( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

Size: px
Start display at page:

Download "( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR"

Transcription

1 Wave equation 1 u tu v u(, t f ( vt + g( + vt Helmholt equation U + ku jk U Ae + Be + jk Eponential Equation γ e + e + γ + γ Trig Formulas sin( + y sin cos y+ sin y cos cos( + y cos cos y sin sin y + cos sin 1 sin sin cos cos cos 1 1 sin Approimations for 1 3 sin 6 for 1 cos 1 for 1 3 tan + 3 for 1 Transmission line formulas + j t { } { } (, t Re ep( + j t Re e ( ( j + R I I j C + G [ γ ] [ γ ] ep + ep I ep ep + v / β p j + R j C + G [ γ ] [ γ ] γ j + R jc + G α + jβ Γ + Γ SWR + 1+Γ ma 1 min Γ [ γ ] + ep[ + γ ] [ γ ] ep[ + γ ] ep + + ep + 1 * α ave Re cosψ P I e ossless Transmission line formulas R G, α, ψ in ( + j + j tan β tan β + 1+Γ + Γ cos( β+ φ C εµ

2

3

4

5

6

7 Faraday s aw E t B t ( µ H EMF Ed Bnˆ ds t C S S Time arying Ampere s law H td+ J t( ε E + J MMF H d I + Dnˆ ds through S t S C S inside C S I J nˆ ds through S inside C S S S The curve C, the boundary of S, and the normal to the surface S are related by the right-hand rule Time Harmonic Mawell s Equations E jµ H H + jεe + J ρ ( εe ( µ H Eyt (,,, Re E ( y,, e Source free region has J, ρ j t { } ossless Plane Wave Equations Propagating along ais, inearly polaried along ais E jµ H H jε E y y ossless Plane Wave Solution jk E( y,, Ee ˆ E ˆ η jk H ( y,, e y µ k εµ, η ε Wave Speed in ossless Medium v p 1 k εµ Average Power Flow in ossless Medium 1 E S Re{ E H} ˆ η ossy Medium Plane Wave α jβ E( y,, Ee ˆ e E jφη α jβ H ( y,, e e e y η β ε µ U α ε µ µ µ 1 η ε j σ ε σ ε U ( / 1 j ( / µ 1 η ε U j 1/ 1 ( σ / ε / 1 ( σ / ε 1 + e 1/ 1/ ˆ jφη

8 Wave Speed in ossy Medium v p 1 β εµ U A lossy medium is dispersive Average Power Flow in ossy Medium 1 S Re E H E α e cos η Skin Depth skin 1 α { } ( φη Sum of Two Plane Waves ˆ Propagating along the + direction jk jk E(,, ˆ ˆ y Ee + Eye y E E ˆ ˆ η η jk y jk H ( y,, e y e Polariation Determine the motion in time of the electric field vector in a reference plane: possibilities are linear, circular, elliptical Constants: ε 1 36π µ π c εµ µ η 1π ε Plane Wave normally ident on a planar interface EE rrrrrr Γ EE iiiiii Γ η η 1 η + η 1 EE tttttttttt T EE iiiiii T 1 + Γ T η η + η 1 Average Power Transmitted into second region PP tttttttttt 1 TTTT 1 η (1 Γ EE (1 Γ PP iiiiii Standing Wave Ratio η 1 Assume interface is at and ident wave propagates along the + direction jk Total, I jk1 + 1 E ( y,, Ee 1 e 1 E (, y, E 1+Γ + Γ cos( k+ φ 1+Γ SWR 1 Γ SWR 1 Γ SWR + 1 +Γ Reflection from a PEC (Standing Wave Γ 1 pec Γ + 1 pmc Total, I Total, I E (, y, j E sin k ( φ E (, y,, t E sin k sin t + Γ

9 ossy Media ε ε j ε µ µ j µ Good Dielectric Approimations: β ε µ α 1 µ σ ε η µ ε Good Conductor Approimations: β α µ σ η µ e σ jπ /4

10 Two Dimensional Plane Wave propagating in -plane ˆ k DOP... k cosθˆ + sinθˆ k k k + k εµ k kcosθ k ksinθ η µ ε Perpendicular Polariation: jk ( + k E ( y,, Ee yˆ E jk ( + k H ( y,, e (sinθ ˆ cos θ ˆ η Parallel Polariation E jk ( + k H ( y,, e yˆ η E ( y,, Ee (cosθ ˆ sin θ ˆ jk ( + k Time-Averaged Power Flow 1 E S Re( E H kˆ η Obliquely Incident Plane Wave Scattering from a Planar Interface aw of reflection θ refl aw of refraction (Snell's aw n sinθ n sinθ θ Fresnel Coefficients η cosθ η cosθ Γ η cosθ + η cosθ T η cosθ η cosθ + η cosθ η cosθ η cosθ Γ η cosθ + η cosθ η cosθ T η cosθ + η cosθ Critical Angle ( n > n for Total Internal Reflection θ crit Brewster s Angles θ θ Brewster Brewster 1 n sin n ( µ ε 1 µε 1 ( ε ε 1 / 1 / 1 ( µε 1 µ ε1 ( µ µ 1 / 1 / 1 Parallel Plate Waveguide Quasi-TEM Solution (h is distance between plates; w is their width. All edge effects ignored. (, y, he e jk ( he w I ( y,, e h η jk Inde of refraction n εµ εµ k C εµ h η w C

11 Infinitesimal Dipole Antenna (oriented current moment I ˆ jkr e 1 j ER ( R, θφ, kηi cosθ 4π R kr ( kr jkr e j 1 Eθ ( R, θφ, jkηi 1 sinθ 4π R kr ( kr jkr e j Hφ ( R, θφ, jk I 1 sinθ 4π R kr Far Field Radiated Power Density far field 1 Re far field far field S E H η I 8 λ 1 sin θ Rˆ R Total Real Power Radiated P S R ds far field ˆ π I rad η 3 λ arge Sphere Radiation Resistance Prad π Rrad η 8 π 1 I 3 λ λ Infinitesimal Dipole Power Pattern sin θ Infinitesimal Dipole Directivity 1.5 sin θ Dipole Antenna of ength along -ais Current: I I sin k for for > k k jkr cos cosθ cos far field e Eθ jη I 4πR sinθ Circuit Impedance of an antenna R + jx ant rad ant half wavelength dipole 73 + j4.5 Ω Directivity (Power in certain direction relative to isotropic radiator far field ( ˆ ( rad 4 π Directivity S R P R Gain Gain efficiency directivity Gains of same antenna in mission and in reception G R are equal: GR GT Power received at an antenna with effective area A: received far field ( ˆ P S R A G T Relationship between Gain and Effective Area: λ A G 4π Friis Transmission aw λ P G G P 4π R rec R T input Radar Range Equation λ σ target λ P G G P 4πR λ 4π 4πR1 rec R T input

Chapter 4 Reflection and Transmission of Waves

Chapter 4 Reflection and Transmission of Waves 4-1 Chapter 4 Reflection and Transmission of Waves ECE 3317 Dr. Stuart Long www.bridgat.com www.ranamok.com Boundary Conditions 4- -The convention is that is the outward pointing normal at the boundary

More information

Linear Wire Antennas. EE-4382/ Antenna Engineering

Linear Wire Antennas. EE-4382/ Antenna Engineering EE-4382/5306 - Antenna Engineering Outline Introduction Infinitesimal Dipole Small Dipole Finite Length Dipole Half-Wave Dipole Ground Effect Constantine A. Balanis, Antenna Theory: Analysis and Design

More information

Reflection/Refraction

Reflection/Refraction Reflection/Refraction Page Reflection/Refraction Boundary Conditions Interfaces between different media imposed special boundary conditions on Maxwell s equations. It is important to understand what restrictions

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Waves Outline Outline Introduction Let s start by introducing simple solutions to Maxwell s equations

More information

Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with

Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with n = 1.71 4 30 λ 0 (λ 0 in µm), where λ 0 is the wavelength in vacuum, was used to disperse

More information

Aperture Antennas 1 Introduction

Aperture Antennas 1 Introduction 1 Introduction Very often, we have antennas in aperture forms, for example, the antennas shown below: Pyramidal horn antenna Conical horn antenna 1 Paraboloidal antenna Slot antenna Analysis Method for.1

More information

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV Numerical Techniques in Electromagnetics ECE 757 THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV The Perfectly Matched Layer (PML) Absorbing Boundary Condition Nikolova 2009 1 1. The need for good

More information

III. Spherical Waves and Radiation

III. Spherical Waves and Radiation III. Spherical Waves and Radiation Antennas radiate spherical waves into free space Receiving antennas, reciprocity, path gain and path loss Noise as a limit to reception Ray model for antennas above a

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe ANTENNAS Vector and Scalar Potentials Maxwell's Equations E = jωb H = J + jωd D = ρ B = (M) (M) (M3) (M4) D = εe B= µh For a linear, homogeneous, isotropic medium µ and ε are contant. Since B =, there

More information

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when Plane Waves Part II. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when (a) The angle of incidence is equal to the Brewster angle with E field perpendicular

More information

ELE3310: Basic ElectroMagnetic Theory

ELE3310: Basic ElectroMagnetic Theory A summary for the final examination EE Department The Chinese University of Hong Kong November 2008 Outline Mathematics 1 Mathematics Vectors and products Differential operators Integrals 2 Integral expressions

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

1 Chapter 8 Maxwell s Equations

1 Chapter 8 Maxwell s Equations Electromagnetic Waves ECEN 3410 Prof. Wagner Final Review Questions 1 Chapter 8 Maxwell s Equations 1. Describe the integral form of charge conservation within a volume V through a surface S, and give

More information

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr. EEE 333 Electromagnetic II Chapter 11 Transmission ines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 1 1 11.1 Introduction Wave propagation in unbounded media is used in

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours

ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM 28 April 15 Examiner:

More information

The most fundamental antenna is the incremental dipole as pictured in Figure 1. a Z. I o δh. a X. Figure 1. Incremental dipole

The most fundamental antenna is the incremental dipole as pictured in Figure 1. a Z. I o δh. a X. Figure 1. Incremental dipole . Chapter 13 Antennas Features Used crossp( ), dotp( ), real( ), conj( ), Í, NewProb,, Polar graphs Setup 1 NewFold ant setmode("complex Format", "Polar") This chapter describes how to perform basic antenna

More information

Propagation of EM Waves in material media

Propagation of EM Waves in material media Propagation of EM Waves in material media S.M.Lea 09 Wave propagation As usual, we start with Maxwell s equations with no free charges: D =0 B =0 E = B t H = D t + j If we now assume that each field has

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

Plane Waves GATE Problems (Part I)

Plane Waves GATE Problems (Part I) Plane Waves GATE Problems (Part I). A plane electromagnetic wave traveling along the + z direction, has its electric field given by E x = cos(ωt) and E y = cos(ω + 90 0 ) the wave is (a) linearly polarized

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : ELECTROMAGNETIC FIELDS SUBJECT CODE : EC 2253 YEAR / SEMESTER : II / IV UNIT- I - STATIC ELECTRIC

More information

Today in Physics 218: impedance of the vacuum, and Snell s Law

Today in Physics 218: impedance of the vacuum, and Snell s Law Today in Physics 218: impedance of the vacuum, and Snell s Law The impedance of linear media Spacecloth Reflection and transmission of electromagnetic plane waves at interfaces: Snell s Law and the first

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

EECS 117. Lecture 22: Poynting s Theorem and Normal Incidence. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 22: Poynting s Theorem and Normal Incidence. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 22 p. 1/2 EECS 117 Lecture 22: Poynting s Theorem and Normal Incidence Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

Lecture 36 Date:

Lecture 36 Date: Lecture 36 Date: 5.04.04 Reflection of Plane Wave at Oblique Incidence (Snells Law, Brewster s Angle, Parallel Polarization, Perpendicular Polarization etc.) Introduction to RF/Microwave Introduction One

More information

Today in Physics 218: Fresnel s equations

Today in Physics 218: Fresnel s equations Today in Physics 8: Fresnel s equations Transmission and reflection with E parallel to the incidence plane The Fresnel equations Total internal reflection Polarization on reflection nterference R 08 06

More information

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU

Physics 442. Electro-Magneto-Dynamics. M. Berrondo. Physics BYU Physics 44 Electro-Magneto-Dynamics M. Berrondo Physics BYU 1 Paravectors Φ= V + cα Φ= V cα 1 = t c 1 = + t c J = c + ρ J J ρ = c J S = cu + em S S = cu em S Physics BYU EM Wave Equation Apply to Maxwell

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

Electromagnetic Waves

Electromagnetic Waves Physics 8 Electromagnetic Waves Overview. The most remarkable conclusion of Maxwell s work on electromagnetism in the 860 s was that waves could exist in the fields themselves, traveling with the speed

More information

Module 5 : Plane Waves at Media Interface. Lecture 36 : Reflection & Refraction from Dielectric Interface (Contd.) Objectives

Module 5 : Plane Waves at Media Interface. Lecture 36 : Reflection & Refraction from Dielectric Interface (Contd.) Objectives Objectives In this course you will learn the following Reflection and Refraction with Parallel Polarization. Reflection and Refraction for Normal Incidence. Lossy Media Interface. Reflection and Refraction

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

3 December Lesson 5.5

3 December Lesson 5.5 Preparation Assignments for Homework #8 Due at the start of class. Reading Assignments Please see the handouts for each lesson for the reading assignments. 3 December Lesson 5.5 A uniform plane wave is

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18 C 6340 Intermediate M Waves Fall 206 Prof. David R. Jacson Dept. of C Notes 8 T - Plane Waves φˆ θˆ T φˆ θˆ A homogeneous plane wave is shown for simplicit (but the principle is general). 2 Arbitrar Polariation:

More information

Today in Physics 218: electromagnetic waves in linear media

Today in Physics 218: electromagnetic waves in linear media Today in Physics 218: electromagnetic waves in linear media Their energy and momentum Their reflectance and transmission, for normal incidence Their polarization Sunrise over Victoria Falls, Zambezi River

More information

1. Propagation Mechanisms

1. Propagation Mechanisms Contents: 1. Propagation Mechanisms The main propagation mechanisms Point sources in free-space Complex representation of waves Polarization Electric field pattern Antenna characteristics Free-space propagation

More information

PLANE WAVE PROPAGATION AND REFLECTION. David R. Jackson Department of Electrical and Computer Engineering University of Houston Houston, TX

PLANE WAVE PROPAGATION AND REFLECTION. David R. Jackson Department of Electrical and Computer Engineering University of Houston Houston, TX PLANE WAVE PROPAGATION AND REFLECTION David R. Jackson Department of Electrical and Computer Engineering University of Houston Houston, TX 7704-4793 Abstract The basic properties of plane waves propagating

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16 ECE 6345 Spring 5 Prof. David R. Jackson ECE Dept. Notes 6 Overview In this set of notes we calculate the power radiated into space by the circular patch. This will lead to Q sp of the circular patch.

More information

Wave Phenomena Physics 15c. Lecture 15 Reflection and Refraction

Wave Phenomena Physics 15c. Lecture 15 Reflection and Refraction Wave Phenomena Physics 15c Lecture 15 Reflection and Refraction What We (OK, Brian) Did Last Time Discussed EM waves in vacuum and in matter Maxwell s equations Wave equation Plane waves E t = c E B t

More information

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange Index A. see Magnetic vector potential. Acceptor, 193 Addition of complex numbers, 19 of vectors, 3, 4 Admittance characteristic, 251 input, 211 line, 251 Ampere, definition of, 427 Ampere s circuital

More information

6 Lectures 3 Main Sections ~2 lectures per subject

6 Lectures 3 Main Sections ~2 lectures per subject P5-Electromagnetic ields and Waves Prof. Andrea C. errari 1 1 6 ectures 3 Main Sections ~ lectures per subject Transmission ines. The wave equation.1 Telegrapher s Equations. Characteristic mpedance.3

More information

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves EM Waves This Lecture More on EM waves EM spectrum Polarization From previous Lecture Displacement currents Maxwell s equations EM Waves 1 Reminders on waves Traveling waves on a string along x obey the

More information

A Review of Basic Electromagnetic Theories

A Review of Basic Electromagnetic Theories A Review of Basic Electromagnetic Theories Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820)

More information

Chapter 3 Uniform Plane Waves Dr. Stuart Long

Chapter 3 Uniform Plane Waves Dr. Stuart Long 3-1 Chapter 3 Uniform Plane Waves Dr. Stuart Long 3- What is a wave? Mechanism by which a disturbance is propagated from one place to another water, heat, sound, gravity, and EM (radio, light, microwaves,

More information

Problem set 3. Electromagnetic waves

Problem set 3. Electromagnetic waves Second Year Electromagnetism Michaelmas Term 2017 Caroline Terquem Problem set 3 Electromagnetic waves Problem 1: Poynting vector and resistance heating This problem is not about waves but is useful to

More information

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis

Antennas and Propagation. Chapter 2: Basic Electromagnetic Analysis Antennas and Propagation : Basic Electromagnetic Analysis Outline Vector Potentials, Wave Equation Far-field Radiation Duality/Reciprocity Transmission Lines Antennas and Propagation Slide 2 Antenna Theory

More information

Linear Wire Antennas

Linear Wire Antennas Linear Wire Antennas Ranga Rodrigo August 4, 010 Lecture notes are fully based on Balanis?. Some diagrams and text are directly from the books. Contents 1 Infinitesimal Dipole 1 Small Dipole 7 3 Finite-Length

More information

Physics Lecture 40: FRI3 DEC

Physics Lecture 40: FRI3 DEC Physics 3 Physics 3 Lecture 4: FRI3 DEC Review of concepts for the final exam Electric Fields Electric field E at some point in space is defined as the force divided by the electric charge. Force on charge

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 7: Dynamic fields Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Maxwell s equations Maxwell

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

Field and Wave Electromagnetic

Field and Wave Electromagnetic Field and Wave Electromagnetic Chapter7 The time varying fields and Maxwell s equation Introduction () Time static fields ) Electrostatic E =, id= ρ, D= εe ) Magnetostatic ib=, H = J, H = B μ note) E and

More information

Perfectly Matched Layer (PML) for Computational Electromagnetics

Perfectly Matched Layer (PML) for Computational Electromagnetics Perfectly Matched Layer (PML) for Computational Electromagnetics Copyright 2007 by Morgan & Claypool All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Chapter 9. Electromagnetic waves

Chapter 9. Electromagnetic waves Chapter 9. lectromagnetic waves 9.1.1 The (classical or Mechanical) waves equation Given the initial shape of the string, what is the subsequent form, The displacement at point z, at the later time t,

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Notes 18 Faraday s Law

Notes 18 Faraday s Law EE 3318 Applied Electricity and Magnetism Spring 2018 Prof. David R. Jackson Dept. of EE Notes 18 Faraday s Law 1 Example (cont.) Find curl of E from a static point charge q y E q = rˆ 2 4πε0r x ( E sinθ

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Ranga Rodrigo University of Moratuwa October 20, 2008 Compiled based on Lectures of Prof. (Mrs.) Indra Dayawansa. Ranga Rodrigo (University of Moratuwa) Antennas and Propagation

More information

Electromagnetic wave propagation through ultra-narrow channels filled

Electromagnetic wave propagation through ultra-narrow channels filled 31st October, HKUST, Hong-Kong Electromagnetic wave propagation through ultra-narrow channels filled with an ENZ material Mário G. Silveirinha How to have ε-nearε zero (ENZ) Media? 2 ω p ε r ~1 ω ω ( +

More information

6.976 High Speed Communication Circuits and Systems Lecture 2 Transmission Lines

6.976 High Speed Communication Circuits and Systems Lecture 2 Transmission Lines 6.976 High Speed Communication Circuits and Sstems Lecture 2 Transmission Lines Michael Perrott Massachusetts Institute of Technolog Copright 2003 b Michael H. Perrott Mawell s Equations General form:

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

Preliminary Examination - Day 1 Thursday, August 10, 2017

Preliminary Examination - Day 1 Thursday, August 10, 2017 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August, 7 This test covers the topics of Quantum Mechanics (Topic ) and Electrodynamics (Topic ). Each topic has 4 A questions

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jackson Dept. of ECE Notes 7 1 TEM Transmission Line conductors 4 parameters C capacitance/length [F/m] L inductance/length [H/m] R resistance/length

More information

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014 Physics 333, Fall 014 Problem Set 13 due Friday, Dec 5, 014 Reading: Finish Griffiths Ch. 9, and 10..1, 10.3, and 11.1.1-1. Reflecting on polarizations Griffiths 9.15 (3rd ed.: 9.14). In writing (9.76)

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Our discussion on dynamic electromagnetic field is incomplete. I H E An AC current induces a magnetic field, which is also AC and thus induces an AC electric field. H dl Edl J ds

More information

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 23 p. 1/2 EECS 117 Lecture 23: Oblique Incidence and Reflection Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

Engineering Services Examination - UPSC ELECTRICAL ENGINEERING

Engineering Services Examination - UPSC ELECTRICAL ENGINEERING Engineering Services Examination - UPSC ELECTRICAL ENGINEERING Topic-wise Conventional Papers I & II 994 to 3 3 By Engineers Institute of India ALL RIGHTS RESERVED. No part of this work covered by the

More information

1 Electromagnetic concepts useful for radar applications

1 Electromagnetic concepts useful for radar applications Electromagnetic concepts useful for radar applications The scattering of electromagnetic waves by precipitation particles and their propagation through precipitation media are of fundamental importance

More information

ELECTROMAGNETIC FIELDS AND WAVES

ELECTROMAGNETIC FIELDS AND WAVES ELECTROMAGNETIC FIELDS AND WAVES MAGDY F. ISKANDER Professor of Electrical Engineering University of Utah Englewood Cliffs, New Jersey 07632 CONTENTS PREFACE VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN

More information

EE 5337 Computational Electromagnetics. Preliminary Topics

EE 5337 Computational Electromagnetics. Preliminary Topics Instructor Dr. Raymond Rumpf (915) 747 6958 rcrumpf@utep.edu EE 5337 Computational Electromagnetics Lecture #3 Preliminary Topics Lecture 3These notes may contain copyrighted material obtained under fair

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

Solutions: Homework 7

Solutions: Homework 7 Solutions: Homework 7 Ex. 7.1: Frustrated Total Internal Reflection a) Consider light propagating from a prism, with refraction index n, into air, with refraction index 1. We fix the angle of incidence

More information

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과

New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 New Aspects of Old Equations: Metamaterials and Beyond (Part 2) 신종화 KAIST 물리학과 Metamaterial Near field Configuration in Periodic Structures New Material Material and Metamaterial Material Metamaterial

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information

Today in Physics 218: stratified linear media I

Today in Physics 218: stratified linear media I Today in Physics 28: stratified linear media I Interference in layers of linear media Transmission and reflection in stratified linear media, viewed as a boundary-value problem Matrix formulation of the

More information

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity Daniel Sjöberg Department of Electrical and Information Technology Spring 2018 Outline 1 Basic reflection physics 2 Radar cross section definition

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

General review: - a) Dot Product

General review: - a) Dot Product General review: - a) Dot Product If θ is the angle between the vectors a and b, then a b = a b cos θ NOTE: Two vectors a and b are orthogonal, if and only if a b = 0. Properties of the Dot Product If a,

More information

Theory of Optical Waveguide

Theory of Optical Waveguide Theor of Optical Waveguide Class: Integrated Photonic Devices Time: Fri. 8:am ~ :am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee Reflection and Refraction at an Interface (TE n kˆi H i E i θ θ

More information

LECTURE 18: Horn Antennas (Rectangular horn antennas. Circular apertures.)

LECTURE 18: Horn Antennas (Rectangular horn antennas. Circular apertures.) LCTUR 18: Horn Antennas (Rectangular horn antennas. Circular apertures.) 1 Rectangular Horn Antennas Horn antennas are popular in the microwave bands (above 1 GHz). Horns provide high gain, low VSWR (with

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jacson Dept. of ECE Notes 17 1 General Plane Waves General form of plane wave: E( xz,, ) = Eψ ( xz,, ) where ψ ( xz,, ) = e j( xx+ + zz) The wavenumber

More information

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. POLARISATION Light is a transverse electromagnetic wave. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion. If the E field

More information

Lecture 1 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 1 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 1 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Overview of the Course - Last semester we covered electrostatics, magnetostatics,

More information

COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE

COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE Progress In Electromagnetics Research M, Vol. 3, 239 252, 213 COLLOCATED SIBC-FDTD METHOD FOR COATED CONDUCTORS AT OBLIQUE INCIDENCE Lijuan Shi 1, 3, Lixia Yang 2, *, Hui Ma 2, and Jianning Ding 3 1 School

More information

EE6302 ELCTROMAGNETIC THEORY UNIT I ELECTROSTATICS I

EE6302 ELCTROMAGNETIC THEORY UNIT I ELECTROSTATICS I 13 EE630 ELCTROMAGNETIC THEORY UNIT I ELECTROSTATICS I 1. Define Scalar and Vector Scalar: Scalar is defined as a quantity that is characterized only by magnitude. Vector: Vector is defined as a quantity

More information

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004 You have 3 hours Do all eight problems You may use calculators Massachusetts Institute of Technology Physics 8.03 Fall 004 Final Exam Thursday, December 16, 004 This is a closed-book exam; no notes are

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

Friis Transmission Equation and Radar Range Equation 8.1 Friis Transmission Equation

Friis Transmission Equation and Radar Range Equation 8.1 Friis Transmission Equation Friis Transmission Equation and Radar Range Equation 8.1 Friis Transmission Equation Friis transmission equation is essential in the analysis and design of wireless communication systems. It relates the

More information

Network Theory and the Array Overlap Integral Formulation

Network Theory and the Array Overlap Integral Formulation Chapter 7 Network Theory and the Array Overlap Integral Formulation Classical array antenna theory focuses on the problem of pattern synthesis. There is a vast body of work in the literature on methods

More information

Electromagnetic Theorems

Electromagnetic Theorems Electromagnetic Theorems Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Electromagnetic Theorems Outline Outline Duality The Main Idea Electric Sources

More information

Principles of Mobile Communications

Principles of Mobile Communications Communication Networks 1 Principles of Mobile Communications University Duisburg-Essen WS 2003/2004 Page 1 N e v e r s t o p t h i n k i n g. Wave Propagation Single- and Multipath Propagation Overview:

More information

Wave Interactions in a 2-D D Left-Handed Structure

Wave Interactions in a 2-D D Left-Handed Structure Wave Interactions in a 2-D D eft-handed Structure Anthony ai 1, Christophe Caloz 2, and Tatsuo Itoh 1 1 Electrical Engineering Department, University of California, os Angeles, USA 2 École Polytechnique

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

Electromagnetic Fields and Waves

Electromagnetic Fields and Waves Electromagnetic Fields and Waves Reference: OVER A.D. Microwave and Optical Transmission John Wiley & Sons, 99, 997 Shelf Mark: NV 35 Tim Coombs tac@cam.ac.uk, 3 WebSite: www.eng.cam.ac.uk/~tac/emfieldsandwaves.htm

More information