ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours

Size: px
Start display at page:

Download "ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours"

Transcription

1 UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM 28 April 15 Examiner: Prof. Sean V. Hum Duration: hours Calculator Type: 2 All non-programmable electronic calculators. Exam Type: D Closed book examination. Candidates may bring to the examination and use such aids (in the form of printed or written material) as the examiner may specify, in this case, the course textbook by David Cheng. Notes: Include units in your answers. Only answers that are fully justified will be given full credit. You may detach the last three pages which contain formula sheets and Smith Charts. If you detach the Smith Charts, be sure to write your name and ID number on the pages. NAME: STUDENT NUMBER: Problem 1 Problem 2 Problem 3 Problem 4 TOTAL /25 /25 /25 /25 /0

2

3 ECE357 Final Exam Page 1 of 12 PROBLEM #1. [25 POINTS] A load consisting of a parallel RC circuit has an impedance of Z L = 12.5 j37.5 Ω at f = GHz ( Hz). The load is to be matched to a characteristic impedance of Z 0 = Ω. a) Determine the values of components realizing the load impedance, R L and C L. Determine the load reflection coefficient Γ L using the Smith Chart and determine its magnitude and phase. [3 points] b) Match the load impedance to Z 0 by designing a shunt short-circuited single-stub matching circuit, specifying the lengths (in wavelengths) and characteristic impedances of all transmission line sections. Choose the solution with the shortest transmission line section connected to the load. Sketch the matching circuit. [7 points]

4 ECE357 Final Exam Page 2 of 12 c) Match the load impedance to Z 0 by designing a shunt short-circuited double-stub matching circuit, specifying the lengths (in wavelengths) and characteristic impedances of all transmission line sections. The spacing between the stubs is d = λ. Choose the solution such that the stub closest to the load has a positive susceptance. Sketch the matching circuit. [7 points] d) If the matching circuit of part (b) is to be implemented using parallel-plate waveguide operating using the TM 0 mode, specify the dimensions (in mm) of the width of the waveguide (a) and length of the waveguide sections composing the matching sections, if the height of the waveguide is b = 2 mm and the parallel plate waveguide is filled with a dielectric with ɛ r = 4. [4 points]

5 ECE357 Final Exam Page 3 of 12 e) If the matching circuit of part (b) is to be implemented using rectangular waveguide operating using the TE mode, specify the lengths of the transmission lines used to realize the matching circuit if air-filled WR-90 waveguide is used (a = mm, b = 16 mm). [4 points]

6 ECE357 Final Exam Page 4 of 12 PROBLEM #2. [25 POINTS] A 1 GHz plane wave propagating in air is incident upon a slab of dielectric with ɛ r = 3, as shown in Figure 1. The angle of incidence is θ i = 60. Figure 1: Plane wave incident upon a dielectric slab a) Determine the angles of reflection (θ r ) and refraction (θ t ), and the corresponding vector wavenumbers k r and k t for the reflected and refracted waves, respectively. [5 points] b) Determine the reflection and transmission coefficients across the media interface, if the incident wave is perpendicularly-polarized (TE polarization). What percentage of power is transmitted into the dielectric? [5 points]

7 ECE357 Final Exam Page 5 of 12 c) Write complete time-domain expressions for the electric field in i) the air region, z > 0 and ii) the dielectric region, z < 0. Let the amplitude of electric field be E 0. [5 points] d) If the incident wave is now right-hand circularly-polarized (RHCP), write a phasor expression for the incident wave. [4 points]

8 ECE357 Final Exam Page 6 of 12 e) Determine the polarization and axial ratio (AR) of the reflected wave if the incident wave is RHCP as in part (d). [6 points]

9 ECE357 Final Exam Page 7 of 12 PROBLEM #3. [25 POINTS] A 3 m long coaxial transmission line (l 1 = 3 m) with Z 01 = 0 Ω is connected to a generator with R g = Ω and another coaxial transmission line, as shown in Figure 2. The second transmission line has Z 02 = Ω, is 3 m long (l 2 = 3 m), and is terminated with R L = Ω. The generator launches a 2 ns pulse onto the first transmission line at t = 0. The wave velocity on the first transmission line is u 1 = m/s, while the wave velocity on the second transmission line is u 2 = 3 8 m/s. V 0 = 13.5 V. + Figure 2: Transmission line setup for transient analysis a) Determine the one-way transit times through each of the transmission lines on their own. Determine the values of the dielectric constants of the dielectrics used for both transmission lines. [4 points]

10 ECE357 Final Exam Page 8 of 12 b) Plot the voltage observed at the middle of the first transmission line as a function of time, v(z = 1.5 m, t) for 0 t 1 ns. [6 points] c) Determine the amplitude of the first pulse launched onto the second transmission line, sketching the equivalent circuit used to determine this. [4 points]

11 ECE357 Final Exam Page 9 of 12 d) Plot the voltage observed at the middle of the second transmission line as a function of time, v(z = 4.5 m, t) for 0 t 1 ns. [6 points]

12 ECE357 Final Exam Page of 12 e) Plane waves can also carry pulses in the same way transmission lines do (e.g. a RADAR pulse). Reflections are generated by discontinuities with planar media. Based on everything you know about plane wave behaviour, sketch an equivalent system of planar materials that produces the same transient response as the transmission line above, specifying the dielectric constants and lengths of dielectric slab(s) used. Assume the wave is first launched into an air-filled region. [5 points]

13 ECE357 Final Exam Page 11 of 12 PROBLEM #4. [25 POINTS] A 1 GHz plane wave propagates in a lossy medium with ɛ r = 4 and σ = S/m. The wave propagates in the +x direction and is linearly-polarized in the y-direction. The electric field has an amplitude of V/m. a) Determine the attenuation and phase constant of the medium. Write a time-domain expression for the electric field. Reminder: Ae jφ = Ae jφ/2 if A R. [5 points] b) Determine the phase velocity in the medium. How does it compare to the case if the medium was lossless? [3 points] c) Calculate the wave impedance of the medium and determine a phasor expression for the magnetic field. Describe the temporal and spatial relationship between E and H in the medium. [5 points]

14 ECE357 Final Exam Page 12 of 12 d) How far does the plane wave propagate in the medium before its amplitude is reduced by db? [3 points] e) Determine vector, phasor expressions for the displacement current density and conduction current density. [4 points] f) If σ ωɛ, determine an expression for the group velocity of the medium in terms of ω, σ, ɛ 0, and ɛ r. Does the medium exhibit no dispersion, normal dispersion, or anomalous dispersion? Evaluate the group velocity at f = 1 GHz if σ = S/m. [5 points]

15 7 3 The Complete Smith Chart Black Magic Design ± > WAVELENGTHS TOWARD GENERATOR > < WAVELENGTHS TOWARD LOAD < INDUCTIVE REACTANCE COMPONENT (+jx/zo), OR CAPACITIVE SUSCEPTANCE (+jb/yo) RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) CAPACITIVE REACTANCE COMPONENT (-jx/zo), OR INDUCTIVE SUSCEPTANCE (-jb/yo) ANGLE OF TRANSMISSION COEFFICIENT IN DEGREES ANGLE OF REFLECTION COEFFICIENT IN DEGREES SWR dbs RTN. LOSS [db] RFL. COEFF, P RFL. COEFF, E or I RADIALLY SCALED PARAMETERS TOWARD LOAD > < TOWARD GENERATOR CENTER ATTEN. [db] S.W. LOSS COEFF RFL. LOSS [db] S.W. PEAK (CONST. P) TRANSM. COEFF, P TRANSM. COEFF, E or I ORIGIN

16 7 3 The Complete Smith Chart Black Magic Design ± > WAVELENGTHS TOWARD GENERATOR > < WAVELENGTHS TOWARD LOAD < INDUCTIVE REACTANCE COMPONENT (+jx/zo), OR CAPACITIVE SUSCEPTANCE (+jb/yo) RESISTANCE COMPONENT (R/Zo), OR CONDUCTANCE COMPONENT (G/Yo) CAPACITIVE REACTANCE COMPONENT (-jx/zo), OR INDUCTIVE SUSCEPTANCE (-jb/yo) ANGLE OF TRANSMISSION COEFFICIENT IN DEGREES ANGLE OF REFLECTION COEFFICIENT IN DEGREES SWR dbs RTN. LOSS [db] RFL. COEFF, P RFL. COEFF, E or I RADIALLY SCALED PARAMETERS TOWARD LOAD > < TOWARD GENERATOR CENTER ATTEN. [db] S.W. LOSS COEFF RFL. LOSS [db] S.W. PEAK (CONST. P) TRANSM. COEFF, P TRANSM. COEFF, E or I ORIGIN

17 USEFUL FORMULAE Permittivity of free space: ɛ 0 = F/m Permeability of free space: µ 0 = 4π 7 H/m Speed of light in vacuum: c = 3 8 m/s Complex permittivity: ɛ c = ɛ jɛ = ɛ j σ = ω ɛ (1 j tan δ) Refractive index of non-magnetic dielectrics: n = ɛ r Wavenumber: k = ω µɛ Complex propagation constant in an unbounded medium: γ = jk = α + jβ Phase constant: β = ω/v p = 2π/λ Intrinsic impedance: η = µ ɛ Load reflection coefficient: Γ L = Z L Z 0 Z L +Z 0 Input reflection coefficient: Γ = Γ L e j2βl e 2αl Standing wave ratio: S = 1+ Γ 1 Γ Admittance of an open stub: Y in = jy 0 tan(βl) Impedance of a shorted stub: Z in = jz 0 tan(βl) Impedance transformation: Z in = Z 0 1+Γ(l) 1 Γ(l) Curl operator F = Constitutive relations in simple media: ( Fz y F ) ( y Fx â x + z z F ) ( z Fy â y + x x F ) x â z y D = ɛe B = µh J = σe Time-average Poynting vector: S = 1 2 Re(E H ) Group velocity v g = ω β = ( β ω ) 1

18 Integral form Point form D ds = Q S encl D = ρ v B ds = 0 B = 0 S E dl = d B ds E = B C dt S t H dl = I C encl + D ds H = J + D S t t Table 1: Maxwell s equations Fresnel reflection / transmission coefficients Snell s Law of refraction Γ = η 2 cos θ t η 1 cos θ i η 2 cos θ t + η 1 cos θ i 2η 2 cos θ i T = η 2 cos θ t + η 1 cos θ i Γ = η 2 cos θ i η 1 cos θ t η 2 cos θ i + η 1 cos θ t 2η 2 cos θ i T = η 2 cos θ i + η 1 cos θ t sin θt sin θ i = ɛ1 ɛ 2 = n 1 n 2 = η 2 η 1 Brewster angles sin θ B = 1 µ1 ɛ 2 /µ 2 ɛ 1 1 (µ 1 /µ 2 ; sin θ ) 2 B = 1 µ2 ɛ 1 /µ 1 ɛ 2 1 (ɛ 1 /ɛ 2 ) 2 Key parameters of parallel-plate waveguide Quantity TEM mode TM n mode TE n mode h 0 nπ/b nπ/b β k = ω µɛ k2 h 2 k2 h 2 λ c 2π/h = 2b/n 2π/h = 2b/n λ g 2π/k 2π/β 2π/β v p ω/k = 1/ µɛ ω/β ω/β E z (y, z) 0 A n sin(nπy/b)e jβz 0 H z (y, z) 0 0 B n cos(nπy/b)e jβz E x (y, z) 0 0 (jωµ/h)b n sin(nπy/b)e jβz E y (y, z) E 0 /be jβz ( jβ/h)a n cos(nπy/b)e jβz 0 H x (y, z) E 0 /(ηb)e jβz (jωɛ/h)a n cos(nπy/b)e jβz 0 H y (y, z) 0 0 (jβ/h)b n sin(nπy/b)e jβz Z Z T EM = ηb/w Z T M = βη/k Z T E = kη/β

19 Key parameters of rectangular waveguide Quantity TE mn mode TM mn mode h ( mπ a )2 + ( nπ b )2 ( mπ a )2 + ( nπ b )2 β k2 h 2 k2 h 2 λ c 2π/h 2π/h λ g 2π/β 2π/β v p ω/β ω/β E z (x, y, z) 0 B mn sin( mπx nπy ) sin( a b )e jβz H z (x, y, z) A mn cos( mπx nπy ) cos( a b )e jβz 0 jωµnπ E x (x, y, z) A h 2 b mn cos( mπx nπy ) sin( a b )e jβz jβmπ h 2 a mn cos( mπx nπy ) sin( a b E y (x, y, z) jωµmπ h 2 a mn sin( mπx nπy ) cos( a b )e jβz jβnπ h 2 b mn sin( mπx nπy ) cos( a b jβmπ H x (x, y, z) h 2 a mn sin( mπx nπy jωɛnπ ) cos( )e jβz a b h 2 b mn sin( mπx) a b jβnπ H y (x, y, z) h 2 b mn cos( mπx nπy ) sin( a b )e jβz jωɛmπ h 2 a mn cos( mπx nπy ) sin( a b Z Z T E = kη/β Z T M = βη/k )e jβz )e jβz )e jβz )e jβz

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST 1. 8 February 2016, 19:00 20:00. Examiner: Prof. Sean V. Hum

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST 1. 8 February 2016, 19:00 20:00. Examiner: Prof. Sean V. Hum UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE57HS ELECTROMAGNETIC FIELDS TERM TEST 8 February 6, 9:00 :00

More information

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST March 2016, 18:00 19:00. Examiner: Prof. Sean V. Hum

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST March 2016, 18:00 19:00. Examiner: Prof. Sean V. Hum UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST 2 21 March 2016, 18:00

More information

Microwave Circuits Design

Microwave Circuits Design The Smith Chart: The Smith chart is a graphical aide used to simplify the solution of Tx-line problems More importantly, the Smith chart allows us to visualize the periodic nature of the line impedance

More information

The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, Z T E = η/ cos θ, Z T M = η cos θ

The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, Z T E = η/ cos θ, Z T M = η cos θ The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, 2012 Time: 2 hours. Closed book, closed notes. Calculator provided. For oblique incidence of

More information

Berkeley. The Smith Chart. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2017 by Ali M. Niknejad. September 14, 2017

Berkeley. The Smith Chart. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2017 by Ali M. Niknejad. September 14, 2017 Berkeley The Smith Chart Prof. Ali M. Niknejad U.C. Berkeley Copyright c 17 by Ali M. Niknejad September 14, 17 1 / 29 The Smith Chart The Smith Chart is simply a graphical calculator for computing impedance

More information

EE Lecture 7. Finding gamma. Alternate form. I i. Transmission line. Z g I L Z L. V i. V g - Z in Z. z = -l z = 0

EE Lecture 7. Finding gamma. Alternate form. I i. Transmission line. Z g I L Z L. V i. V g - Z in Z. z = -l z = 0 Impedance on lossless lines EE - Lecture 7 Impedance on lossless lines Reflection coefficient Impedance equation Shorted line example Assigned reading: Sec.. of Ulaby For lossless lines, γ = jω L C = jβ;

More information

y(d) = j

y(d) = j Problem 2.66 A 0-Ω transmission line is to be matched to a computer terminal with Z L = ( j25) Ω by inserting an appropriate reactance in parallel with the line. If f = 800 MHz and ε r = 4, determine the

More information

FINAL EXAM IN FYS-3007

FINAL EXAM IN FYS-3007 Page 1 of 4 pages + chart FINAL EXAM IN FYS-007 Exam in : Fys-007 Microwave Techniques Date : Tuesday, May 1, 2011 Time : 09.00 1.00 Place : Åsgårdveien 9 Approved remedies : All non-living and non-communicating

More information

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Waves Outline Outline Introduction Let s start by introducing simple solutions to Maxwell s equations

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

(12a x +14a y )= 8.5a x 9.9a y A/m

(12a x +14a y )= 8.5a x 9.9a y A/m Chapter 11 Odd-Numbered 11.1. Show that E xs Ae jk 0z+φ is a solution to the vector Helmholtz equation, Sec. 11.1, Eq. (16), for k 0 ω µ 0 ɛ 0 and any φ and A:We take d dz Aejk 0z+φ (jk 0 ) Ae jk 0z+φ

More information

TRANSMISSION LINES AND MATCHING

TRANSMISSION LINES AND MATCHING TRANSMISSION LINES AND MATCHING for High-Frequency Circuit Design Elective by Michael Tse September 2003 Contents Basic models The Telegrapher s equations and solutions Transmission line equations The

More information

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr. EEE 333 Electromagnetic II Chapter 11 Transmission ines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 1 1 11.1 Introduction Wave propagation in unbounded media is used in

More information

1 Chapter 8 Maxwell s Equations

1 Chapter 8 Maxwell s Equations Electromagnetic Waves ECEN 3410 Prof. Wagner Final Review Questions 1 Chapter 8 Maxwell s Equations 1. Describe the integral form of charge conservation within a volume V through a surface S, and give

More information

UNIVERSITY OF TORONTO Department of Electrical and Computer Engineering ECE320H1-F: Fields and Waves, Course Outline Fall 2013

UNIVERSITY OF TORONTO Department of Electrical and Computer Engineering ECE320H1-F: Fields and Waves, Course Outline Fall 2013 UNIVERSITY OF TORONTO Department of Electrical and Computer Engineering ECE320H1-F: Fields and Waves, Course Outline Fall 2013 Name Office Room Email Address Lecture Times Professor Mo Mojahedi SF2001D

More information

6-1 Chapter 6 Transmission Lines

6-1 Chapter 6 Transmission Lines 6-1 Chapter 6 Transmission ines ECE 3317 Dr. Stuart A. ong 6-2 General Definitions p.133 6-3 Voltage V( z) = α E ds ( C z) 1 C t t ( a) Current I( z) = α H ds ( C0 closed) 2 C 0 ( b) http://www.cartoonstock.com

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104 CHAPTER 1 1.1. A uniform plane wave in air, E + x1 E+ x10 cos(1010 t βz)v/m, is normally-incident on a copper surface at z 0. What percentage of the incident power density is transmitted into the copper?

More information

Kimmo Silvonen, Transmission lines, ver

Kimmo Silvonen, Transmission lines, ver Kimmo Silvonen, Transmission lines, ver. 13.10.2008 1 1 Basic Theory The increasing operating and clock frequencies require transmission line theory to be considered more and more often! 1.1 Some practical

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Cover Page. Solution. James Clerk Maxwell ( )

Cover Page. Solution. James Clerk Maxwell ( ) Cover Page Final Exam (Total 45 points) Professor: Sungsik Lee Subject: Electromagnetics (EM-), Fall Semester in 08 epartment of Electronics Engineering, Pusan National University ate: 5 ecember 08, uration:.5

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

Transmission line equations in phasor form

Transmission line equations in phasor form Transmission line equations in phasor form Kenneth H. Carpenter Department of Electrical and Computer Engineering Kansas State University November 19, 2004 The text for this class presents transmission

More information

ELECTROMAGNETIC FIELDS AND WAVES

ELECTROMAGNETIC FIELDS AND WAVES ELECTROMAGNETIC FIELDS AND WAVES MAGDY F. ISKANDER Professor of Electrical Engineering University of Utah Englewood Cliffs, New Jersey 07632 CONTENTS PREFACE VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

An Introduction to the Smith Chart for Amateur Radio. Jesse Sheinwald, N2CA

An Introduction to the Smith Chart for Amateur Radio. Jesse Sheinwald, N2CA An Introduction to the Smith Chart for Amateur Radio Jesse Sheinwald, N2CA jsheinwald@pobox.com ± 180 50 20 0.1 0.3 0.5 0.7 0.9 1.2 1.4 1.6 1.8 2.0 3.0 4.0 5.0 10 20 50-90 0 0 < 0.1 0.3 0.5 0.7 0.9 1.2

More information

COURTESY IARE. Code No: R R09 Set No. 2

COURTESY IARE. Code No: R R09 Set No. 2 Code No: R09220404 R09 Set No. 2 II B.Tech II Semester Examinations,APRIL 2011 ELECTRO MAGNETIC THEORY AND TRANSMISSION LINES Common to Electronics And Telematics, Electronics And Communication Engineering,

More information

University of Saskatchewan Department of Electrical Engineering

University of Saskatchewan Department of Electrical Engineering University of Saskatchewan Department of Electrical Engineering December 9,2004 EE30 1 Electricity, Magnetism and Fields Final Examination Professor Robert E. Johanson Welcome to the EE301 Final. This

More information

remain essentially unchanged for the case of time-varying fields, the remaining two

remain essentially unchanged for the case of time-varying fields, the remaining two Unit 2 Maxwell s Equations Time-Varying Form While the Gauss law forms for the static electric and steady magnetic field equations remain essentially unchanged for the case of time-varying fields, the

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 2: Transmission lines Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Outline Transmission

More information

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange

444 Index Boundary condition at transmission line short circuit, 234 for normal component of B, 170, 180 for normal component of D, 169, 180 for tange Index A. see Magnetic vector potential. Acceptor, 193 Addition of complex numbers, 19 of vectors, 3, 4 Admittance characteristic, 251 input, 211 line, 251 Ampere, definition of, 427 Ampere s circuital

More information

Problem set 3. Electromagnetic waves

Problem set 3. Electromagnetic waves Second Year Electromagnetism Michaelmas Term 2017 Caroline Terquem Problem set 3 Electromagnetic waves Problem 1: Poynting vector and resistance heating This problem is not about waves but is useful to

More information

ECE 391 supplemental notes - #11. Adding a Lumped Series Element

ECE 391 supplemental notes - #11. Adding a Lumped Series Element ECE 391 supplemental notes - #11 Adding a umped Series Element Consider the following T-line circuit: Z R,1! Z,2! Z z in,1 = r in,1 + jx in,1 Z in,1 = z in,1 Z,1 z = Z Z,2 zin,2 = r in,2 + jx in,2 z,1

More information

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Chapter 1: Introduction: Waves and Phasors

Chapter 1: Introduction: Waves and Phasors Chapter : Introduction: Waves and Phasors Lesson # Chapter Section: Chapter Topics: EM history and how it relates to other fields Highlights: EM in Classical era: 000 BC to 900 Examples of Modern Era Technology

More information

ECE 604, Lecture 13. October 16, 2018

ECE 604, Lecture 13. October 16, 2018 ECE 604, Lecture 13 October 16, 2018 1 Introduction In this lecture, we will cover the following topics: Terminated Transmission Line Smith Chart Voltage Standing Wave Ratio (VSWR) Additional Reading:

More information

Waves in Linear Optical Media

Waves in Linear Optical Media 1/53 Waves in Linear Optical Media Sergey A. Ponomarenko Dalhousie University c 2009 S. A. Ponomarenko Outline Plane waves in free space. Polarization. Plane waves in linear lossy media. Dispersion relations

More information

Imaginary Impedance Axis. Real Impedance Axis. Smith Chart. The circles, tangent to the right side of the chart, are constant resistance circles

Imaginary Impedance Axis. Real Impedance Axis. Smith Chart. The circles, tangent to the right side of the chart, are constant resistance circles The Smith Chart The Smith Chart is simply a graphical calculator for computing impedance as a function of reflection coefficient. Many problems can be easily visualized with the Smith Chart The Smith chart

More information

Topic 5: Transmission Lines

Topic 5: Transmission Lines Topic 5: Transmission Lines Profs. Javier Ramos & Eduardo Morgado Academic year.13-.14 Concepts in this Chapter Mathematical Propagation Model for a guided transmission line Primary Parameters Secondary

More information

Reflection/Refraction

Reflection/Refraction Reflection/Refraction Page Reflection/Refraction Boundary Conditions Interfaces between different media imposed special boundary conditions on Maxwell s equations. It is important to understand what restrictions

More information

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0 602 CHAPTER 11 TRANSMISSION LINES 11.10 Two identical pulses each of magnitude 12 V and width 2 µs are incident at t = 0 on a lossless transmission line of length 400 m terminated with a load. If the two

More information

3.1 The Helmoltz Equation and its Solution. In this unit, we shall seek the physical significance of the Maxwell equations, summarized

3.1 The Helmoltz Equation and its Solution. In this unit, we shall seek the physical significance of the Maxwell equations, summarized Unit 3 TheUniformPlaneWaveand Related Topics 3.1 The Helmoltz Equation and its Solution In this unit, we shall seek the physical significance of the Maxwell equations, summarized at the end of Unit 2,

More information

5 Electromagnetic Waves

5 Electromagnetic Waves 5 Electromagnetic Waves 5.1 General Form for Electromagnetic Waves. In free space, Maxwell s equations are: E ρ ɛ 0 (5.1.1) E + B 0 (5.1.) B 0 (5.1.3) B µ 0 ɛ 0 E µ 0 J (5.1.4) In section 4.3 we derived

More information

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when Plane Waves Part II. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when (a) The angle of incidence is equal to the Brewster angle with E field perpendicular

More information

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines TC 412 Microwave Communications Lecture 6 Transmission lines problems and microstrip lines RS 1 Review Input impedance for finite length line Quarter wavelength line Half wavelength line Smith chart A

More information

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff CHARLES R. BOYD, JR. Microwave Applications Group, Santa Maria, California, U. S. A. ABSTRACT Unlike conventional waveguides, lossless

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

General review: - a) Dot Product

General review: - a) Dot Product General review: - a) Dot Product If θ is the angle between the vectors a and b, then a b = a b cos θ NOTE: Two vectors a and b are orthogonal, if and only if a b = 0. Properties of the Dot Product If a,

More information

Engineering Electromagnetic Fields and Waves

Engineering Electromagnetic Fields and Waves CARL T. A. JOHNK Professor of Electrical Engineering University of Colorado, Boulder Engineering Electromagnetic Fields and Waves JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CHAPTER

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Ranga Rodrigo University of Moratuwa October 20, 2008 Compiled based on Lectures of Prof. (Mrs.) Indra Dayawansa. Ranga Rodrigo (University of Moratuwa) Antennas and Propagation

More information

Instructor s Guide Fundamentals of Applied Electromagnetics 2006 Media Edition Fawwaz T. Ulaby

Instructor s Guide Fundamentals of Applied Electromagnetics 2006 Media Edition Fawwaz T. Ulaby Instructor s Guide Fundamentals of Applied Electromagnetics 006 Media Edition Fawwaz T. Ulaby Dear Instructor: This Instructor s Guide is intended for use by the course instructor only. It was developed

More information

Microwave Circuit Design I

Microwave Circuit Design I 9 1 Microwave Circuit Design I Lecture 9 Topics: 1. Admittance Smith Chart 2. Impedance Matching 3. Single-Stub Tuning Reading: Pozar pp. 228 235 The Admittance Smith Chart Since the following is also

More information

ELE3310: Basic ElectroMagnetic Theory

ELE3310: Basic ElectroMagnetic Theory A summary for the final examination EE Department The Chinese University of Hong Kong November 2008 Outline Mathematics 1 Mathematics Vectors and products Differential operators Integrals 2 Integral expressions

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

Transmission Lines in the Frequency Domain

Transmission Lines in the Frequency Domain Berkeley Transmission Lines in the Frequency Domain Prof. Ali M. Niknejad U.C. Berkeley Copyright c 2016 by Ali M. Niknejad August 30, 2017 1 / 38 Why Sinusoidal Steady-State? 2 / 38 Time Harmonic Steady-State

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 1989. ISBN: 9780132490207. Please use the following

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-ELECTRICITY AND MAGNETISM 1. Electrostatics (1-58) 1.1 Coulomb s Law and Superposition Principle 1.1.1 Electric field 1.2 Gauss s law 1.2.1 Field lines and Electric flux 1.2.2 Applications 1.3

More information

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Name Electro Dynamic Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly. 1. (2) Write an

More information

Contents. Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.

Contents. Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU. 1 Contents 2 Transmission lines 3 2.1 Transmission Lines: General Considerations...... 3 2.1.1 Wavelength and transmission lines....... 4 2.1.2 Propagation modes................ 8 2.2 Lumped element model.................

More information

TASK A. TRANSMISSION LINE AND DISCONTINUITIES

TASK A. TRANSMISSION LINE AND DISCONTINUITIES TASK A. TRANSMISSION LINE AND DISCONTINUITIES Task A. Transmission Line and Discontinuities... 1 A.I. TEM Transmission Line... A.I.1. Circuit Representation of a Uniform Transmission Line... A.I.. Time

More information

Propagation of Plane Waves

Propagation of Plane Waves Chapter 6 Propagation of Plane Waves 6 Plane Wave in a Source-Free Homogeneous Medium 62 Plane Wave in a Lossy Medium 63 Interference of Two Plane Waves 64 Reflection and Transmission at a Planar Interface

More information

Formula Sheet. ( γ. 0 : X(t) = (A 1 + A 2 t) e 2 )t. + X p (t) (3) 2 γ Γ +t Γ 0 : X(t) = A 1 e + A 2 e + X p (t) (4) 2

Formula Sheet. ( γ. 0 : X(t) = (A 1 + A 2 t) e 2 )t. + X p (t) (3) 2 γ Γ +t Γ 0 : X(t) = A 1 e + A 2 e + X p (t) (4) 2 Formula Sheet The differential equation Has the general solutions; with ẍ + γẋ + ω 0 x = f cos(ωt + φ) (1) γ ( γ )t < ω 0 : X(t) = A 1 e cos(ω 0 t + β) + X p (t) () γ = ω ( γ 0 : X(t) = (A 1 + A t) e )t

More information

Plane Waves GATE Problems (Part I)

Plane Waves GATE Problems (Part I) Plane Waves GATE Problems (Part I). A plane electromagnetic wave traveling along the + z direction, has its electric field given by E x = cos(ωt) and E y = cos(ω + 90 0 ) the wave is (a) linearly polarized

More information

Impedance Matching and Tuning

Impedance Matching and Tuning C h a p t e r F i v e Impedance Matching and Tuning This chapter marks a turning point, in that we now begin to apply the theory and techniques of previous chapters to practical problems in microwave engineering.

More information

Transmission and Distribution of Electrical Power

Transmission and Distribution of Electrical Power KINGDOM OF SAUDI ARABIA Ministry Of High Education Umm Al-Qura University College of Engineering & Islamic Architecture Department Of Electrical Engineering Transmission and Distribution of Electrical

More information

EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation

EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 117 Lecture 3 p. 1/23 Transmission Line

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE318S Fundamentals of Optics Final Exam April 16, 2007 Exam Type: D (Close-book + two double-sided aid sheets + a non-programmable

More information

ECE145A/218A Course Notes

ECE145A/218A Course Notes ECE145A/218A Course Notes Last note set: Introduction to transmission lines 1. Transmission lines are a linear system - superposition can be used 2. Wave equation permits forward and reverse wave propagation

More information

Solutions to Problems in Chapter 6

Solutions to Problems in Chapter 6 Appendix F Solutions to Problems in Chapter 6 F.1 Problem 6.1 Short-circuited transmission lines Section 6.2.1 (book page 193) describes the method to determine the overall length of the transmission line

More information

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves Guided Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Guided Waves Outline Outline The Circuit Model of Transmission Lines R + jωl I(z + z) I(z)

More information

1.3 Sinusoidal Steady State

1.3 Sinusoidal Steady State 1.3 Sinusoidal Steady State Electromagnetics applications can be divided into two broad classes: Time-domain: Excitation is not sinusoidal (pulsed, broadband, etc.) Ultrawideband communications Pulsed

More information

ANTENNAS and MICROWAVES ENGINEERING (650427)

ANTENNAS and MICROWAVES ENGINEERING (650427) Philadelphia University Faculty of Engineering Communication and Electronics Engineering ANTENNAS and MICROWAVES ENGINEERING (65427) Part 2 Dr. Omar R Daoud 1 General Considerations It is a two-port network

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7.

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7. Name Section Short Answer Questions 1. (20 Pts) 2. (10 Pts) 3. (5 Pts). (10 Pts) 5. (10 Pts) Regular Questions 6. (25 Pts) 7. (20 Pts) Notes: 1. Please read over all questions before you begin your work.

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Translated by authors With 259 Figures Springer Contents 1 Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Electromagnetic Theory for Microwaves and Optoelectronics

Electromagnetic Theory for Microwaves and Optoelectronics Keqian Zhang Dejie Li Electromagnetic Theory for Microwaves and Optoelectronics Second Edition With 280 Figures and 13 Tables 4u Springer Basic Electromagnetic Theory 1 1.1 Maxwell's Equations 1 1.1.1

More information

Electrodynamics Qualifier Examination

Electrodynamics Qualifier Examination Electrodynamics Qualifier Examination January 10, 2007 1. This problem deals with magnetostatics, described by a time-independent magnetic field, produced by a current density which is divergenceless,

More information

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR

( z) ( ) ( )( ) ω ω. Wave equation. Transmission line formulas. = v. Helmholtz equation. Exponential Equation. Trig Formulas = Γ. cos sin 1 1+Γ = VSWR Wave equation 1 u tu v u(, t f ( vt + g( + vt Helmholt equation U + ku jk U Ae + Be + jk Eponential Equation γ e + e + γ + γ Trig Formulas sin( + y sin cos y+ sin y cos cos( + y cos cos y sin sin y + cos

More information

Transmission Line Theory

Transmission Line Theory S. R. Zinka zinka@vit.ac.in School of Electronics Engineering Vellore Institute of Technology April 26, 2013 Outline 1 Free Space as a TX Line 2 TX Line Connected to a Load 3 Some Special Cases 4 Smith

More information

Department of Physics Preliminary Exam January 2 5, 2013

Department of Physics Preliminary Exam January 2 5, 2013 Department of Physics Preliminary Exam January 2 5, 2013 Day 2: Electricity, Magnetism and Optics Thursday, January 3, 2013 9:00 a.m. 12:00 p.m. Instructions: 1. Write the answer to each question on a

More information

3 December Lesson 5.5

3 December Lesson 5.5 Preparation Assignments for Homework #8 Due at the start of class. Reading Assignments Please see the handouts for each lesson for the reading assignments. 3 December Lesson 5.5 A uniform plane wave is

More information

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines Transmission Lines Introduction A transmission line guides energy from one place to another. Optical fibres, waveguides, telephone lines and power cables are all electromagnetic transmission lines. are

More information

V/m, A/m. With flux density vectors D = ε E, B = μ H; current density J = σe, and the continuity equation

V/m, A/m. With flux density vectors D = ε E, B = μ H; current density J = σe, and the continuity equation ELECTROMAGNETICS: Theory & Practice S. Hossein Mousavinezhad Department of Electrical and Computer Engineering Western Michigan University h.mousavinezhad@wmich.edu Stuart M. Wentworth Department of Electrical

More information

Microwave Network Analysis

Microwave Network Analysis Prof. Dr. Mohammad Tariqul Islam titareq@gmail.my tariqul@ukm.edu.my Microwave Network Analysis 1 Text Book D.M. Pozar, Microwave engineering, 3 rd edition, 2005 by John-Wiley & Sons. Fawwaz T. ILABY,

More information

Engineering Services Examination - UPSC ELECTRICAL ENGINEERING

Engineering Services Examination - UPSC ELECTRICAL ENGINEERING Engineering Services Examination - UPSC ELECTRICAL ENGINEERING Topic-wise Conventional Papers I & II 994 to 3 3 By Engineers Institute of India ALL RIGHTS RESERVED. No part of this work covered by the

More information

Complex Numbers, Phasors and Circuits

Complex Numbers, Phasors and Circuits Complex Numbers, Phasors and Circuits Transmission Lines Complex numbers are defined by points or vectors in the complex plane, and can be represented in Cartesian coordinates or in polar (exponential)

More information

Problem 1 Γ= = 0.1λ = max VSWR = 13

Problem 1 Γ= = 0.1λ = max VSWR = 13 Smith Chart Problems 1. The 0:1 length line shown has a characteristic impedance of 50 and is terminated with a load impedance of Z =5+j25. (a) ocate z = Z Z 0 =0:1+j0:5 onthe Smith chart. See the point

More information

Antenna Theory (Engineering 9816) Course Notes. Winter 2016

Antenna Theory (Engineering 9816) Course Notes. Winter 2016 Antenna Theory (Engineering 9816) Course Notes Winter 2016 by E.W. Gill, Ph.D., P.Eng. Unit 1 Electromagnetics Review (Mostly) 1.1 Introduction Antennas act as transducers associated with the region of

More information

Electrical and optical properties of materials

Electrical and optical properties of materials Electrical and optical properties of materials John JL Morton Part 4: Mawell s Equations We have already used Mawell s equations for electromagnetism, and in many ways they are simply a reformulation (or

More information

ECE 6341 Spring 2016 HW 2

ECE 6341 Spring 2016 HW 2 ECE 6341 Spring 216 HW 2 Assigned problems: 1-6 9-11 13-15 1) Assume that a TEN models a layered structure where the direction (the direction perpendicular to the layers) is the direction that the transmission

More information

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004

Massachusetts Institute of Technology Physics 8.03 Fall 2004 Final Exam Thursday, December 16, 2004 You have 3 hours Do all eight problems You may use calculators Massachusetts Institute of Technology Physics 8.03 Fall 004 Final Exam Thursday, December 16, 004 This is a closed-book exam; no notes are

More information

Waveguide systems. S. Kazakov 19/10/2017, JAS 2017

Waveguide systems. S. Kazakov 19/10/2017, JAS 2017 Waveguide systems S. Kazakov 19/10/017, JAS 017 What is waveguide systems? Let s define a waveguide system as everything between a source of electromagnetic power and power consumer. For example: the Sun

More information

Electromagnetic Wave Propagation Lecture 2: Uniform plane waves

Electromagnetic Wave Propagation Lecture 2: Uniform plane waves Electromagnetic Wave Propagation Lecture 2: Uniform plane waves Daniel Sjöberg Department of Electrical and Information Technology March 25, 2010 Outline 1 Plane waves in lossless media General time dependence

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7 ECE 6341 Spring 216 Prof. David R. Jackson ECE Dept. Notes 7 1 Two-ayer Stripline Structure h 2 h 1 ε, µ r2 r2 ε, µ r1 r1 Goal: Derive a transcendental equation for the wavenumber k of the TM modes of

More information