Theory of Optical Waveguide

Size: px
Start display at page:

Download "Theory of Optical Waveguide"

Transcription

1 Theor of Optical Waveguide Class: Integrated Photonic Devices Time: Fri. 8:am ~ :am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee Reflection and Refraction at an Interface (TE n kˆi H i E i θ θ E r H r kˆr Transverse Electric (TE or s wave Medium n Medium H t E t θ kˆt Snell s law: n sin( θ n sin( θ Refraction Coefficient: r TE Er ncosθ ncosθ E n cosθ + n cosθ i i

2 Reflection and Refraction at an Interface (TM kˆi kˆr E i E r Transverse Electric (TM or p wave n H i θ θ H r Medium n E t Medium H t θ kˆt Snell s law: n sin( θ n sin( θ Refraction Coefficient: r TM Er ncosθ ncosθ E n cosθ + n cosθ i Eternal Reflection of TE Wave (Low to High

3 Eternal Reflection of TM Wave (Low to High n Brewster Angle: θb tan n Internal Reflection of TE Wave (High to Low Snell s law: n sin( θ n sin( θ Critical Angle: θ c n n sin ( For θ > θ c ϕ sin θ sin θc tan cos θ

4 Internal Reflection of TM Wave (High to Low Critical Angle: θ c n n sin ( For θ > θ c ϕ sin θ sin θc tan cos sin θ θc Summar of Reflection at Interface The phase changes either b π or b for eternal reflection. The phase has abrupt change across Brewster angle for TM wave. The Brewster angle is smaller than critical angle. The phase changes continuousl for total internal reflection

5 Slab Waveguide (D Waveguide Ra Optics Phase front Cladding n 3 Core n Xa X X-a n 3 n n Cladding n n Wave Optics Standing Wave Propagating Wave Derivation of Basic Equations Cladding n 3 a Core n Substrate n General Waveguide Mode Epression: ~ E E(, ep[ j( β ωt] ~ H H (, ep[ j( β ωt] Transverse Component Longitudinal Component F. Law A. Law E jβe jωµ H E + jβe jωµ H E E jωµ H H jβh jωεn E H + jβh jωεn E H H jωεn E

6 Polariation of Optical Fields in Slab (Planar Waveguide (TE (TM E H E,H is independent of -ais Transverse Electric (TE: E, H E H Transverse Magnetic (TM: H, E H E For slab waveguide, the optical modes can alwas be decomposed into TE and TM TE-Polaried Optical Modes in Slab Waveguide E, E and E is -direction independent; that is, E The epression of optical wave: waveguide E ( r, t E( rep( jωt E( r, t E (, ep( jωt The optical wave propagates in -direction E( r, t E (, ep( jωt E( r, t E ( ep( jβ ep( jωt E ( ep( jβ jωt E( E( Propagating Wave

7 TE-Polaried Optical Modes in Slab Waveguide E( r + n( ω k E( r E( r, t E ( ep( jβ jωt E + ( nk β E H H β E ωµ j ωµ de d ( n could be in core, substrate or cladding What is the solution of (? What is the β? k n 3 k n k n Suppose n >n >n 3 cladding inde substrate inde core inde n 3 cladding core n n substrate Leaked Leaked Guided Guided Not eist!

8 TE-Polaried Optical Guided Modes in Slab Waveguide E where Acos( ha φep[ γ 3( a] Acos( h φ Acos( ha + φep[ γ ( + a] h k n β γ β k n γ β k n 3 3 ( > a ( a a ( < a Xa X X-a n 3 n n ep ep cos Boundar Condition : E is continuous at a and -a Trivial! Boundar Condition : H is continuous at a and -a j de H should be continuous at the boundar ωµ d TE-Polaried Optical Modes in Slab Waveguide γ 3Acos( ha φep[ γ 3( a] de h Asin( h φ d γ Acos( ha + φ ep[ γ ( + a] de d a de d + a and h sin( ha + φ γ cos( ha + φ h sin( ha φ γ 3 cos( ha φ de d a ( > a ( a a ( < a de d + a Xa X X-a w tan( u + φ u ' where w tan( u φ u n 3 n n u ha w γ a ' w γ 3a mπ u + tan mπ φ + tan w ( + tan u w ( tan u ' w ( u ' w ( u m,,,...

9 Smmetric and Asmmetric Smmetric Asmmetric ( tan ( tan ( tan ( tan ' ' u w u w m u w u w m u π φ π + ( tan π φ π m u w m u ' 3 w w γ γ γ ' 3 w w γ γ a -a a -a Electric Fields of High Order Mode ( ( ( ] ( ep[ cos( cos( ] ( ep[ cos( 3 a a a a a h a A h A a h a A E < > + + γ φ φ γ φ The waveguide is smmetrical. m: even cos(h m: odd sin(h

10 Mode Number 5 m m m m 3 For eample, how man solutions to satisf the eigenvalue equation for a smmetric waveguide (n n 3? mπ w tan( u + u 5 m 4 m 5 m h u/a 6 ( Cut-Off Condition γ 3 h γ k n 3 k n k n β ' β For a guided mode, Guided Range kn < β < kn < h < k ( n n We define V a k ( n n u ha< a k ( n n V High-order modes have large u: um ( + > um (

11 Cut-Off Condition What is the highest mode can be supported in the waveguide? Recall ' mπ w( m w( m ( tan ( tan ( um + + um ( um ( Suppose the highest mode No. is M, then u(m is approimatel given b um ( V (close to cut-off Therefore, um ( a k ( n n ' wm ( a k ( n n3 wm ( π ( n n M 3 ( + tan ( um ( n n Cut-Off Condition As we know, u(m has to be less than V; that is, π ( n n + < V M 3 ( tan ( um ( n n Therefore, for a waveguide, the accommodated mode no (M. M TE V tan n n3 π π n n int For smmetric waveguides, there is alwas a TE mode (m eisting.

12 TM-Polaried Optical Modes in Slab Waveguide Homework: E + ( nk β E β H E ωµ µ H Reciprocal ε n E d H + ( nk β H d E β ωε n H H j ωµ de d E j ωε n dh d. What is the cut-off condition for TM mode?. For a silicon slab with.5-um thickness (n3.4, air-cladding on the two sides, what are the β s of TM mode and TE mode (m for wavelength from 5 nm to 56 nm? Optical Power (Background S E H Ponting vector S ( E H H E E H nˆ Volume Adv surface A nds volume Volume ( H E E H dv surface ( E H nds Volume E H ( ε E + µ H dv t t surface ( E H nds

13 Optical Power (Background Volume E H ( ε E + µ H dv t t surface ( E H nds nˆ ε ( E t t W e ε ( H t t W h volume Electric Stored Energ t Volume Magnetic Stored Energ ( W + W dv S nds S represents the power flow densit e h surface Optical Power (Background The intensit of the power densit can be calculated through the time-average of the ponting vector over one wave ccle: T S E Hdt T For monochromatic wave ( ep( ω * ep( ( ep( ω * ep( E E j t + E j t H H j t + H j t Re( * S E H * P S uˆ Re( E H ˆ sds usds s s

14 Optical Power of Slab Waveguide For TE mode, the onl non-ero component is E. And because wave is propagate in -direction, we onl consider E and H. Therefore, the power of TE mode is Longitude (Propagation * P S uˆ Re( E H ˆ sds usds s s Re( * β TE E H ωµ P dd E dd Recall E E E + * ( Optical Power of Slab Waveguide Xa X X-a n 3 n n Clad Core Sub For slab waveguide (TE polariation, Suppose the field amplitude is A Longitude (Propagation β PTE d E d ωµ P Core P P Sub Clad βaa P PCore + PSub + Pclad + + ' ωµ w w ' ωµ w w βaa cos ( u + φ ωµ w βaa cos ( u φ ωµ w' βaa sin ( u φ sin ( u φ

15 Effective Waveguide Thickness dte a+ + γ γ 3 n n n 3 a / γ / γ 3 samller γ represents the optical field penetrates farther Mode Confinement dte a+ + γ γ 3 d / d / Γ TE E ( d E ( d n n n 3 Γ TM d / ( d / ( ( n H d n H d a Γ TE ( a + + d γ + h / γ γ + h / γ TE 3 3 Γ TE ( a d + γ q + h / γ + γ q + h / γ TM / γ / γ 3 dtm β β where q + a+ + γ q γ q 3 3 k k β β q + 3 k k3

16 Mode Confinement Low order modes have better mode confinement than high order modes TE modes have better mode confinement than TM modes Approimated Solutions of Waveguide Modes h + β k n v,,, ν ν r where π k λ and h ν ( ν + π W eν Effective width Suppose the waveguide is well-confined σ λ n c e M + ( r c π nr W W n n β kn r σ for TM, for TE Smmetric Waveguide (Fundametial Mode

17 Eample Refractive inde of SiO :.45 Wavelength:.3 µm Refractive inde of Si 3 N 4 :. 3 µm. How man TE modes? Refractive inde of SiO :.45 π π 3 V a ( nr nc ( λ.3 M TE V tan n n V 6 π π n n π int π int int for smmetric waveguide 7 TE modes Eample Refractive inde of SiO :.45 Wavelength:.3 µm Refractive inde of Si 3 N 4 :. 3 µm Refractive inde of SiO :.45. What is the propagation constant β of the fundamental mode (TE? σ λ n c e M + ( r c π nr W W n n W e ( ( µ m π π π k nr h m λ W W n n π e M + ( r c ( + π π h W 3.3 β 9.694( µ e (TE actual value: (9.6664

18 Rectangular Waveguide (D Waveguide Diffused Waveguide Channel Waveguide Rib Waveguide Inde Profile of A Channel Waveguide n 3 n 5 n 4 Thickness d n a n Width n > n, n 3, n 4, n 5

19 Mode Epression Magnetic field intensit: H (, X( Y( ep( jh+ φ ep( jh+ ψ ep[ γ ( + a] ep[ γ ( d] cos( h+ φ ep[ γ ( d] ep[ γ ( a] ep[ γ ( d] Y d ep[ γ ( + a] cos( h+ ψ cos( h+ φ cos( h+ ψ ep[ γ ( a] cos( h+ ψ Y -d ep[ γ ( + a] ep[ γ ( + d] cos( h+ φ ep[ γ ( + d] ep[ γ ( a] ep[ γ ( + d] X -a X a TE Polariation (TE-Like H, E and H is predominant Width: a d H H + + ( nk β H d H ωµ H E H + β ωε β H E ωεn j H E ωεn j H H β n This modelling was proposed b Marcatili E Thickness: d Suppose width > thickness

20 TM Polariation (TM-like H, E and H is predominant d H d H + + ( nk β H H ωµ H E H β ωε β H E ωεn j H E ωεn j H H β n Width: a E Thickness: d Suppose width > thickness TE-Polaried Optical Modes in Channel Waveguide (Marcatili s Method For simplicit, we assume the rectangular waveguide is smmetrical cladding H Acos( h φcos( h ψ Acos( ha φ ep[ γ ( a]cos( h ψ Acos( h φep[ γ ( d]cos( hd ψ ( ( (3 n n ( ( n (3 n Where n h h + k n β ( γ h + k n β ( h + γ + k n β (3 And π φ ( p p,,. π TE pq ψ ( q q,,. from instead of E

21 TE-Polaried Optical Modes in Channel Waveguide Boundar Condition : E is continuous at a, -a H n E Boundar Condition : H is continuous at d, -d E Given a p and q H H π ha ( p + tan π hd ( q + tan And n γ ( n h γ ( h β k n ( h + h γ γ k ( n n h k ( n n h B.C. B.C. (TM eigenvalue eq. in slab waveguide (TE eigenvalue eq. in slab waveguide Five unknowns: β, h, h, γ, γ Mode Profile X( p H(, X( Y( p Y( q q p p q q

22 Mode Profile (Consider Polariation Electric field TE TM TE TM TE TM Rib Waveguide n h n n d a It is difficult to be analed b Marcatili method!

23 Effective Inde Methods h n n d n a We suppose the polariation is in -direction (TE. The wave equation for the TE mode is H H + + [ k n (, β ] H Effective Inde Methods Suppose the electromagnetic fields can be epressed with the separation of variables H H + + [ k n (, β ] H H (, X( Y( Divided b XY d X d Y + + [ k n (, β ] X d Y d d Y + [ k n (, kneff ( ] Y d d X + [ k neff (, β ] X d N eff (: effective inde distribution

24 Effective Inde Methods d Y + [ k n (, k neff ( ] Y d d X + [ k neff (, β ] X d d Y + [ k n (, k neff ( ] Y d d X + [ k neff (, β ] X d Procedure of solving problems Divide the waveguide into several sections (horiontall or verticall. Consider either Y component or X component onl. Calculate the propagation constant in each section. β Calculate the effective indices n eff k Consider the other component based on the effective indices D rectangular waveguide problem Several slab waveguide problems Effective Inde Methods n n d n a n d n d+h n n + + d n n n eff ( n eff ( n eff (3 n n eff ( n eff ( n n n eff (3 a

25 Comparison of Effective Inde Method and Marcatili s Method Normalied Inde β kn b kn kn a EI. d MT. kn β kn For same waveguide, the propagation constant calculated from effective inde method is larger than that of Marcatili s Method. The accurate propagation constant is between these two values.

Waveguide Coupler I. Class: Integrated Photonic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Ming-Chang Lee)

Waveguide Coupler I. Class: Integrated Photonic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Waveguide Couler I Class: Integrated Photonic Devices Time: Fri. 8:am ~ 11:am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Waveguide Couler n 1 > n n Waveguide 1 n 1 n Waveguide n 1 n How to switch

More information

ECE 222b Applied Electromagnetics Notes Set 4b

ECE 222b Applied Electromagnetics Notes Set 4b ECE b Applied Electromagnetics Notes Set 4b Instructor: Prof. Vitali Lomain Department of Electrical and Computer Engineering Universit of California, San Diego 1 Uniform Waveguide (1) Wave propagation

More information

Diode laser emission

Diode laser emission Lecture 9/1 Diode laser emission x Diode laser emission has oblong cross-section. Y-axis with large divergence angle is called fast axis X-axis with smaller divergence angle is called slow axis Lecture

More information

4. Integrated Photonics. (or optoelectronics on a flatland)

4. Integrated Photonics. (or optoelectronics on a flatland) 4. Integrated Photonics (or optoelectronics on a flatland) 1 x Benefits of integration in Electronics: Are we experiencing a similar transformation in Photonics? Mach-Zehnder modulator made from Indium

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18 C 6340 Intermediate M Waves Fall 206 Prof. David R. Jacson Dept. of C Notes 8 T - Plane Waves φˆ θˆ T φˆ θˆ A homogeneous plane wave is shown for simplicit (but the principle is general). 2 Arbitrar Polariation:

More information

Dielectric Slab Waveguide

Dielectric Slab Waveguide Chapter Dielectric Slab Waveguide We will start off examining the waveguide properties of a slab of dielectric shown in Fig... d n n x z n Figure.: Cross-sectional view of a slab waveguide. { n, x < d/

More information

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 23 p. 1/2 EECS 117 Lecture 23: Oblique Incidence and Reflection Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

Distributed-Feedback Lasers

Distributed-Feedback Lasers Distributed-Feedback Lasers Class: Integrated Photonic Devices Tie: Fri. 8:00a ~ 11:00a. Classroo: 資電 06 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Wavelength Dependence of Bragg Reflections Free-Space Bragg

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7 ECE 6341 Spring 216 Prof. David R. Jackson ECE Dept. Notes 7 1 Two-ayer Stripline Structure h 2 h 1 ε, µ r2 r2 ε, µ r1 r1 Goal: Derive a transcendental equation for the wavenumber k of the TM modes of

More information

Analysis Methods for Slab Waveguides

Analysis Methods for Slab Waveguides Aalsis Methods for Slab Waveguides Maxwell s Equatios ad Wave Equatios Aaltical Methods for Waveguide Aalsis: Marcatilis Method Simple Effective Idex Method Numerical Methods for Waveguide Aalsis: Fiite-Elemet

More information

MODE THEORY FOR STEP INDEX MULTI-MODE FIBERS. Evgeny Klavir. Ryerson University Electrical And Computer Engineering

MODE THEORY FOR STEP INDEX MULTI-MODE FIBERS. Evgeny Klavir. Ryerson University Electrical And Computer Engineering MODE THEORY FOR STEP INDEX MULTI-MODE FIBERS Evgeny Klavir Ryerson University Electrical And Computer Engineering eklavir@ee.ryerson.ca ABSTRACT Cladding n = n This project consider modal theory for step

More information

Chapter 4 Reflection and Transmission of Waves

Chapter 4 Reflection and Transmission of Waves 4-1 Chapter 4 Reflection and Transmission of Waves ECE 3317 Dr. Stuart Long www.bridgat.com www.ranamok.com Boundary Conditions 4- -The convention is that is the outward pointing normal at the boundary

More information

Cylindrical Dielectric Waveguides

Cylindrical Dielectric Waveguides 03/02/2017 Cylindrical Dielectric Waveguides Integrated Optics Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Geometry of a Single Core Layer

More information

2/5/13. y H. Assume propagation in the positive z-direction: β β x

2/5/13. y H. Assume propagation in the positive z-direction: β β x /5/3 Retangular Waveguides Mawell s Equatins: = t jω assumed E = jωµ H E E = jωµ H E E = jωµ H E E = jωµ H H = jωε E H H = jωε E H H = jωε E H H = jωε E /5/3 Assume prpagatin in the psitive -diretin: e

More information

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence.

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence. 15. Polarization Linear, circular, and elliptical polarization Mathematics of polarization Uniaial crstals Birefringence Polarizers Notation: polarization near an interface Parallel ("p") polarization

More information

THE PROPAGATION AND CUTOFF FREQUENCIES OF THE RECTANGULAR METALLIC WAVEGUIDE PAR- TIALLY FILLED WITH METAMATERIAL MULTILAYER SLABS

THE PROPAGATION AND CUTOFF FREQUENCIES OF THE RECTANGULAR METALLIC WAVEGUIDE PAR- TIALLY FILLED WITH METAMATERIAL MULTILAYER SLABS Progress In Electromagnetics Research M, Vol. 9, 35 40, 2009 THE PROPAGATION AND CUTOFF FREQUENCIES OF THE RECTANGULAR METALLIC WAVEGUIDE PAR- TIALLY FILLED WITH METAMATERIAL MULTILAYER SLABS D. Zhang

More information

ECE 6341 Spring 2016 HW 2

ECE 6341 Spring 2016 HW 2 ECE 6341 Spring 216 HW 2 Assigned problems: 1-6 9-11 13-15 1) Assume that a TEN models a layered structure where the direction (the direction perpendicular to the layers) is the direction that the transmission

More information

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR Wave equation 1 u tu v u(, t f ( vt + g( + vt Helmholt equation U + ku jk U Ae + Be + jk Eponential Equation γ e + e + γ + γ Trig Formulas sin( + y sin cos y+ sin y cos cos( + y cos cos y sin sin y + cos

More information

Back to basics : Maxwell equations & propagation equations

Back to basics : Maxwell equations & propagation equations The step index planar waveguide Back to basics : Maxwell equations & propagation equations Maxwell equations Propagation medium : Notations : linear Real fields : isotropic Real inductions : non conducting

More information

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR

Assignment , 7.1, 7.2, 7.5, 7.11, 7.12, 7.15, TIR and FTIR LC45-summer, 1 1. 1.1, 7.1, 7., 7.5, 7.11, 7.1, 7.15, 7.1 1.1. TIR and FTIR a) B considering the electric field component in medium B in Figure 1. (b), eplain how ou can adjust the amount of transmitted

More information

COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix

COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix COMSOL Design Tool: Simulations of Optical Components Week 6: Waveguides and propagation S matrix Nikola Dordevic and Yannick Salamin 30.10.2017 1 Content Revision Wave Propagation Losses Wave Propagation

More information

EECS 117. Lecture 25: Field Theory of T-Lines and Waveguides. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 25: Field Theory of T-Lines and Waveguides. Prof. Niknejad. University of California, Berkeley EECS 117 Lecture 25: Field Theory of T-Lines and Waveguides Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 117 Lecture 25 p. 1/2 Waveguides and Transmission Lines

More information

Basics of Wave Propagation

Basics of Wave Propagation Basics of Wave Propagation S. R. Zinka zinka@hyderabad.bits-pilani.ac.in Department of Electrical & Electronics Engineering BITS Pilani, Hyderbad Campus May 7, 2015 Outline 1 Time Harmonic Fields 2 Helmholtz

More information

Today in Physics 218: Fresnel s equations

Today in Physics 218: Fresnel s equations Today in Physics 8: Fresnel s equations Transmission and reflection with E parallel to the incidence plane The Fresnel equations Total internal reflection Polarization on reflection nterference R 08 06

More information

Helmholtz Wave Equation TE, TM, and TEM Modes Rect Rectangular Waveguide TE, TM, and TEM Modes Cyl Cylindrical Waveguide.

Helmholtz Wave Equation TE, TM, and TEM Modes Rect Rectangular Waveguide TE, TM, and TEM Modes Cyl Cylindrical Waveguide. Waveguides S. R. Zinka zinka@vit.ac.in School of Electronics Engineering Vellore Institute of Technology April 26, 2013 Outline 1 Helmholtz Wave Equation 2 TE, TM, and TEM Modes Rect 3 Rectangular Waveguide

More information

One-Dimensional Wave Propagation (without distortion or attenuation)

One-Dimensional Wave Propagation (without distortion or attenuation) Phsics 306: Waves Lecture 1 1//008 Phsics 306 Spring, 008 Waves and Optics Sllabus To get a good grade: Stud hard Come to class Email: satapal@phsics.gmu.edu Surve of waves One-Dimensional Wave Propagation

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when Plane Waves Part II. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when (a) The angle of incidence is equal to the Brewster angle with E field perpendicular

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

1300 (W/m 2 ) (V/cm) = 275 (V/m) (A/cm) = (A/m). E = 990 (V/m), H = 2.63 (A/m).

1300 (W/m 2 ) (V/cm) = 275 (V/m) (A/cm) = (A/m). E = 990 (V/m), H = 2.63 (A/m). Homework #4 P8-16 There is a continuing discuss on radiation hazards to human health The following calculations will provide a rough comparison a) The US standard for personal safet in a microwe environment

More information

Experimental Study of the Field Structure of the Surface Electromagnetic Wave in an Anisotropically Conducting Tape

Experimental Study of the Field Structure of the Surface Electromagnetic Wave in an Anisotropically Conducting Tape ISSN -9, Journal of Communications Technolog and Electronics,, Vol. 58, No., pp. 8. Pleiades Publishing, Inc.,. Original Russian Tet R.B. Vaganov, I.P. Korshunov, E.N. Korshunova, A.D. Oleinikov,, published

More information

Characteristics of Surface Plasmon Polaritons with Effective Permittivity

Characteristics of Surface Plasmon Polaritons with Effective Permittivity Journal of Optics Applications December 5, Volume 4, Issue, PP.7-4 Characteristics of Surface Plasmon Polaritons with ffective Permittivit Weiping Mao, eqing uang. School of Mechanical ngineering, Jiangsu

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jacson Dept. of ECE Notes 17 1 General Plane Waves General form of plane wave: E( xz,, ) = Eψ ( xz,, ) where ψ ( xz,, ) = e j( xx+ + zz) The wavenumber

More information

*

* Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials Gu Lipworth 1, Joshua Ensworth 2, Kushal Seetharam 1, Jae Seung Lee 3, Paul Schmalenberg 3, Tsuoshi Nomura 4, Matthew

More information

Optical Fiber. Chapter 1. n 1 n 2 n 2. index. index

Optical Fiber. Chapter 1. n 1 n 2 n 2. index. index Chapter 1 Optical Fiber An optical ber consists of cylindrical dielectric material surrounded by another cylindrical dielectric material with a lower index of refraction. Figure 1.1 shows that the transistion

More information

Cartesian Coordinates

Cartesian Coordinates Cartesian Coordinates Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Cartesian Coordinates Outline Outline Separation of Variables Away from sources,

More information

Fundamentals of fiber waveguide modes

Fundamentals of fiber waveguide modes SMR 189 - Winter College on Fibre Optics, Fibre Lasers and Sensors 1-3 February 007 Fundamentals of fiber waveguide modes (second part) K. Thyagarajan Physics Department IIT Delhi New Delhi, India Fundamentals

More information

Electromagnetism. Electromagnetic Waves : Topics. University of Twente Department Applied Physics. First-year course on

Electromagnetism. Electromagnetic Waves : Topics. University of Twente Department Applied Physics. First-year course on Universit of Twente Department Applied Phsics First-ear course on lectromagnetism lectromagnetic Waves : Topics F.F.M. de Mul www.demul.net/frits 1 Presentations: lectromagnetism: Histor lectromagnetism:

More information

Field and Wave Electromagnetic

Field and Wave Electromagnetic Field and Wave Eletromagneti Chapter Waveguides and Cavit Resonators Introdution () * Waveguide - TEM waves are not the onl mode o guided waves - The three tpes o transmission lines (parallel-plate, two-wire,

More information

( ) ( ) ( ), ( 0 ), ( 0)

( ) ( ) ( ), ( 0 ), ( 0) . (a Find the eigenvalues and eigenfunctions of problem: (b The differential equation ( ( ( =, - =, =. (8% - - = has one basis solution =. Show that the other basis solution on the interval - < < is =

More information

Survey of Wave Types and Characteristics

Survey of Wave Types and Characteristics Seminar: Vibrations and Structure-Borne Sound in Civil Engineering Theor and Applications Surve of Wave Tpes and Characteristics Xiuu Gao April 1 st, 2006 Abstract Mechanical waves are waves which propagate

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announceents HW#3 is due next Wednesday, Feb. 21 st No class Monday Feb.

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

Chapter 14 Matrix Treatment of Polarization

Chapter 14 Matrix Treatment of Polarization Chapter 4 Matri Treatment of Polarization Lecture Notes for Modern Optics based on Pedrotti & Pedrotti & Pedrotti Instructor: Naer Eradat Spring 29 5//29 Matri Treatment of Polarization Polarization Polarization

More information

GUIDED MICROWAVES AND OPTICAL WAVES

GUIDED MICROWAVES AND OPTICAL WAVES Chapter 1 GUIDED MICROWAVES AND OPTICAL WAVES 1.1 Introduction In communication engineering, the carrier frequency has been steadily increasing for the obvious reason that a carrier wave with a higher

More information

Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method

Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method 214 J. Opt. Soc. Am. A/ Vol. 23, No. 8/ August 26 Wang et al. Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method Qian Wang, Gerald Farrell, and Yuliya Semenova

More information

OPTICAL COMMUNICATIONS

OPTICAL COMMUNICATIONS L21-1 OPTICAL COMMUNICATIONS Free-Space Propagation: Similar to radiowaves (but more absorption by clouds, haze) Same expressions: antenna gain, effective area, power received Examples: TV controllers,

More information

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV Numerical Techniques in Electromagnetics ECE 757 THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV The Perfectly Matched Layer (PML) Absorbing Boundary Condition Nikolova 2009 1 1. The need for good

More information

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Waves Outline Outline Introduction Let s start by introducing simple solutions to Maxwell s equations

More information

Variational formulation of the B.V.P. in terms of displacements is. This principle is particularly useful in analyzing large deflection

Variational formulation of the B.V.P. in terms of displacements is. This principle is particularly useful in analyzing large deflection 4-8 CATIGLIANO' THEOREM OF LEAT WORK. Principle of stationar potential energ: Variational formulation of the B.V.P. in terms of displacements is achieved b the principle. This principle is particularl

More information

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates

5.3.3 The general solution for plane waves incident on a layered halfspace. The general solution to the Helmholz equation in rectangular coordinates 5.3.3 The general solution for plane waves incident on a laered halfspace The general solution to the elmhol equation in rectangular coordinates The vector propagation constant Vector relationships between

More information

Polarized sunglasses. Polarization

Polarized sunglasses. Polarization Polarized sunglasses 3 4 : is a propert of the wave of light that can oscillate with certain orientation; the wave ehibits polarization which has onl one possible polarization, namel the direction in which

More information

EP225 Note No. 4 Wave Motion

EP225 Note No. 4 Wave Motion EP5 Note No. 4 Wave Motion 4. Sinusoidal Waves, Wave Number Waves propagate in space in contrast to oscillations which are con ned in limited regions. In describing wave motion, spatial coordinates enter

More information

N coupled oscillators

N coupled oscillators Waves 1 1 Waves 1 1. N coupled oscillators towards the continuous limit. Stretched string and the wave equation 3. The d Alembert solution 4. Sinusoidal waves, wave characteristics and notation T 1 T N

More information

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case ECE 604, Lecture 17 October 30, 2018 In this lecture, we will cover the following topics: Duality Principle Reflection and Transmission Single Interface Case Interesting Physical Phenomena: Total Internal

More information

Essentials of Electromagnetic Field Theory. Maxwell s equations serve as a fundamental tool in photonics

Essentials of Electromagnetic Field Theory. Maxwell s equations serve as a fundamental tool in photonics Essentials of Electromagnetic Field Theory Maxwell s equations serve as a fundamental tool in photonics Updated: 19:3 1 Light is both an Electromagnetic Wave and a Particle Electromagnetic waves are described

More information

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables.

Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Directional derivatives and gradient vectors (Sect. 14.5). Directional derivative of functions of two variables. Partial derivatives and directional derivatives. Directional derivative of functions of

More information

If we assume that sustituting (4) into (3), we have d H y A()e ;j (4) d +! ; Letting! ;, (5) ecomes d d + where the independent solutions are Hence, H

If we assume that sustituting (4) into (3), we have d H y A()e ;j (4) d +! ; Letting! ;, (5) ecomes d d + where the independent solutions are Hence, H W.C.Chew ECE 350 Lecture Notes. Innite Parallel Plate Waveguide. y σ σ 0 We have studied TEM (transverse electromagnetic) waves etween two pieces of parallel conductors in the transmission line theory.

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Time: March 10, 006, -3:30pm MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.097 (UG) Fundamentals of Photonics 6.974 (G) Quantum Electronics Spring 006

More information

Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission

Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission DOI:.38/NNANO.25.86 Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission Amir Arbabi, Yu Horie, Mahmood Bagheri, and Andrei

More information

Jackson 7.6 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 7.6 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 7.6 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: A plane wave of frequency ω is incident normally from vacuum on a semi-infinite slab of material

More information

NASA Contractor Report. Application of FEM to Estimate Complex Permittivity of Dielectric Material at Microwave Frequency Using Waveguide Measurements

NASA Contractor Report. Application of FEM to Estimate Complex Permittivity of Dielectric Material at Microwave Frequency Using Waveguide Measurements NASA Contractor Report Application of FEM to Estimate Complex Permittivity of Dielectric Material at Microwave Frequency Using Waveguide Measurements M. D.Deshpande VIGYAN Inc., Hampton, VA C. J. Reddy

More information

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC

FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC FINITE-DIFFERENCE FREQUENCY-DOMAIN ANALYSIS OF NOVEL PHOTONIC WAVEGUIDES Chin-ping Yu (1) and Hung-chun Chang (2) (1) Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei,

More information

Waveguides and Resonators

Waveguides and Resonators Chapter 8 Waveguides and Resonators The objective of resonators is to confine electromagnetic energy. On the other hand, the purpose of waveguides is to guide electromagnetic energy. In both cases, the

More information

Lecture 9. Transmission and Reflection. Reflection at a Boundary. Specific Boundary. Reflection at a Boundary

Lecture 9. Transmission and Reflection. Reflection at a Boundary. Specific Boundary. Reflection at a Boundary Lecture 9 Reflection at a Boundary Transmission and Reflection A boundary is defined as a place where something is discontinuous Half the work is sorting out what is continuous and what is discontinuous

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

y y m y t 0 t > 3 t 0 x y t y m Harmonic waves Only pattern travels, not medium. Travelling wave f(x vt) is a wave travelling at v in +x dir n :

y y m y t 0 t > 3 t 0 x y t y m Harmonic waves Only pattern travels, not medium. Travelling wave f(x vt) is a wave travelling at v in +x dir n : Waves and Sound for PHYS1169. Joe Wolfe, UNSW Waves are moving pattern of displacements. Ma transmit energ and signals. 1169 Sllabus Travelling waves, superposition and interference, velocit, reflection

More information

Single-mode propagation of light in one-dimensional all-dielectric light-guiding systems

Single-mode propagation of light in one-dimensional all-dielectric light-guiding systems Accepted for publication in Progress In Electromagnetics esearch B 9, pp. 65-93, Single-mode propagation of light in one-dimensional all-dielectric light-guiding systems Changbiao Wang ShangGang Group,

More information

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU Physics 44 Electro-Magneto-Dynamics M. Berrondo Physics BYU 1 Paravectors Φ= V + cα Φ= V cα 1 = t c 1 = + t c J = c + ρ J J ρ = c J S = cu + em S S = cu em S Physics BYU EM Wave Equation Apply to Maxwell

More information

Solutions: Homework 7

Solutions: Homework 7 Solutions: Homework 7 Ex. 7.1: Frustrated Total Internal Reflection a) Consider light propagating from a prism, with refraction index n, into air, with refraction index 1. We fix the angle of incidence

More information

Waveguide Coupler II. Free-Space Mach-Zehnder Interferometer

Waveguide Coupler II. Free-Space Mach-Zehnder Interferometer Waveguide Couper II Cass: Integrated Photoni Devies Time: Fri. 8:00am ~ 11:00am. Cassroom: 資電 06 Leturer: Prof. 李明昌 (Ming-Chang Lee) Free-Spae Mah-Zehnder Interferometer Wikipedia L1 L φ π λ Detetor 1

More information

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer

Similarity Analysis for the Dispersion of Spiraling Modes on Metallic Nanowire to a Planar Thin Metal Layer Journal of the Optical Societ of Korea Vol. 17 No. 6 December 013 pp. 538-54 DOI: http://dx.doi.org/10.3807/josk.013.17.6.538 Similarit Analsis for the Dispersion of Spiraling Modes on Metallic Nanowire

More information

SOLUTIONS FOR THEORETICAL COMPETITION Theoretical Question 1 (10 points) 1A (3.5 points)

SOLUTIONS FOR THEORETICAL COMPETITION Theoretical Question 1 (10 points) 1A (3.5 points) II International Zhautkov Olmpiad/Theoretical Competition/Solutions Page 1/10 SOLUTIONS FOR THEORETICAL COMPETITION Theoretical Question 1 (10 points) 1A (.5 points) m v Mu m = + w + ( u w ) + mgr It is

More information

Accelerator Physics Statistical and Beam-Beam Effects. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14

Accelerator Physics Statistical and Beam-Beam Effects. G. A. Krafft Old Dominion University Jefferson Lab Lecture 14 Accelerator Phsics Statistical and Beam-Beam Effects G. A. Krafft Old Dominion Universit Jefferson Lab Lecture 4 Graduate Accelerator Phsics Fall 7 Waterbag Distribution Lemons and Thode were first to

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announcements HW#3 is assigned due Feb. 20 st Mid-term exam Feb 27, 2PM

More information

Waves, Polarization, and Coherence

Waves, Polarization, and Coherence 05-0-4 Waves, Polarization, and Coherence Lecture 6 Biophotonics Jae Gwan Kim jaekim@gist.ac.kr, X 0 School of nformation and Communication ngineering Gwangju nstitute of Sciences and Technolog Outline

More information

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104 CHAPTER 1 1.1. A uniform plane wave in air, E + x1 E+ x10 cos(1010 t βz)v/m, is normally-incident on a copper surface at z 0. What percentage of the incident power density is transmitted into the copper?

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute,

Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute, Analysis of Single Mode Step Index Fibres using Finite Element Method. * 1 Courage Mudzingwa, 2 Action Nechibvute, 1,2 Physics Department, Midlands State University, P/Bag 9055, Gweru, Zimbabwe Abstract

More information

REFLECTION AND REFRACTION AT A SINGLE INTERFACE

REFLECTION AND REFRACTION AT A SINGLE INTERFACE REFLECTION AND REFRACTION AT A SINGLE INTERFACE 5.1 THE BEHAVIOUR OF LIGHT AT A DIELECTRIC INTERFACE The previous Chapters have been concerned with the propagation of waves in empty space or in uniform,

More information

Plane Waves GATE Problems (Part I)

Plane Waves GATE Problems (Part I) Plane Waves GATE Problems (Part I). A plane electromagnetic wave traveling along the + z direction, has its electric field given by E x = cos(ωt) and E y = cos(ω + 90 0 ) the wave is (a) linearly polarized

More information

ON THE HYBRID FIELD PATTERNS OF HELICAL CLAD DIELECTRIC OPTICAL FIBERS

ON THE HYBRID FIELD PATTERNS OF HELICAL CLAD DIELECTRIC OPTICAL FIBERS Progress In Electromagnetics Research, PIER 91, 69 84, 2009 ON THE HYBRID FIELD PATTERNS OF HELICAL CLAD DIELECTRIC OPTICAL FIBERS A. H. B. M. Safie and P. K. Choudhury Faculty of Engineering Multimedia

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Lect. 4 Waveguides (1)

Lect. 4 Waveguides (1) Lect. 4 Waveguies (1) - Waveguie: Confines an guies EM waves Metallic, Dielectric, Plasmonic - We are intereste in ielectric waveguie Total internal reflection b refractive inex ifferences n A B C D n

More information

MIMO and Mode Division Multiplexing in Multimode Fibers

MIMO and Mode Division Multiplexing in Multimode Fibers MIMO and Mode Division Multiplexing in Multimode Fibers Kumar Appaiah Department of Electrical Engineering Indian Institute of Technology Bombay akumar@ee.iitb.ac.in Tutorial: National Conference on Communications

More information

Mueller Matrix based Modeling of Nonlinear Polarization Rotation in a Tensile-Strained Bulk SOA

Mueller Matrix based Modeling of Nonlinear Polarization Rotation in a Tensile-Strained Bulk SOA Mueller Matrix based Modeling of Nonlinear Polarization Rotation in a Tensile-Strained Bulk SOA Michael J. Connelly and Li-Qiang Guo Optical Communications Research Group, Department of Electronic and

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1 ECE 6341 Spring 16 Prof. David R. Jackson ECE Dept. Notes 1 1 Fields in a Source-Free Region Sources Source-free homogeneous region ( ε, µ ) ( EH, ) Note: For a lossy region, we replace ε ε c ( / ) εc

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

Surface plasmon waveguides

Surface plasmon waveguides Surface plasmon waveguides Introduction Size Mismatch between Scaled CMOS Electronics and Planar Photonics Photonic integrated system with subwavelength scale components CMOS transistor: Medium-sized molecule

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6 ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 6 1 Leaky Modes v TM 1 Mode SW 1 v= utan u ε R 2 R kh 0 n1 r = ( ) 1 u Splitting point ISW f = f s f > f s We will examine the solutions as the

More information

roth t dive = 0 (4.2.3) divh = 0 (4.2.4) Chapter 4 Waves in Unbounded Medium Electromagnetic Sources 4.2 Uniform plane waves in free space

roth t dive = 0 (4.2.3) divh = 0 (4.2.4) Chapter 4 Waves in Unbounded Medium Electromagnetic Sources 4.2 Uniform plane waves in free space Chapter 4 Waves in Unbounded Medium 4. lectromagnetic Sources 4. Uniform plane waves in free space Mawell s equation in free space is given b: H rot = (4..) roth = (4..) div = (4..3) divh = (4..4) which

More information

Full Vectorial Analysis of the Tapered Dielectric Waveguides and Their Application in the MMI Couplers

Full Vectorial Analysis of the Tapered Dielectric Waveguides and Their Application in the MMI Couplers Proceedings of the 5th WSEAS Int. Conf. on Microelectronics, Nanoelectronics, Optoelectronics, Prague, Czech Republic, March -4, 006 (pp05-0 Full Vectorial Analysis of the Tapered Dielectric Waveguides

More information

Dielectric Waveguides and Optical Fibers. 高錕 Charles Kao

Dielectric Waveguides and Optical Fibers. 高錕 Charles Kao Dielectric Waveguides and Optical Fibers 高錕 Charles Kao 1 Planar Dielectric Slab Waveguide Symmetric Planar Slab Waveguide n 1 area : core, n 2 area : cladding a light ray can undergo TIR at the n 1 /n

More information

Step index planar waveguide

Step index planar waveguide N. Dubreuil S. Lebrun Exam without document Pocket calculator permitted Duration of the exam: 2 hours The exam takes the form of a multiple choice test. Annexes are given at the end of the text. **********************************************************************************

More information

gap trans inc n=1 z Jackson 7.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

gap trans inc n=1 z Jackson 7.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 7.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two plane semi-infinite slabs of the same uniform, isotropic, nonpermeable, lossless dielectric

More information

Solution Sheet 1.4 Questions 26-31

Solution Sheet 1.4 Questions 26-31 Solution Sheet 1.4 Questions 26-31 26. Using the Limit Rules evaluate i) ii) iii) 3 2 +4+1 0 2 +4+3, 3 2 +4+1 2 +4+3, 3 2 +4+1 1 2 +4+3. Note When using a Limit Rule you must write down which Rule you

More information