ECE Spring Prof. David R. Jackson ECE Dept. Notes 7

Size: px
Start display at page:

Download "ECE Spring Prof. David R. Jackson ECE Dept. Notes 7"

Transcription

1 ECE 6341 Spring 216 Prof. David R. Jackson ECE Dept. Notes 7 1

2 Two-ayer Stripline Structure h 2 h 1 ε, µ r2 r2 ε, µ r1 r1 Goal: Derive a transcendental equation for the wavenumber k of the TM modes of propagation. Assumption: There is no variation of the fields in the y direction, and propagation is along the direction. 2

3 Two-ayer Stripline Structure (cont.) TEN: 1 R 2 h 1 h 2 TM impedances: 1 k 1 ωε 1 2 k 2 ωε 2 Note: Because this is a lossless closed structure, k is either real (above cutoff) or imaginary (below cutoff). ( 2 2 ) 1/2 ( 2 2 k ) 1/2 2 k2 k k k k 1 1 Transverse Resonance Equation (TRE): in in 3

4 Two-ayer Stripline Structure (cont.) in in 1 2 h 1 h 2 in 1 tan ( 1 1) j tan ( k h ) j k h in TRE: or ( ) tan ( ) tan k h k h k ωε tan ( k h ) tan ( k h ) ωε2 k 4

5 TEN (cont.) Hence ε ( ) ε tan ( ) k tan k h k k h r r Assuming nonmagnetic materials, ( 2 2 ε ) 1/2 ( 2 2 k ) 1/2 2 kεr2 k k k k 1 r1 A similar analysis could be applied for the TE modes. 5

6 Parallel-Plate Waveguide Special case: parallel-plate waveguide h h1+ h2 h ε, µ r r k k k 1 2 6

7 Parallel-Plate Waveguide (cont.) ( ) ε tan ( ) ε k tan kh k kh r 1 r 2 or ( kh) ( kh) tan + tan 1 2 Helpful identity: We then have tan tan( a) + tan( b) + 1 tan( a) tan( b) ( a b) ( kh kh) ( kh) ( kh) tan tan 1 tan 2 This will be satisfied if ( kh kh) tan

8 Parallel-Plate Waveguide (cont.) Hence we have so ( ) tan kh kh mπ, m,1, 2 We have (from the separation equation) Hence k k ε k 2 2 r Note: TM and TE modes have the same wavenumber, but only the TM mode can eist for m. (the electric field is perpendicular to the metal walls). k 2 2 mπ kε r h 8

9 Waveguide With Slab y TE mn modes TM mn modes TEN : b w w a ( a w) /2 1 9

10 Waveguide With Slab (cont.) TE TE 1 ωµ k ωµ 1 k 1 TM TM 1 k ωε k 1 ωε 1 Wavenumbers: 2 2 nπ k k k b 2 2 nπ k1 kε r k b 2 1/2 2 1/2 Note: A F nπ y sin F( ) e b nπ y cos G( ) e b jk jk Note: In the BCs, A acts like E while F acts like H. 1

11 Waveguide With Slab (cont.) First try reference plane at : R 1 11

12 Waveguide With Slab (cont.) (2) (1) in in 1 w General formula: + j tan βl in j + tan β l Apply this twice: j tan( k ) (1) in + j tan( k w) j tan( k w) (1) (2) in 1 1 in 1 (1) 1 + in 1 12

13 Waveguide With Slab (cont.) (2) (1) in in 1 w Apply again: ( 2) in + j tan( k) ( 2) + jin tan( k) A mess! 13

14 Waveguide With Slab (cont.) Now try a reference plane at the center of the structure (the origin is now re-defined here). w R 1 TRE: But (from symmetry): Hence (This is the only finite number that will work.) 14

15 Waveguide With Slab (cont.) Now use an admittance formulation w 1 Y Y TRE: Y Y But (from symmetry): Y Y Hence Y (only finite number that will work) Hence 15

16 Waveguide With Slab (cont.) Hence, there are two valid solutions: PEC wall PMC wall PEC wall PMC wall 16

17 Waveguide With Slab (cont.) From symmetry: ( ) ( ) E AE Odd mode: A -1 Even mode: A +1 E E Plots of E Odd mode: PEC wall Even mode: PMC wall 17

18 Waveguide With Slab (cont.) PEC wall: odd mode PMC wall: even mode PEC : PMC : Ht Et, Hn, n Et Ht, En, n Note: even/odd is classification is based on the E field. E E Plots of E Odd mode: PEC wall Even mode: PMC wall 18

19 Eample: TE Even Modes (1) w in + j1 tan k1 2 1 (1) w 1 + jin tan k ( ) R w 1 in Set (1) w 1 + jin tan k1 2 w 1 + j[ j tan( k) ] tan k1 2 w 1 tan( k) tan k1 2 19

20 TE Even Modes (cont.) ωµ ωµ w tan ( k) tan k1 k k 2 1 or w k k 1tan( k) tan k1 2 TE even where 2 1/2 2 1/2 2 2 nπ 2 2 nπ 1 ε r k k k k k k b b Hence, the transcendental equation is in the form Fk ( ) 2

21 Four Possible Cases (We have only done one of them: TE even.) TE even TM even TE odd TM odd 21

22 Cutoff Frequency (TE Even) Then Set k (closed structure) nπ 2 2 nπ 1 ε r k k k k k k b b Hence, the transcendental equation is now in the form Fk ( ) where k f 2π fc µε c cutoff frequency 22

23 SE/SM Terminology y This terminology is often used in the microwave community. SE: ongitudinal Section Electric. This means the same thing as TE. The electric field vector of the mode has no component, and hence it lies within the y plane (This is called the longitudinal plane, which means the plane parallel to the slab face. SM: ongitudinal Section Magnetic. This means the same thing as TM. The magnetic field vector of the mode has no component, and hence it lies within the y plane (the longitudinal plane). 23

ECE 6341 Spring 2016 HW 2

ECE 6341 Spring 2016 HW 2 ECE 6341 Spring 216 HW 2 Assigned problems: 1-6 9-11 13-15 1) Assume that a TEN models a layered structure where the direction (the direction perpendicular to the layers) is the direction that the transmission

More information

ECE 222b Applied Electromagnetics Notes Set 4b

ECE 222b Applied Electromagnetics Notes Set 4b ECE b Applied Electromagnetics Notes Set 4b Instructor: Prof. Vitali Lomain Department of Electrical and Computer Engineering Universit of California, San Diego 1 Uniform Waveguide (1) Wave propagation

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6

ECE Spring Prof. David R. Jackson ECE Dept. Notes 6 ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 6 1 Leaky Modes v TM 1 Mode SW 1 v= utan u ε R 2 R kh 0 n1 r = ( ) 1 u Splitting point ISW f = f s f > f s We will examine the solutions as the

More information

Cartesian Coordinates

Cartesian Coordinates Cartesian Coordinates Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Cartesian Coordinates Outline Outline Separation of Variables Away from sources,

More information

Helmholtz Wave Equation TE, TM, and TEM Modes Rect Rectangular Waveguide TE, TM, and TEM Modes Cyl Cylindrical Waveguide.

Helmholtz Wave Equation TE, TM, and TEM Modes Rect Rectangular Waveguide TE, TM, and TEM Modes Cyl Cylindrical Waveguide. Waveguides S. R. Zinka zinka@vit.ac.in School of Electronics Engineering Vellore Institute of Technology April 26, 2013 Outline 1 Helmholtz Wave Equation 2 TE, TM, and TEM Modes Rect 3 Rectangular Waveguide

More information

Modal Interactions in Lossy Dielectric Metamaterial Slabs

Modal Interactions in Lossy Dielectric Metamaterial Slabs Modal Interactions in Lossy Dielectric Metamaterial Slabs A. B. Yakovlev (), G. Lovat (), P. Burghignoli (), and G. W. Hanson () () University of Mississippi () La Sapienza University of Rome () University

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5 ECE 6345 Sping 15 Pof. David R. Jackson ECE Dept. Notes 5 1 Oveview This set of notes discusses impoved models of the pobe inductance of a coaxially-fed patch (accuate fo thicke substates). A paallel-plate

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16

ECE Spring Prof. David R. Jackson ECE Dept. Notes 16 ECE 6345 Spring 5 Prof. David R. Jackson ECE Dept. Notes 6 Overview In this set of notes we calculate the power radiated into space by the circular patch. This will lead to Q sp of the circular patch.

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 9

ECE Spring Prof. David R. Jackson ECE Dept. Notes 9 ECE 6341 Spring 2016 Prof. David R. Jackson ECE Dept. Notes 9 1 Circular Waveguide The waveguide is homogeneously filled, so we have independent TE and TM modes. a ε r A TM mode: ψ ρφ,, ( ) Jυ( kρρ) sin(

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 15

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 15 ECE 634 Intermediate EM Waves Fall 6 Prof. David R. Jackson Dept. of ECE Notes 5 Attenuation Formula Waveguiding system (WG or TL): S z Waveguiding system Exyz (,, ) = E( xye, ) = E( xye, ) e γz jβz αz

More information

Plane Wave: Introduction

Plane Wave: Introduction Plane Wave: Introduction According to Mawell s equations a timevarying electric field produces a time-varying magnetic field and conversely a time-varying magnetic field produces an electric field ( i.e.

More information

Chapter 4 Reflection and Transmission of Waves

Chapter 4 Reflection and Transmission of Waves 4-1 Chapter 4 Reflection and Transmission of Waves ECE 3317 Dr. Stuart Long www.bridgat.com www.ranamok.com Boundary Conditions 4- -The convention is that is the outward pointing normal at the boundary

More information

TC412 Microwave Communications. Lecture 8 Rectangular waveguides and cavity resonator

TC412 Microwave Communications. Lecture 8 Rectangular waveguides and cavity resonator TC412 Microwave Communications Lecture 8 Rectangular waveguides and cavity resonator 1 TM waves in rectangular waveguides Finding E and H components in terms of, WG geometry, and modes. From 2 2 2 xye

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 26

ECE Spring Prof. David R. Jackson ECE Dept. Notes 26 ECE 6345 Spring 05 Prof. David R. Jackson ECE Dept. Notes 6 Overview In this set of notes we use the spectral-domain method to find the mutual impedance between two rectangular patch ennas. z Geometry

More information

Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Waveguides Continued - In the previous lecture we made the assumption that

More information

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves Guided Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Guided Waves Outline Outline The Circuit Model of Transmission Lines R + jωl I(z + z) I(z)

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jacson Dept. of ECE Notes 17 1 General Plane Waves General form of plane wave: E( xz,, ) = Eψ ( xz,, ) where ψ ( xz,, ) = e j( xx+ + zz) The wavenumber

More information

TASK A. TRANSMISSION LINE AND DISCONTINUITIES

TASK A. TRANSMISSION LINE AND DISCONTINUITIES TASK A. TRANSMISSION LINE AND DISCONTINUITIES Task A. Transmission Line and Discontinuities... 1 A.I. TEM Transmission Line... A.I.1. Circuit Representation of a Uniform Transmission Line... A.I.. Time

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 37

ECE Spring Prof. David R. Jackson ECE Dept. Notes 37 ECE 6341 Spring 16 Prof. David R. Jacson ECE Dept. Notes 37 1 Line Source on a Grounded Slab y ε r E jω A z µ I 1 A 1 e e d y ( ) + TE j y j z 4 j +Γ y 1/ 1/ ( ) ( ) y y1 1 There are branch points only

More information

ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours

ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM 28 April 15 Examiner:

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 33

ECE Spring Prof. David R. Jackson ECE Dept. Notes 33 C 6345 Spring 2015 Prof. David R. Jackson C Dept. Notes 33 1 Overview In this set of notes we eamine the FSS problem in more detail, using the periodic spectral-domain Green s function. 2 FSS Geometry

More information

Theory of Optical Waveguide

Theory of Optical Waveguide Theor of Optical Waveguide Class: Integrated Photonic Devices Time: Fri. 8:am ~ :am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee Reflection and Refraction at an Interface (TE n kˆi H i E i θ θ

More information

Electromagnetic waves in free space

Electromagnetic waves in free space Waveguide notes 018 Electromagnetic waves in free space We start with Maxwell s equations for an LIH medum in the case that the source terms are both zero. = =0 =0 = = Take the curl of Faraday s law, then

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5 ECE 634 Sping 06 Pof. David R. Jacson ECE Dept. Notes 5 TM x Sface-Wave Soltion Poblem nde consideation: x h ε, µ z A TM x sface wave is popagating in the z diection (no y vaiation). TM x Sface-Wave Soltion

More information

ECE Microwave Engineering

ECE Microwave Engineering ECE 537-635 Microwave Engineering Fall 8 Prof. David R. Jackson Dept. of ECE Adapted from notes by Prof. Jeffery T. Williams Notes Power Dividers and Circulators Power Dividers and Couplers A power divider

More information

Contribution of Feed Waveguide on the Admittance Characteristics Of Coplanar Slot Coupled E-H Tee Junction

Contribution of Feed Waveguide on the Admittance Characteristics Of Coplanar Slot Coupled E-H Tee Junction ISSN(Online): 30-9801 Contribution of Feed Waveguide on the Admittance Characteristics Of Coplanar Slot Coupled E-H Tee Junction M.Murali, Prof. G.S.N Raju Research Scholar, Dept.of ECE, Andhra University,

More information

NASA Contractor Report. Application of FEM to Estimate Complex Permittivity of Dielectric Material at Microwave Frequency Using Waveguide Measurements

NASA Contractor Report. Application of FEM to Estimate Complex Permittivity of Dielectric Material at Microwave Frequency Using Waveguide Measurements NASA Contractor Report Application of FEM to Estimate Complex Permittivity of Dielectric Material at Microwave Frequency Using Waveguide Measurements M. D.Deshpande VIGYAN Inc., Hampton, VA C. J. Reddy

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 15

ECE Spring Prof. David R. Jackson ECE Dept. Notes 15 ECE 6341 Spring 216 Prof. David R. Jackson ECE Dept. Notes 15 1 Arbitrary Line Current TM : A (, ) Introduce Fourier Transform: I I + ( k ) jk = I e d x y 1 I = I ( k ) jk e dk 2π 2 Arbitrary Line Current

More information

Notes 24 Image Theory

Notes 24 Image Theory ECE 3318 Applied Electricity and Magnetism Spring 218 Prof. David R. Jackson Dept. of ECE Notes 24 Image Teory 1 Uniqueness Teorem S ρ v ( yz),, ( given) Given: Φ=ΦB 2 ρv Φ= ε Φ=Φ B on boundary Inside

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1

ECE Spring Prof. David R. Jackson ECE Dept. Notes 1 ECE 6341 Spring 16 Prof. David R. Jackson ECE Dept. Notes 1 1 Fields in a Source-Free Region Sources Source-free homogeneous region ( ε, µ ) ( EH, ) Note: For a lossy region, we replace ε ε c ( / ) εc

More information

ECE 546 Lecture 03 Waveguides

ECE 546 Lecture 03 Waveguides ECE 546 Lecture 03 Waveguides Spring 018 Jose E. Schutt-Aine Electrical & Computer Engineering Universit o Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine 1 Parallel-Plate Waveguide Maxwell s Equations

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jackson Dept. of ECE Notes 7 1 TEM Transmission Line conductors 4 parameters C capacitance/length [F/m] L inductance/length [H/m] R resistance/length

More information

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV

THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV Numerical Techniques in Electromagnetics ECE 757 THE FINITE-DIFFERENCE TIME-DOMAIN (FDTD) METHOD PART IV The Perfectly Matched Layer (PML) Absorbing Boundary Condition Nikolova 2009 1 1. The need for good

More information

Waveguide systems. S. Kazakov 19/10/2017, JAS 2017

Waveguide systems. S. Kazakov 19/10/2017, JAS 2017 Waveguide systems S. Kazakov 19/10/017, JAS 017 What is waveguide systems? Let s define a waveguide system as everything between a source of electromagnetic power and power consumer. For example: the Sun

More information

An improved planar cavity model for dielectric characterization

An improved planar cavity model for dielectric characterization Scholars' Mine Masters Theses Student Research & Creative Works Fall 2015 An improved planar cavity model for dielectric characterization Benjamin Jay Conley Follow this and additional works at: http://scholarsmine.mst.edu/masters_theses

More information

EECS 117 Lecture 26: TE and TM Waves

EECS 117 Lecture 26: TE and TM Waves EECS 117 Lecture 26: TE and TM Waves Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 117 Lecture 26 p. 1/2 TE Waves TE means that e z = 0 but h z 0. If k c 0,

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 6345 Sping 05 Po. David R. Jackson ECE Dept. Notes Oveview This set o notes teats cicula polaization, obtained b using a single eed. L W 0 0 W ( 0, 0 ) L Oveview Goals: Find the optimum dimensions

More information

Microwave Engineering 3e Author - D. Pozar

Microwave Engineering 3e Author - D. Pozar Microwave Engineering 3e Author - D. Pozar Sections 3.6 3.8 Presented by Alex Higgins 1 Outline Section 3.6 Surface Waves on a Grounded Dielectric Slab Section 3.7 Stripline Section 3.8 Microstrip An Investigation

More information

Cylindrical Dielectric Waveguides

Cylindrical Dielectric Waveguides 03/02/2017 Cylindrical Dielectric Waveguides Integrated Optics Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Geometry of a Single Core Layer

More information

THE PROPAGATION AND CUTOFF FREQUENCIES OF THE RECTANGULAR METALLIC WAVEGUIDE PAR- TIALLY FILLED WITH METAMATERIAL MULTILAYER SLABS

THE PROPAGATION AND CUTOFF FREQUENCIES OF THE RECTANGULAR METALLIC WAVEGUIDE PAR- TIALLY FILLED WITH METAMATERIAL MULTILAYER SLABS Progress In Electromagnetics Research M, Vol. 9, 35 40, 2009 THE PROPAGATION AND CUTOFF FREQUENCIES OF THE RECTANGULAR METALLIC WAVEGUIDE PAR- TIALLY FILLED WITH METAMATERIAL MULTILAYER SLABS D. Zhang

More information

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18

ECE 6340 Intermediate EM Waves. Fall 2016 Prof. David R. Jackson Dept. of ECE. Notes 18 C 6340 Intermediate M Waves Fall 206 Prof. David R. Jacson Dept. of C Notes 8 T - Plane Waves φˆ θˆ T φˆ θˆ A homogeneous plane wave is shown for simplicit (but the principle is general). 2 Arbitrar Polariation:

More information

GUIDED MICROWAVES AND OPTICAL WAVES

GUIDED MICROWAVES AND OPTICAL WAVES Chapter 1 GUIDED MICROWAVES AND OPTICAL WAVES 1.1 Introduction In communication engineering, the carrier frequency has been steadily increasing for the obvious reason that a carrier wave with a higher

More information

Road Map. Potential Applications of Antennas with Metamaterial Loading

Road Map. Potential Applications of Antennas with Metamaterial Loading Road Map Potential Applications of Antennas with Metamaterial Loading Filiberto Bilotti Department of Applied Electronics University of Roma Tre Rome, Italy The history of metamaterials Metamaterial terminology

More information

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17. MTH0 Spring 07 HW Assignment : Sec. 6: #6,7; Sec. : #5,7; Sec. 8: #8; Sec. 0: # The due date for this assignment is //7. Sec. 6: #6. Use results in Sec. to verify that the function g z = ln r + iθ r >

More information

If we assume that sustituting (4) into (3), we have d H y A()e ;j (4) d +! ; Letting! ;, (5) ecomes d d + where the independent solutions are Hence, H

If we assume that sustituting (4) into (3), we have d H y A()e ;j (4) d +! ; Letting! ;, (5) ecomes d d + where the independent solutions are Hence, H W.C.Chew ECE 350 Lecture Notes. Innite Parallel Plate Waveguide. y σ σ 0 We have studied TEM (transverse electromagnetic) waves etween two pieces of parallel conductors in the transmission line theory.

More information

Dielectric Slab Waveguide

Dielectric Slab Waveguide Chapter Dielectric Slab Waveguide We will start off examining the waveguide properties of a slab of dielectric shown in Fig... d n n x z n Figure.: Cross-sectional view of a slab waveguide. { n, x < d/

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 10

ECE Spring Prof. David R. Jackson ECE Dept. Notes 10 ECE 6345 Spring 215 Prof. David R. Jackson ECE Dept. Notes 1 1 Overview In this set of notes we derive the far-field pattern of a circular patch operating in the dominant TM 11 mode. We use the magnetic

More information

2/5/13. y H. Assume propagation in the positive z-direction: β β x

2/5/13. y H. Assume propagation in the positive z-direction: β β x /5/3 Retangular Waveguides Mawell s Equatins: = t jω assumed E = jωµ H E E = jωµ H E E = jωµ H E E = jωµ H H = jωε E H H = jωε E H H = jωε E H H = jωε E /5/3 Assume prpagatin in the psitive -diretin: e

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 41

ECE Spring Prof. David R. Jackson ECE Dept. Notes 41 ECE 634 Sprng 6 Prof. Davd R. Jackson ECE Dept. Notes 4 Patch Antenna In ths set of notes we do the followng: Fnd the feld E produced by the patch current on the nterface Fnd the feld E z nsde the substrate

More information

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014

Physics 3323, Fall 2014 Problem Set 13 due Friday, Dec 5, 2014 Physics 333, Fall 014 Problem Set 13 due Friday, Dec 5, 014 Reading: Finish Griffiths Ch. 9, and 10..1, 10.3, and 11.1.1-1. Reflecting on polarizations Griffiths 9.15 (3rd ed.: 9.14). In writing (9.76)

More information

Electromagnetic wave propagation through ultra-narrow channels filled

Electromagnetic wave propagation through ultra-narrow channels filled 31st October, HKUST, Hong-Kong Electromagnetic wave propagation through ultra-narrow channels filled with an ENZ material Mário G. Silveirinha How to have ε-nearε zero (ENZ) Media? 2 ω p ε r ~1 ω ω ( +

More information

FINAL EXAM IN FYS-3007

FINAL EXAM IN FYS-3007 Page 1 of 4 pages + chart FINAL EXAM IN FYS-007 Exam in : Fys-007 Microwave Techniques Date : Tuesday, May 1, 2011 Time : 09.00 1.00 Place : Åsgårdveien 9 Approved remedies : All non-living and non-communicating

More information

4. Integrated Photonics. (or optoelectronics on a flatland)

4. Integrated Photonics. (or optoelectronics on a flatland) 4. Integrated Photonics (or optoelectronics on a flatland) 1 x Benefits of integration in Electronics: Are we experiencing a similar transformation in Photonics? Mach-Zehnder modulator made from Indium

More information

Transmission Line Theory

Transmission Line Theory S. R. Zinka zinka@vit.ac.in School of Electronics Engineering Vellore Institute of Technology April 26, 2013 Outline 1 Free Space as a TX Line 2 TX Line Connected to a Load 3 Some Special Cases 4 Smith

More information

Field and Wave Electromagnetic

Field and Wave Electromagnetic Field and Wave Eletromagneti Chapter Waveguides and Cavit Resonators Introdution () * Waveguide - TEM waves are not the onl mode o guided waves - The three tpes o transmission lines (parallel-plate, two-wire,

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 32

ECE Spring Prof. David R. Jackson ECE Dept. Notes 32 ECE 6345 Spring 215 Prof. David R. Jackson ECE Dept. Notes 32 1 Overview In this set of notes we extend the spectral-domain method to analyze infinite periodic structures. Two typical examples of infinite

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20

ECE Spring Prof. David R. Jackson ECE Dept. Notes 20 ECE 6345 Spring 5 Prof. David R. Jacson ECE Dep. Noes Overview In his se of noes we apply he SDI mehod o invesigae he fields produced by a pach curren. We calculae he field due o a recangular pach on op

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

Microwave Network Analysis

Microwave Network Analysis Prof. Dr. Mohammad Tariqul Islam titareq@gmail.my tariqul@ukm.edu.my Microwave Network Analysis 1 Text Book D.M. Pozar, Microwave engineering, 3 rd edition, 2005 by John-Wiley & Sons. Fawwaz T. ILABY,

More information

Chapter 5 Waveguides and Resonators

Chapter 5 Waveguides and Resonators 5-1 Chpter 5 Wveguides nd Resontors Dr. Sturt Long 5- Wht is wveguide (or trnsmission line)? Structure tht trnsmits electromgnetic wves in such wy tht the wve intensity is limited to finite cross-sectionl

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

ECE Microwave Engineering

ECE Microwave Engineering ECE 5317-6351 Mirowave Engineering Aapte from notes by Prof. Jeffery T. Williams Fall 18 Prof. Davi R. Jakson Dept. of ECE Notes 7 Waveguiing Strutures Part : Attenuation ε, µσ, 1 Attenuation on Waveguiing

More information

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Waves Outline Outline Introduction Let s start by introducing simple solutions to Maxwell s equations

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances)

General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances) A 1 General Appendix A Transmission Line Resonance due to Reflections (1-D Cavity Resonances) 1. Waves Propagating on a Transmission Line General A transmission line is a 1-dimensional medium which can

More information

OPTICAL COMMUNICATIONS

OPTICAL COMMUNICATIONS L21-1 OPTICAL COMMUNICATIONS Free-Space Propagation: Similar to radiowaves (but more absorption by clouds, haze) Same expressions: antenna gain, effective area, power received Examples: TV controllers,

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Phsics 15c Lecture 13 Multi-Dimensional Waves (H&L Chapter 7) Term Paper Topics! Have ou found a topic for the paper?! 2/3 of the class have, or have scheduled a meeting with me! If ou haven

More information

CERN Accelerator School. RF Cavities. Erk Jensen CERN BE-RF

CERN Accelerator School. RF Cavities. Erk Jensen CERN BE-RF CERN Accelerator School RF Cavities Erk Jensen CERN BE-RF CERN Accelerator School, Varna 010 - "Introduction to Accelerator Physics" What is a cavity? 3-Sept-010 CAS Varna/Bulgaria 010- RF Cavities Lorentz

More information

I know this time s homework is hard... So I ll do as much detail as I can.

I know this time s homework is hard... So I ll do as much detail as I can. I know this time s homework is hard... So I ll do as much detail as I can. Theorem (Corollary 7). If f () g () in (a, b), then f g is a constant function on (a, b). Proof. Call h() f() g(). Then, we try

More information

βi β r medium 1 θ i θ r y θ t β t

βi β r medium 1 θ i θ r y θ t β t W.C.Chew ECE 350 Lecture Notes Date:November 7, 997 0. Reections and Refractions of Plane Waves. Hr Ei Hi βi β r Er medium θ i θ r μ, ε y θ t μ, ε medium x z Ht β t Et Perpendicular Case (Transverse Electric

More information

Today in Physics 218: Fresnel s equations

Today in Physics 218: Fresnel s equations Today in Physics 8: Fresnel s equations Transmission and reflection with E parallel to the incidence plane The Fresnel equations Total internal reflection Polarization on reflection nterference R 08 06

More information

UNIT I ELECTROSTATIC FIELDS

UNIT I ELECTROSTATIC FIELDS UNIT I ELECTROSTATIC FIELDS 1) Define electric potential and potential difference. 2) Name few applications of gauss law in electrostatics. 3) State point form of Ohm s Law. 4) State Divergence Theorem.

More information

J. Dong and C. Xu Institute of Optical Fiber Communication and Network Technology Ningbo University Ningbo , China

J. Dong and C. Xu Institute of Optical Fiber Communication and Network Technology Ningbo University Ningbo , China Progress In Electromagnetics Research B, Vol. 14, 107 126, 2009 CHARACTERISTICS OF GUIDED MODES IN PLANAR CHIRAL NIHILITY META-MATERIAL WAVEGUIDES J. Dong and C. Xu Institute of Optical Fiber Communication

More information

Transmission Line Model for Rectangular Waveguides accurately incorporating Loss Effects

Transmission Line Model for Rectangular Waveguides accurately incorporating Loss Effects Transmission Line Model for Rectangular Waveguides accurately incorporating Loss Effects Konstantin Lomakin konstantin.lomakin@fau.de Institute of Microwaves and Photonics Friedrich-Alexander-Universität

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Phsics 15c Lecture 13 Multi-Dimensional Waves (H&L Chapter 7) Term Paper Topics! Have ou found a topic for the paper?! 2/3 of the class have, or have scheduled a meeting with me! If ou haven

More information

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff

Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff Microwave Phase Shift Using Ferrite Filled Waveguide Below Cutoff CHARLES R. BOYD, JR. Microwave Applications Group, Santa Maria, California, U. S. A. ABSTRACT Unlike conventional waveguides, lossless

More information

General Properties of Planar Leaky-Wave Antennas

General Properties of Planar Leaky-Wave Antennas European School of Antennas High-frequency techniques and Travelling-wave antennas General Properties of Planar Leaky-Wave Antennas Giampiero Lovat La Sapienza University of Rome Roma, 24th February 2005

More information

Back to basics : Maxwell equations & propagation equations

Back to basics : Maxwell equations & propagation equations The step index planar waveguide Back to basics : Maxwell equations & propagation equations Maxwell equations Propagation medium : Notations : linear Real fields : isotropic Real inductions : non conducting

More information

PLANE WAVE PROPAGATION AND REFLECTION. David R. Jackson Department of Electrical and Computer Engineering University of Houston Houston, TX

PLANE WAVE PROPAGATION AND REFLECTION. David R. Jackson Department of Electrical and Computer Engineering University of Houston Houston, TX PLANE WAVE PROPAGATION AND REFLECTION David R. Jackson Department of Electrical and Computer Engineering University of Houston Houston, TX 7704-4793 Abstract The basic properties of plane waves propagating

More information

1 Lectures 10 and 11: resonance cavities

1 Lectures 10 and 11: resonance cavities 1 1 Lectures 10 and 11: resonance cavities We now analyze cavities that consist of a waveguide of length h, terminated by perfectly conducting plates at both ends. The coordinate system is oriented such

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

ELECTROMAGNETIC WAVE PROPAGATION EC 442. Prof. Darwish Abdel Aziz

ELECTROMAGNETIC WAVE PROPAGATION EC 442. Prof. Darwish Abdel Aziz ELECTROMAGNETIC WAVE PROPAGATION EC 442 Prof. Darwish Abdel Aziz CHAPTER 6 LINEAR WIRE ANTENNAS INFINITESIMAL DIPOLE INTRODUCTION Wire antennas, linear or curved, are some of the oldest, simplest, cheapest,

More information

ANALYSIS OF LINEAR TAPERED WAVEGUIDE BY TWO APPROACHES

ANALYSIS OF LINEAR TAPERED WAVEGUIDE BY TWO APPROACHES Progress In Electromagnetics Research, PIER 64, 19 38, 006 ANALYSIS OF LINEAR TAPERED WAVEGUIDE BY TWO APPROACHES S. Dwari, A. Chakraborty, and S. Sanyal Department of Electronics and Electrical Communication

More information

Physics 506 Winter 2004

Physics 506 Winter 2004 Physics 506 Winter 004 G. Raithel January 6, 004 Disclaimer: The purpose of these notes is to provide you with a general list of topics that were covered in class. The notes are not a substitute for reading

More information

A Robust Method of Calculating the Effective Length of a Conductive Strip on an Ungrounded Dielectric Substrate

A Robust Method of Calculating the Effective Length of a Conductive Strip on an Ungrounded Dielectric Substrate Progress In Electromagnetics Research M, Vol. 35, 57 66, 2014 A Robust Method of Calculating the Effective Length of a Conductive Strip on an Ungrounded Dielectric Substrate Manimaran Kanesan *, David

More information

Inhomogeneous structure: Due to the fields within two guided-wave media, the microstrip does not support a pure TEM wave.

Inhomogeneous structure: Due to the fields within two guided-wave media, the microstrip does not support a pure TEM wave. Mirowave Filter Design Chp4. Transmission Lines and Components Prof. Tzong-Lin Wu Department of Eletrial Engineering National Taiwan University Mirostrip Lines Mirostrip Struture Inhomogeneous struture:

More information

ECE 451 Advanced Microwave Measurements. Circular and Coaxial Waveguides

ECE 451 Advanced Microwave Measurements. Circular and Coaxial Waveguides ECE 451 Advanced Microwave Measurements Circular and Coaxial Waveguides Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt Aine 1 Circular

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

ECE 451 Advanced Microwave Measurements. TL Characterization

ECE 451 Advanced Microwave Measurements. TL Characterization ECE 451 Advanced Microwave Measurements TL Characterization Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt-Aine 1 Maxwell s Equations

More information

EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation

EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 117 Lecture 3 p. 1/23 Transmission Line

More information

STUDY ON THE PROPERTIES OF SURFACE WAVES IN COATED RAM LAYERS AND MONO-STATIC RCSR PERFORMANCES OF A COATED SLAB

STUDY ON THE PROPERTIES OF SURFACE WAVES IN COATED RAM LAYERS AND MONO-STATIC RCSR PERFORMANCES OF A COATED SLAB Progress In Electromagnetics Research M, Vol. 11, 13 13, 1 STUDY ON THE PROPERTIES OF SURFACE WAVES IN COATED RAM LAYERS AND MONO-STATIC RCSR PERFORMANCES OF A COATED SLAB H. Y. Chen, P. H. Zhou, L. Chen,

More information

The concept of perfect electromagnetic conductor (PEMC) has been defined by medium conditions of the form [1, 2]

The concept of perfect electromagnetic conductor (PEMC) has been defined by medium conditions of the form [1, 2] Progress In Electromagnetics Research B, Vol. 5, 169 183, 2008 REFLECTION AND TRANSMISSION OF WAVES AT THE INTERFACE OF PERFECT ELECTROMAGNETIC CONDUCTOR PEMC I. V. Lindell and A. H. Sihvola Electromagnetics

More information

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case ECE 604, Lecture 17 October 30, 2018 In this lecture, we will cover the following topics: Duality Principle Reflection and Transmission Single Interface Case Interesting Physical Phenomena: Total Internal

More information

Plane Waves GATE Problems (Part I)

Plane Waves GATE Problems (Part I) Plane Waves GATE Problems (Part I). A plane electromagnetic wave traveling along the + z direction, has its electric field given by E x = cos(ωt) and E y = cos(ω + 90 0 ) the wave is (a) linearly polarized

More information

toroidal iron core compass switch battery secondary coil primary coil

toroidal iron core compass switch battery secondary coil primary coil Fundamental Laws of Electrostatics Integral form Differential form d l C S E 0 E 0 D d s V q ev dv D ε E D qev 1 Fundamental Laws of Magnetostatics Integral form Differential form C S dl S J d s B d s

More information

Power Loss. dp loss = 1 = 1. Method 2, Ohmic heating, power lost per unit volume. Agrees with method 1. c = 2 loss per unit area is dp loss da

Power Loss. dp loss = 1 = 1. Method 2, Ohmic heating, power lost per unit volume. Agrees with method 1. c = 2 loss per unit area is dp loss da How much power is dissipated (per unit area?). 2 ways: 1) Flow of energy into conductor: Energy flow given by S = E H, for real fields E H. so 1 S ( ) = 1 2 Re E H, dp loss /da = ˆn S, so dp loss = 1 µc

More information

Drawbacks in Metallic Waveguides. α f. Skin effect. Surface roughness Mono-mode operation Narrow band in metallic rectangular waveguide

Drawbacks in Metallic Waveguides. α f. Skin effect. Surface roughness Mono-mode operation Narrow band in metallic rectangular waveguide Drawbacks in Metallic Waveguides Skin effect α f Surface roughness Mono-mode operation 1 Narrow band in metallic rectangular waveguide 2 α f α 3 f 2 to f 5 2 Types of Dielectric Waveguide ε r2 (a) Circular

More information