited xuv/soft-x-ray beam Drescher et al, Science 291, 1923 (2001) Hentschel et al, Nature 414, 509 (2001) Kienberger et al, Science 297, 1144 (2002)

20 Ionization with an Isolated Attosecond Pulse Ne Δp() t = r e t r E L () t dt Mo-Si multilayer mirror delay possible Time-of-flight spectrometer Δp p f p i Nozzle Detection as in: Kienberger et al., Science 297, 1144 (2002) XUV cut-off energy: ~100 ev Mirror reflectivity bandwidthup to: 30 ev (FWHM)

21 Ionization at different instants of time

22 final momentum of photoelectrons depending on the release time final momentum of the electron time +Δp max 0 -Δp max

23 Laser electric field Mapping Time to Energy Change in electron energy ΔW(t 7 ) ΔW(t 6 ) ΔW(t 5 ) t 1 t 2 t 3 t 4 t 5 t 6 t 7 instant of electron release ΔW(t 4 ) ΔW(t 3 ) ΔW(t 2 ) Incident X-ray intensity ΔW(t 1 ) ħω x -500 as as

24 Optical Streak Camera, 1834

25 sampling field oscillations ΔW +10 ev 0-10 ev ħω x t D R. Kienberger et al, Nature 294 (2004)

26 a streaking trace delay [fs] E. Goulielmakis et al, Science 305, 1267 (2004 electron kinetic energy [ev]

27 Goulielmakis et al, Science 320, 1614 (2008) isolated sub-100-as pulses

28 AS beamline

29 real-time observation of multi-electron dynamics (excitation, relaxation, correlation) in atoms, molecules & solids? by means of strong-field-induced free-free transitions: streaking kinetic energy 0 unocc. valence occupied valence final charge state binding energy photo- emission & shake up +1 valence photo- emission +1 Auger decay +2 core-level photo- emission +1 Auger decay & shake up +2 core orbital

30 Ionization of electrons in a solid sample TOF NIR XUV A () t l Al (') t sample system

31 proof of principle: attosecond streaking of core-level (4f) attosecond spectroscopy in solids? & conduction-band (Fermi-edge) electrons in tungsten 800 E L (t) electrons from 4f band Δτ = 110 Fermi ± 70 edge as energy 0 delay delay [fs] E X (t) 0 τ x = 300 as ħω x = 95 ev τ L = 4f 5 fs band λ L = 750 nm valence core-level Auger photo- Auger electrons from -1.5 photo- photo- the decay emission 4f band reach the surface decay emission ~ emission 110 as later than & those & from the Fermi- shake up shake up photoelectron energy [ev] +1 edge energy shift [ev] Fermi edge delay [fs] A. L. Cavalieri et al., Nature 449, 1029 (2007)

32 as spectroscopy of clean metal surface Re (0001) Samples: Re(0001) and W(110) Photon energies: 90, 120, 130 ev Core level electrons delayed by as. Δt CB 4f Spectrogram analysis: retrieval algorithm based on analytical solution of TDSE Delay of 4f core levels relative to CB: 64 ± 10 as

33 Origin of delay? Propagation effect Assumption: streaking acts outside solid Different inelastic mean free path different depth profile Different group velocity (final-state effect?) 4f emitted after CB E E, vac, solid 16 Theory: A. Kazansky et al., PRL 102, (2009). C. Lemell et al., PRA 79, (2009). C.-H. Zhang et al., PRL 102, (2009). J.C. Baggesen et al., PRA 78, (2008).

34 Current Effort: Absolute Emission Time..blow gas on the sample.. geometric effects.

35 What about the reference? Ne 2s / 2p gas phase kinetic energy 0 2p 2s delay [fs] intensity [arb. units] photoelectron energy energy [ev] [ev] binding energy E X (t) delay emission of low-energy photoelectron is delayed by about 20 as M. Schultze et al, Science 328,, 1658 (2010).

36 Duration of photoemission? Idea: Introduce electronic reference state localized at the surface time zero marker Baggesen et al., PRA 78, (2008).

37 Xe monolayer on Re Re CB Xe 5p Re 4f Xe 4d

38 Xe monolayer on Re Order Time delay of appearance Re CB Xe 5p Re 4f 46 as 65 as 6 as ± 11 as Xe 4d NIR intensity ~ W/cm 2

39 Comparison atomic vs. solid xenon atomic xenon solid xenon (50 layers) +22 ± 12 as 4d is first electron propagation effects 20 ± 3 as 5p is first

40 Electron transport through defined adlayers 1 3 metallic layers substrate and electron states

41 Electron transport through defined adlayers IR XUV electron transport IR refraction and penetration dielectric multilayer substrate localized and delocalized electron states

42 Outlook Generation of UV pulses for excitation of molecules: UV-pump/XUV-probe Charge-transfer in molecules and soldis

43 Attosecond 2PPE Goal: study excited state dynamics with as to few-fs time resolution Requirements: few-cycle UV pump pulses (hν= 4-6 ev) synchronized with Isolated XUV probe pulse (hν= ev) TOF E ΔE hν(uv) variable Δt

44 Intense pulses in the deep ultraviolet Gas target, Ne 1 9 bar SD- FROG setup U. Graf et al., Optics Express 16,18956 (2008)

45 Emission of UV light at different target pressures

46 Intense (>2 μj) pulses in the deep ultraviolet U. Graf et al., Optics Express 16,18956 (2008)

47 Autocorrelation trace on Kr ion yield Graf et al. Opt. Exp. accepted

48 delay chamber

49 Collinear generation of UV and XUV NIR/VIS τ < 4 fs 400 μj Neon ca bar Neon ca 3-5 bar Argon ca 1 bar XUV τ 80 as UV τ 4 fs E 1.5μJ Isolated XUV attosecond pulses 1000 Intensity [counts] Photon energy [ev] A. Baltuska et al., Nature 421, 611 (2003) E. Goulielmakis et al., Science Vol. 320 (2008) Intense sub-4 fs pulses in the deep UV Intensity Phase Intensity Phase Time [fs] Wavelength [nm] U. Graf et al., Optics Express 16, (2008)

50 Collinear generation of UV and XUV NIR/VIS NIR/VIS + UV + XUV Neon ca 3-5 bar Argon ca 1 bar Neon ca bar

51 Collinear generation of UV and XUV up to 1 µj Neon Neon 230 mbar up to 10 7 ph/pulse E. Bothschafter et al., Optics Express (2010)

52 Exciting an electron wavepacket in a molecule Sampling the evolution with XUV AS-pulses First candidate: ozone

53 Oriented molecules on a surface uv- or SAM

54 probing charge transfer/migration in complex (bio-)molecules? F. F. Remacle, Remacle, R. R. D. D. Levine, Levine, PNAS PNAS 103, 103, (2005) (2005) photoelectron energy [ev] time delay[fs]

55 Colleagues & Cooperations F. Krausz R. Ernstorfer M. Schultze Y. Deng A. Schiffrin N. Karpowics E. Goulielmakis A. Cavalieri X. Gu G. Marcus I. Grguras Jobst M. Fiess W. Helml T. Paasch M. F. Reiter B. Horvath E. Magerl T. Metzger B. Dennhardt M. Hassan T. Wittmann E. Bothschafter A. Schwarz theory: J. Gagnon, V. Yakovlev MPQ Garching, Germany P. Echenique San Sebastian, Spain XUV optics & spectroscopy: surface dynamics: CEP measurement: M. Hofstetter, U. Kleineberg Ludwig Maximilians Univ. Munich, Germany S. Neppl, P. Feulner, J. Barth TU Munich, Germany G. G. Paulus Univ. Jena, Germany

56 X-ray Pulse duration measurement at LCLS In collaboration with: DESY, CFEL, Ohio State U., Dublin U., SLAC

57 Laser-field dressed photoelectrons Electron energy E L (t) I x (t) hν L hν x τ x >> T 0 /2 long X-ray pulse W binding

58 Laser-field dressed photoelectrons λ IR = 2 μm T 0 /2 = 3.3 fs I x (t) Electron energy E L (t) τ x < T 0 /2 Detector short X-ray pulse hν x W binding 0

59 taking into account: - photon energy jitters by 1 % - bandwidth jitters (7 ev + 3 ev) single-shot streaking measurement of τ x-ray E el Maximum shift! +ΔE ħν-i p Maximum broadening! A Laser - ΔE time-jitter Retrieval of A max ħω x Retrieval of τ x-ray

60 spectra sorted acc. to phase cavity timer long pulse, λ Laser = 2 μm photoelectron energy (TOF) delay FEL IR

61 spectra sorted acc. to phase cavity timer short pulse, λ Laser = 2 μm toelectron energy (TOF) delay FEL IR

62 g{x XÇw

High-Harmonic Generation II

High-Harmonic Generation II Soft X-Rays and Extreme Ultraviolet Radiation High-Harmonic Generation II Phasematching techniques Attosecond pulse generation Applications Specialized optics for HHG sources Dr. Yanwei Liu, University

More information

stabilized 10-fs lasers and their application to laser-based electron acceleration

stabilized 10-fs lasers and their application to laser-based electron acceleration Carrier-envelope envelope-phase-stabilized stabilized sub-10 10-fs lasers and their application to laser-based electron acceleration L. Veisz, E. Goulielmakis, A. Baltuška, and F. Krausz Vienna University

More information

Effects of driving laser jitter on the attosecond streaking measurement

Effects of driving laser jitter on the attosecond streaking measurement Effects of driving laser jitter on the attosecond streaking measurement Shiyang Zhong, 1 Xinkui He, 1, Peng Ye, 1 Minjie Zhan, 1 Hao Teng 1 and Zhiyi Wei 1,* 1 Beijing National Laboratory for Condensed

More information

Looking into the ultrafast dynamics of electrons

Looking into the ultrafast dynamics of electrons Looking into the ultrafast dynamics of electrons G. Sansone 1,2,3 1) Dipartimento di Fisica Politecnico Milano, Italy 2) Institute of Photonics and Nanotechnology, CNR Politecnico Milano Italy 3) Extreme

More information

attosecond laser pulse

attosecond laser pulse Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@atto.t.u-tokyo.ac.jp Advanced Plasma and Laser Science E attosecond laser pulse 1 attosecond pulse train (APT) isolated attosecond

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi: 10.1038/nature069 SUPPLEMENTARY INFORMATION Attosecond spectroscopy in condensed matter Supplementary Information A. L. Cavalieri 1, N. Müller, Th. Uphues 1,, V. S. Yakovlev 3, A. Baltuška 1,4, B.

More information

High order harmonic generation and applications

High order harmonic generation and applications High order harmonic generation and applications E. CONSTANT Centre Laser Intenses et Applications H39 H69 ELI & Hilase Summer School 2016 1 21 26 August 2016 Introduction Laser are unique light sources:

More information

WP-3: HHG and ultrafast electron imaging

WP-3: HHG and ultrafast electron imaging WORKPACKAGE WP-3: HHG and ultrafast electron imaging Coordinators: P. Salières (CEA), A. Assion (FEMTO, Spectra Physics Vienna) Period: Start Month 4 End Month 48 Leading Participants (Orange in the picture):

More information

1 Mathematical description of ultrashort laser pulses

1 Mathematical description of ultrashort laser pulses 1 Mathematical description of ultrashort laser pulses 1.1 We first perform the Fourier transform directly on the Gaussian electric field: E(ω) = F[E(t)] = A 0 e 4 ln ( t T FWHM ) e i(ω 0t+ϕ CE ) e iωt

More information

XUV attosecond pulses

XUV attosecond pulses XUV attosecond pulses D. Charalambidis / Univ. of Crete chara@iesl.forth.gr E. Benis E. Goulielmakis E. Hert L. Nikolopoulos N.A. Papadogiannis P. Tallas In collaboration with G. Tsakiris P. Tallas K.

More information

Generation and Applications of High Harmonics

Generation and Applications of High Harmonics First Asian Summer School on Aug. 9, 2006 Generation and Applications of High Harmonics Chang Hee NAM Dept. of Physics & Coherent X-ray Research Center Korea Advanced Institute of Science and Technology

More information

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators

Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators Nonlinear Optics (WiSe 2016/17) Lecture 9: December 16, 2016 Continue 9 Optical Parametric Amplifiers and Oscillators 9.10 Passive CEP-stabilization in parametric amplifiers 9.10.1 Active versus passive

More information

High Harmonic Generation of Coherent EUV/SXR Radiation. David Attwood University of California, Berkeley

High Harmonic Generation of Coherent EUV/SXR Radiation. David Attwood University of California, Berkeley High Harmonic Generation of Coherent EUV/SXR Radiation David Attwood University of California, Berkeley Prof. David Attwood / UC Berkeley EE213 & AST21 / Spring 29 14_HHG_29.ppt HHG: Extreme nonlinear

More information

Attosecond Science (1) (1)

Attosecond Science (1) (1) Kenichi Ishikawa ( ) http://ishiken.free.fr/english/lecture.html ishiken@atto.t.u-tokyo.ac.jp Advanced Plasma and Laser Science E Attosecond Science (1) (1) 1 m n f a 3 10 8 (m/s) 30 10 15 (s) = 9 10 6

More information

time is defined by physical processes

time is defined by physical processes frontiers in attosecond science Louis F. DiMauro as 100 as as as n as 10-18 s 25 as 1 as 10-18 s 1 as n as modified from LCLS/SLAC website time is defined by physical processes a history of ultra-fast:

More information

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 The Lund Attosecond Science Centre in the MEDEA network PER JOHNSSON @ THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 Lund University Founded in 1666 47 700 students (individuals) 7 500 employees - 840

More information

Overview: Attosecond optical technology based on recollision and gating

Overview: Attosecond optical technology based on recollision and gating Overview: Attosecond optical technology based on recollision and gating Zenghu Chang Kansas State University Team members Kansas State University Zenghu Chang (Dept. of Phys.) Lew Cocke (Dept. of Phys.)

More information

AMO physics with LCLS

AMO physics with LCLS AMO physics with LCLS Phil Bucksbaum Director, Stanford PULSE Center SLAC Strong fields for x-rays LCLS experimental program Experimental capabilities End-station layout PULSE Ultrafast X-ray Summer June

More information

A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology. E.E. Serebryannikov, A.M.

A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology. E.E. Serebryannikov, A.M. A.J. Verhoef, A.V. Mitrofanov, D. Kartashov, A. Baltuska Photonics Institute, Vienna University of Technology E.E. Serebryannikov, A.M. Zheltikov Physics Department, International Laser Center, M.V. Lomonosov

More information

Attosecond Science. Jon Marangos, Director Extreme Light Consortium, Imperial College London

Attosecond Science. Jon Marangos, Director Extreme Light Consortium, Imperial College London Attosecond Science Jon Marangos, Director Extreme Light Consortium, Imperial College London Electron Orbit in Bohr Model T orbit 150 as for H ground state Electron Motion In most matter electrons are in

More information

Ultrafast XUV Sources and Applications

Ultrafast XUV Sources and Applications Ultrafast XUV Sources and Applications Marc Vrakking Workshop Emerging Sources Lund, June 12th 2007 Overview: Attosecond Science from a user perspective What do we want? What do we use as our starting

More information

HHG Sub-cycle dynamics

HHG Sub-cycle dynamics Quantum Optics and Laser Science Group Blackett Laboratory, Imperial College London HHG Sub-cycle dynamics 1. Chirp of electron recollision 2. Measuring ultra-fast intramolecular proton motion 3. Controlling

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10721 Experimental Methods The experiment was performed at the AMO scientific instrument 31 at the LCLS XFEL at the SLAC National Accelerator Laboratory. The nominal electron bunch charge

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

Attosecond laser systems and applications

Attosecond laser systems and applications Attosecond laser systems and applications Adrian N. Pfeiffer Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 8th Annual Laser Safety Officer Workshop September

More information

Ultrafast nanoscience with ELI ALPS

Ultrafast nanoscience with ELI ALPS Ultrafast nanoscience with ELI ALPS Péter Dombi Wigner Research Centre for Physics, Budapest & Max Planck Institute of Quantum Optics, Garching Overview ultrafast (femtosecond/attosecond) dynamicsin metal

More information

X-RAY LASER PULSE CHARACTERISATION VIA THZ STREAKING. John T Costello

X-RAY LASER PULSE CHARACTERISATION VIA THZ STREAKING. John T Costello X-RAY LASER PULSE CHARACTERISATION VIA THZ STREAKING John T Costello National Centre for Plasma Science & Technology (NCPST)/ School of Physical Sciences, Dublin City University h#p://www.ncpst.ie h#p://www.physics.dcu.ie/~jtc

More information

Introduction to intense laser-matter interaction

Introduction to intense laser-matter interaction Pohang, 22 Aug. 2013 Introduction to intense laser-matter interaction Chul Min Kim Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST) & Center for Relativistic

More information

Attosecond-correlated dynamics of two electrons in argon

Attosecond-correlated dynamics of two electrons in argon PRAMANA c Indian Academy of Sciences Vol. 82, No. 1 journal of January 2014 physics pp. 79 85 Attosecond-correlated dynamics of two electrons in argon V SHARMA 1,,NCAMUS 2, B FISCHER 2, M KREMER 2, A RUDENKO

More information

Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses

Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses Supplementary Material for In situ frequency gating and beam splitting of vacuum- and extreme-ultraviolet pulses Rajendran Rajeev, Johannes Hellwagner, Anne Schumacher, Inga Jordan, Martin Huppert, Andres

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

Femtosecond ultraviolet photoelectron spectroscopy of ultra-fast surface processes

Femtosecond ultraviolet photoelectron spectroscopy of ultra-fast surface processes INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS D: APPLIED PHYSICS J. Phys. D: Appl. Phys. 38 (2005) R253 R267 doi:10.1088/0022-3727/38/16/r01 TOPICAL REVIEW Femtosecond ultraviolet photoelectron spectroscopy

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

C. D. Lin Kansas State U.

C. D. Lin Kansas State U. Dynamic Imaging of molecules using laser-induced Highorder harmonics and High-energy photoelectrons Goal: probing time-dependent structural changes Example: Isomerization of C 2 H 2 C. D. Lin Kansas State

More information

Layout of the HHG seeding experiment at FLASH

Layout of the HHG seeding experiment at FLASH Layout of the HHG seeding experiment at FLASH V. Miltchev on behalf of the sflash team: A. Azima, J. Bödewadt, H. Delsim-Hashemi, M. Drescher, S. Düsterer, J. Feldhaus, R. Ischebeck, S. Khan, T. Laarmann

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

Photoelectron Spectroscopy using High Order Harmonic Generation

Photoelectron Spectroscopy using High Order Harmonic Generation Photoelectron Spectroscopy using High Order Harmonic Generation Alana Ogata Yamanouchi Lab, University of Tokyo ABSTRACT The analysis of photochemical processes has been previously limited by the short

More information

Jitter measurement by electro-optical sampling

Jitter measurement by electro-optical sampling Jitter measurement by electro-optical sampling VUV-FEL at DESY - Armin Azima S. Duesterer, J. Feldhaus, H. Schlarb, H. Redlin, B. Steffen, DESY Hamburg K. Sengstock, Uni Hamburg Adrian Cavalieri, David

More information

Chapter 13. High Harmonic Generation

Chapter 13. High Harmonic Generation Chapter 13 High Harmonic Generation High harmonic generation (HHG) is a technique for producing spatially and temporally coherent extreme-ultraviolet (EUV) light, as well as light pulses as short as hundred

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Richard Miles and Arthur Dogariu Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA Workshop on Oxygen Plasma Kinetics Sept 20, 2016 Financial support: ONR and MetroLaser

More information

Extreme timescale core-level spectroscopy with tailored XUV pulses

Extreme timescale core-level spectroscopy with tailored XUV pulses Extreme timescale core-level spectroscopy with tailored XUV pulses R. Singla 1, D.C. Haynes 1, K. Hanff 2, I. Grguraš 1,3, S. Schulz 1,4, H.Y. Liu 1, A. Simoncig 1,5, F. Tellkamp 1, S. Bajt 4, K. Rossnagel

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Extatic welcome week, 22/9/2017

Extatic welcome week, 22/9/2017 Extatic welcome week, 22/9/2017 Motivation Phys. Today 65, 9, 44 (2012) 2 Need for short X-ray pulses Motivation Synchrotrons: 100 ps (fs) XFEL (X-ray Free Electron Lasers): >10 fs Superbright, but large

More information

Attosecond optics and technology: progress to date and future prospects [Invited]

Attosecond optics and technology: progress to date and future prospects [Invited] Review Vol. 33, No. 6 / June 2016 / Journal of the Optical Society of America B 1081 Attosecond optics and technology: progress to date and future prospects [Invited] ZENGHU CHANG, 1, *PAUL B. CORKUM,

More information

ATTOSECOND AND ANGSTROM SCIENCE

ATTOSECOND AND ANGSTROM SCIENCE ADVANCES IN ATOMIC, MOLECULAR AND OPTICAL PHYSICS, VOL. 54 ATTOSECOND AND ANGSTROM SCIENCE HIROMICHI NIIKURA 1,2 and P.B. CORKUM 1 1 National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario,

More information

THz field strength larger than MV/cm generated in organic crystal

THz field strength larger than MV/cm generated in organic crystal SwissFEL Wir schaffen Wissen heute für morgen 1 2 C. Vicario 1, R. Clemens 1 and C. P. Hauri 1,2 THz field strength larger than MV/cm generated in organic crystal 10/16/12 Workshop on High Field THz science

More information

ELISS

ELISS ELISS 2016 22. 8. 2016 Study nature in smaller spatial and shorter time scales Spatial resolution d = 0.61 λ NA Motivation Phys. Today 65, 9, 44 (2012) Temporal resolution ~pulse duration in pump-probe

More information

Ultrafast Laser Physics!

Ultrafast Laser Physics! Ultrafast Laser Physics! Ursula Keller / Lukas Gallmann ETH Zurich, Physics Department, Switzerland www.ulp.ethz.ch Chapter 10: Ultrafast Measurements Ultrafast Laser Physics ETH Zurich Ultrafast laser

More information

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics

Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Industrial Applications of Ultrafast Lasers: From Photomask Repair to Device Physics Richard Haight IBM TJ Watson Research Center PO Box 218 Yorktown Hts., NY 10598 Collaborators Al Wagner Pete Longo Daeyoung

More information

4. High-harmonic generation

4. High-harmonic generation Advanced Laser and Photn Science (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) Kenichi Ishikawa () http://ishiken.free.fr/english/lecture.html ishiken@n.t.u-tokyo.ac.jp Advanced Laser and Photon

More information

Developments for the FEL user facility

Developments for the FEL user facility Developments for the FEL user facility J. Feldhaus HASYLAB at DESY, Hamburg, Germany Design and construction has started for the FEL user facility including the radiation transport to the experimental

More information

Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements

Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements Circularly-polarized laser-assisted photoionization spectra of argon for attosecond pulse measurements Z. X. Zhao, Zenghu Chang, X. M. Tong and C. D. Lin Physics Department, Kansas State University, Manhattan,

More information

Connecting Attosecond Science and XUV FEL Research

Connecting Attosecond Science and XUV FEL Research Connecting Attosecond Science and XUV FEL Research Marc Vrakking Attosecond Workshop Imperial College, May 13th 2008 Overview Present status of attosecond science - recent example: electron localization

More information

Hiromitsu TOMIZAWA XFEL Division /SPring-8

Hiromitsu TOMIZAWA XFEL Division /SPring-8 TUPLB10 (Poster: TUPB080) Non-destructive Real-time Monitor to measure 3D- Bunch Charge Distribution with Arrival Timing to maximize 3D-overlapping for HHG-seeded EUV-FEL Hiromitsu TOMIZAWA XFEL Division

More information

Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS. 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay

Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS. 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay Generation of ultrashort XUV femtosecond to attosecond pulses Katalin Varjú ELI-ALPS 2nd MOLIM Training School 6 10 March, 2017 Paris-Saclay Characteristic times Krausz: RevModPhys 81, 163 (2009) Fs light

More information

Supplemental material for Bound electron nonlinearity beyond the ionization threshold

Supplemental material for Bound electron nonlinearity beyond the ionization threshold Supplemental material for Bound electron nonlinearity beyond the ionization threshold 1. Experimental setup The laser used in the experiments is a λ=800 nm Ti:Sapphire amplifier producing 42 fs, 10 mj

More information

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme

R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme R&D experiments at BNL to address the associated issues in the Cascading HGHG scheme Li Hua Yu for DUV-FEL Team National Synchrotron Light Source Brookhaven National Laboratory FEL2004 Outline The DUVFEL

More information

Annual Meeting MPQ-LMU Laboratory for Attosecond Physics (LAP)

Annual Meeting MPQ-LMU Laboratory for Attosecond Physics (LAP) Annual Meeting - Laboratory for Attosecond Physics (LAP) Frauenchiemsee 6-10 October 2008 Program Organizers: Alexander Apolonskiy Ferenc Krausz Annual Meeting - Laboratory for Attosecond Physics (LAP)

More information

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf Sfb 658 Colloquium 11 May 2006 Part II Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy Martin Wolf Motivation: Electron transfer across interfaces key step for interfacial and surface dynamics

More information

Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field

Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field Wei Cao, Peixiang Lu, Pengfei Lan, Xinlin Wang, and Guang Yang Wuhan National Laboratory for Optoelectronics and

More information

Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics

Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics Ultrashort Phase Locked Laser Pulses for Asymmetric Electric Field Studies of Molecular Dynamics Kelsie Betsch University of Virginia Departmentt of Physics AMO/Fourth Year Seminar April 13, 2009 Overarching

More information

Pump/Probe Experiments

Pump/Probe Experiments Cheiron School 2008 Pump/Probe Experiments T. Gejo (University of Hyogo) Today s Topics Univ. of Hyogo? Where is it? General aspects of pump/probe experiments Laser/Synchrotron pump/probe experiments FEL/Laser

More information

Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope

Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope 1 Coherent Electron Scattering Captured by an Attosecond Quantum Stroboscope J. Mauritsson 1, P. Johnsson 1, E. Gustafsson 1, M. Swoboda 1, T. Ruchon 1, A. L Huillier 1 & K. J. Schafer 2 1 Department of

More information

Atomic Photoionization Dynamics in Intense Radiation Fields

Atomic Photoionization Dynamics in Intense Radiation Fields Atomic Photoionization Dynamics in Intense Radiation Fields M. Meyer LIXAM, Centre Universitaire Paris Sud, Orsay France - Introduction - Two-Color (XUV + NIR) Experiments - intense NIR - intense XUV -

More information

High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions

High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions High-order harmonics with fully tunable polarization by attosecond synchronization of electron recollisions,, Ofer Kfir, Zvi Diskin, Pavel Sidorenko and Oren Cohen Department of Physics and Optical Engineering,

More information

Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv: v1 [physics.atom-ph] 12 Jun 2014

Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv: v1 [physics.atom-ph] 12 Jun 2014 Multiphoton transitions for delay-zero calibration in attosecond spectroscopy arxiv:1406.3137v1 [physics.atom-ph] 1 Jun 014 J Herrmann 1, M Lucchini 1, S Chen, M Wu, A Ludwig 1, L Kasmi 1, K J Schafer,

More information

Models for Time-Dependent Phenomena

Models for Time-Dependent Phenomena Models for Time-Dependent Phenomena I. Phenomena in laser-matter interaction: atoms II. Phenomena in laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein p. Outline Phenomena in

More information

AMO at FLASH. FELs provide unique opportunities and challenges for AMO physics. due to essentially three reasons:

AMO at FLASH. FELs provide unique opportunities and challenges for AMO physics. due to essentially three reasons: Experience at FLASH AMO at FLASH FELs provide unique opportunities and challenges for AMO physics due to essentially three reasons: AMO at FLASH 1. huge integrated flux dilute samples Highly charged ions

More information

CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 1-II February Intense Few-Cycle Infrared Laser Pulses at the Advanced Laser Light Source

CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 1-II February Intense Few-Cycle Infrared Laser Pulses at the Advanced Laser Light Source CHINESE JOURNAL OF PHYSICS VOL. 52, NO. 1-II February 2014 Review Intense Few-Cycle Infrared Laser Pulses at the Advanced Laser Light Source B. E. Schmidt, 1 A. D. Shiner, 2 M. Giguère, 1 C. Trallero-Herrero,

More information

Undulator radiation from electrons randomly distributed in a bunch

Undulator radiation from electrons randomly distributed in a bunch Undulator radiation from electrons randomly distributed in a bunch Normally z el >> N u 1 Chaotic light Spectral property is the same as that of a single electron /=1/N u Temporal phase space area z ~(/

More information

Review Article Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements

Review Article Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements Hindawi Publishing Corporation The Scientific World Journal Volume 213, Article ID 12767, 18 pages http://dx.doi.org/1.1155/213/12767 Review Article Strong Field-Induced Frequency Conversion of Laser Radiation

More information

IV. Surface analysis for chemical state, chemical composition

IV. Surface analysis for chemical state, chemical composition IV. Surface analysis for chemical state, chemical composition Probe beam Detect XPS Photon (X-ray) Photoelectron(core level electron) UPS Photon (UV) Photoelectron(valence level electron) AES electron

More information

EUV lithography and Source Technology

EUV lithography and Source Technology EUV lithography and Source Technology History and Present Akira Endo Hilase Project 22. September 2017 EXTATIC, Prague Optical wavelength and EUV (Extreme Ultraviolet) VIS 13.5nm 92eV Characteristics of

More information

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation

Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation Journal of the Korean Physical Society, Vol. 49, No. 1, July 2006, pp. 337 341 Revival Structures of Linear Molecules in a Field-Free Alignment Condition as Probed by High-Order Harmonic Generation G.

More information

Development of a table top TW laser accelerator for medical imaging isotope production

Development of a table top TW laser accelerator for medical imaging isotope production Development of a table top TW laser accelerator for medical imaging isotope production R U I Z, A L E X A N D R O 1 ; L E R A, R O B E R T O 1 ; T O R R E S - P E I R Ó, S A LVA D O R 1 ; B E L L I D O,

More information

Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom

Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom J. Chen 1, 3, Ya Cheng 2,, and Zhizhan Xu 2, 1 Institute of Applied Physics and Computational Mathematics,

More information

Time-resolved photoelectron spectroscopy: An ultrafast clock to study electron dynamics at surfaces, interfaces and condensed matter

Time-resolved photoelectron spectroscopy: An ultrafast clock to study electron dynamics at surfaces, interfaces and condensed matter Time-resolved photoelectron spectroscopy: An ultrafast clock to study electron dynamics at surfaces, interfaces and condensed matter Benjamin Stadtmüller Department of Physics and Research Center OPTIMAS,

More information

Small Quantum Systems Scientific Instrument

Small Quantum Systems Scientific Instrument Small Quantum Systems Scientific Instrument WP-85 A. De Fanis, T. Mazza, H. Zhang, M. Meyer European XFEL GmbH TDR_2012: http://www.xfel.eu/documents/technical_documents XFEL Users Meeting 2014, January

More information

Direct observation of electron propagation and dielectric. screening on the atomic length scale

Direct observation of electron propagation and dielectric. screening on the atomic length scale Direct observation of electron propagation and dielectric screening on the atomic length scale S. Neppl 1,2, R. Ernstorfer 3, A.L. Cavalieri 4, C. Lemell 5, G. Wachter 5, E. Magerl 2, E.M. Bothschafter

More information

High-contrast pump-probe spectroscopy with high-order harmonics

High-contrast pump-probe spectroscopy with high-order harmonics UVX 2008 (2009) 107 111 C EDP Sciences, 2009 DOI: 10.1051/uvx/2009017 High-contrast pump-probe spectroscopy with high-order harmonics Y. Mairesse 1,W.Boutu 2, P. Breger 2, E. Constant 1,D.Descamps 1, N.

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1878 I. Experimental setup OPA, DFG Ti:Sa Oscillator, Amplifier PD U DC U Analyzer HV Energy analyzer MCP PS CCD Polarizer UHV Figure S1: Experimental setup used in mid infrared photoemission

More information

E( t) = e Γt 2 e iω 0t. A( t) = e Γt 2, Γ Γ 1. Frontiers in ultrafast laser technology. Time and length scales. Example: Gaussian pulse.

E( t) = e Γt 2 e iω 0t. A( t) = e Γt 2, Γ Γ 1. Frontiers in ultrafast laser technology. Time and length scales. Example: Gaussian pulse. Time and length scales Frontiers in ultrafast laser technology Prof. Ursula Keller Department of Physics, Insitute of Quantum Electronics, ETH Zurich International Summer School New Frontiers in Optical

More information

PIs: Louis DiMauro & Pierre Agostini

PIs: Louis DiMauro & Pierre Agostini Interaction of Clusters with Intense, Long Wavelength Fields PIs: Louis DiMauro & Pierre Agostini project objective: explore intense laser-cluster interactions in the strong-field limit project approach:

More information

Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO)

Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO) Ultrafast Wavelength Tuning and Scaling Properties of a Noncollinear Optical Parametric Oscillator (NOPO) Thomas Binhammer 1, Yuliya Khanukaeva 2, Alexander Pape 1, Oliver Prochnow 1, Jan Ahrens 1, Andreas

More information

XUV frequency comb development for precision spectroscopy and ultrafast science

XUV frequency comb development for precision spectroscopy and ultrafast science XUV frequency comb development for precision spectroscopy and ultrafast science R. Jason Jones (PI) College of Optical Sciences, University of Arizona email: rjjones@optics.arizona.edu Collaborators Graduate

More information

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT

Models for Time-Dependent Phenomena. I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Models for Time-Dependent Phenomena I. Laser-matter interaction: atoms II. Laser-matter interaction: molecules III. Model systems and TDDFT Manfred Lein, TDDFT school Benasque 22 p. Outline Laser-matter

More information

Harmonic Generation for Photoionization Experiments Christian J. Kornelis Physics REU Kansas State University

Harmonic Generation for Photoionization Experiments Christian J. Kornelis Physics REU Kansas State University Harmonic Generation for Photoionization Experiments Christian J. Kornelis Physics REU Kansas State University The Basic Setup for the KLS Photoionization Experiment V. Kumarappan Femtosecond Pump-Probe

More information

Quantum optimal control theory and applications

Quantum optimal control theory and applications Quantum optimal control theory and applications Esa Räsänen Quantum Control and Dynamics Research Group, www.tut.fi/~rasanene/qcad Department of Physics, Tampere University of Technology, Finland Kaj Stenvall,

More information

Gas jet structure influence on high harmonic generation

Gas jet structure influence on high harmonic generation Gas jet structure influence on high harmonic generation James Grant-Jacob, 1,* Benjamin Mills, 1 Thomas J Butcher, 1 Richard T Chapman, 2 William S Brocklesby, 1 and Jeremy G Frey 2 1 Optoelectronics Research

More information

Multiphoton Multielectron Ionization of Rare Gas Atoms under FEL Radiation (An attempt at interpreting existing experimental data from FLASH)

Multiphoton Multielectron Ionization of Rare Gas Atoms under FEL Radiation (An attempt at interpreting existing experimental data from FLASH) Multiphoton Multielectron Ionization of Rare Gas Atoms under FEL Radiation (An attempt at interpreting existing experimental data from FLASH) Hamburg Oct. 8 10, 2008 P. Lambropoulos in collaboration with

More information

Attosecond-streaking time delays: Finite-range property and comparison of classical and quantum approaches

Attosecond-streaking time delays: Finite-range property and comparison of classical and quantum approaches PHYSICAL REVIEW A 89, 013404 (2014) Attosecond-streaking time delays: Finite-range property and comparison of classical and quantum approaches Jing Su, * Hongcheng Ni, Andreas Becker, and Agnieszka Jaroń-Becker

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of

Polarization control experiences in single pass seeded FELs. Carlo Spezzani on behalf of Polarization control experiences in single pass seeded FELs Carlo Spezzani on behalf of the FERMI team & the storage ring FEL group Outline Introduction Storage Ring FEL test facility characterization

More information

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Free-electron laser SACLA and its basic Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center Light and Its Wavelength, Sizes of Material Virus Mosquito Protein Bacteria Atom

More information

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter 3rd EMMI Workshop on Plasma Physics with intense Lasers and Heavy Ion Beams Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter Eckhart Förster X-ray Optics Group - IOQ - Friedrich-Schiller-University

More information