Dielectric Slab Waveguide

Size: px
Start display at page:

Download "Dielectric Slab Waveguide"

Transcription

1 Chapter Dielectric Slab Waveguide We will start off examining the waveguide properties of a slab of dielectric shown in Fig... d n n x z n Figure.: Cross-sectional view of a slab waveguide. { n, x < d/ n(x) = n, else (.). Propagating Ray We will initial look at the light traveling in the slab as a propagating ray. Even though this is not technically accurate, it provides some intuitive feel for what is going on. Figure. shows that if the propagation angle is greater than the critical angle then the ray will bounce off of the surface and will be conned to the core region. Therefore, the propagation is conned to be θ > θ c = sin ( n n ). (.) In order to maintain that the propagation angle is greater than the critical angle, the entrance angle into the optical ber must be less than θ a. sin θ a = n sin (90 θ ) (.3) = n cos (θ ) (.4) ECEn 56 January 7, 007

2 cladding n θ <θ c θ =θ c θ >θ c core n cladding n Figure.: Cross-sectional view of a slab waveguide. Since θ > θ c sin θ a < n cos θ c (.5) sin θ a < < n sin θ c (.6) ( ) n < n (.7) n < n n n n (.8) n n NA (.9) n=.0 n θa 90 θ c θ =θ c n n Figure.3: Numerical aperture of an slab waveguide. In addition to requiring the propagation angle to be greater than the critical angle, there are also only a descrete set of propagaton angles that remain in phase as illustrated in Fig..4. These allowable propagation angles are called the modes of the waveguide. In this ray optics analysis the The particular modes of a waveguide can be characterized by their propagation angle. The mode can be thought of as a plane wave that is either traveling upwards or downwards in the waveguide. The resulting plane waves are given by E(x, z) = E o e jk on(± cos θ x+sin θ z). (.0) The mode is essentially a standing wave pattern in the x-direction and a traveling wave in the z-direction as given by E(x, z) = E m (x) exp (j (ωt βz)), (.) ECEn 56 January 7, 007

3 n λ θ θ n d n Figure.4: The rays must remain in phase after multiple reections. β is called the propagation constant and is given by β = k o n sin θ. (.) Since the propagation angle is in the range given by the propagation angle is in the range given by θ c < θ < 90, (.3) k o n sin θ c < β < k o n sin (90 ) (.4) n k o n < β < k o n n (.5) k o n < β < k o n (.6) If you divide the propagation angle by the free-space wavevector you get the effective index of the mode as given by n eff β k o. (.7) n < n eff < n (.8). Wave Equation Now that we have a qualitative understanding of waveguide modes, we want to calculate the exact values of the supported mode, which we will characterize by the propagation constant β m and the transverse mode eld E m (x). We start with Maxwell's equations in the sinusoidal steady state. E = jωb = jωµh D = ɛe = ρ v (.9) H = jωd + J = jωɛe + J B = µh = 0 (.0) ECEn 56 3 January 7, 007

4 First, we rewrite Ampere's Law for the case of no sources resulting in Likewise, if we have no free charges ρ v = 0 and thus D = 0 If we take the curl of Faraday's law: There is a vector identity so that H = jωɛe (.) E = jωµ H (.) = jωµ(jωɛe) = ω µɛe (.3) E = ( E) E (.4) ( E) E = ω µɛe (.5) From Gauss' law we get D = 0 since ρ v = 0. Since D = ɛe we get (ɛe ) = 0. If ɛ is independent of position then we can pull it outside of the spatial derivatives resulting in ɛ ( E ) = 0 and thus E = 0. (.6) Plugging Eq..6 into Eq..5 and rearranging results in the Homogeneous Wave Equation given by E + ω µɛe = 0 (.7).3 Dielectric Slab Waveguide Since the waveguide is homogeneous along the z axis, solutions to the wave equation can be taken as E(x, t) = E m (x) exp (j (ωt βz)) (.8) H(x, t) = H m (x) exp (j (ωt βz)). (.9) In time harmonic form the eld equations become E(x, t) = E m (x) exp ( jβz) (.30) H(x, t) = H m (x) exp ( jβz). (.3) Plugging the general eld solutions into the wave equation (Eq..7) results in x E + z E + k on i E = 0 (.3) x E + ( jβ) + kon i E = 0 (.33) x E + ( kon i β ) E = 0 (.34) n i is either n or n depending on which region we are dening the eld in. ECEn 56 4 January 7, 007

5 The portion in parenthesis is a constant in terms of x. The differential equation is a constant coefcient equation. For the elds in the core region ( x < d/) n i = n and the solution is given by or E m = Ae jhx + Be jhx, (.35) E m = A sin(hx) + Bcos(hx), (.36) h = k on β (.37) For the elds in the cladding region ( x > d/) n i = n and the solution is given by E m = Ae jgx + Be jgx, (.38) g = k on β. (.39) However, since β > k o n the argument of the square root is actually negative resulting in E m = Ae qx + Be qx, (.40) q = β k on. (.4) The total electric eld of the mode is given by A sin hx + B cos hx x < d E m (x) = C exp( qx) x > d D exp(qx) x < d (.4) The unknowns are A, B, C, D, q, and h. The solution of the unknows requires applying the boundary conditions. Since the boundary conditions depend on the vector quantities, we will break up the mode into two orthogonal polarization cases. The directions of both the electric and magnetic elds need to be perpendicular to the rays shown in Fig..4. One possible solution is to have the electric eld in the ŷ-direction. In this case the electric eld is perpedicular to the direction of power ow (z-direction). This case is called Transverse Electric (TE). For TE-polarization the magnetic eld has both x and z components. The other case is when the magnetic eld is in the ŷ-direction. In this case the magnetic eld is perpedicular to the direction of power ow (z-direction). This case is called Transverse Magnetic (TM). For TM-polarization the magnetic eld has both x and z ECEn 56 5 January 7, 007

6 .3. TE Modes The electric eld for TE polarization is in the y-direction as given by (A sin hx + B cos hx) e jβz x < d E y (x) = C exp( qx jβz) x > d D exp(qx jβz) x < d. (.43) The magnetic eld is H = E jωµ (.44) resulting in H z (x) = j E y ωµ x. (.45) The boundary conditions are that the tangential components of both E and H are equal across a boundary. The tangential component of the electric eld at x = d/ is given by ( ) ( ) A sin hd + B cos hd = C exp ( ) and at x = d/ it is given by A sin ( ) ( ) hd + B cos hd = D exp ( ) (.46) (.47) The continuity of the tangential components of the magnetic magnetic eld essentially becomes continuity of the derivative of the electric eld across the boundary resulting in ( ) ( ) ha cos hd hb sin hd = qc exp ( ) (.48) at x = d/ and at x = d/. ( ) ( ) ha cos hd + hb sin hd = qd exp ( ) (.49) These four equations can be combined to produce ( ) A sin hd = (C D) exp ( ) ( ) ha cos hd = q (C D) exp ( ) ( ) B cos hd = (C + D) exp ( ) ( ) hb sin hd = q (C + D) exp ( ) (.50) (.5) (.5) (.53) ECEn 56 6 January 7, 007

7 The solutions of the TE modes may be divided into two classes: (a) Symmetric (A = 0 and C = D): ( ) h tan hd = q (.54) (b) Antisymmetric (B = 0 and C = D): h cot ( ) hd = q (.55) There are now four unknowns (A or B, C, h, and q). The rst term (A or B) can be thought of as the amplitude of the mode. Let call this term E o. The last two terms (h and q) are both related to β so they are actually only one unknown. Let's combine these two together as given by h + q = ( k on β ) + ( β k on β ) (.56) = k on k on (.57) and C is just the continutity of the electric eld at the boundary. Putting all of this together we get E y = E e { qx jβz } x > d sin hx E 0 e cos hx jβz x d { + } E e +qx jβz x < d (.58) ( E exp ) { sin hd = E o cos hd E = E o exp ( } ) { sin hd cos hd (.59) }. (.60) So now the only unknown is β. We determine β by solving these two equations h + q = ko ( n n ) (.6) ( ) ( ) hd hd h tan = q OR h cot = q (.6) We can solve these nonlinear transcendental equations using a nonlinear solver on a computer or calculator. However, they can also be solved graphically to calculate the number of modes and estimate the approximate solutions. Since the argument of the tan and cot is in terms of hd/ we will plot the term / along the x-axis and hd/ along the y-axis. The rst equations becomes ( ) hd ( ) + = ( (ko n d) (k o n d) ) (.63) = ( π ) (n λ d n ) V (.64) ECEn 56 7 January 7, 007

8 This is the equation of a circle with a radius of V as given by x + y = V. The boundary condition equation for the symmetric modes is ( ) hd h tan = q (.65) ( ) hd hd tan = (.66) which becomes x tan (x) = y. (.67) and for the antisymmetric modes it is ( ) hd h cot = q (.68) hd ( ) hd cot = (.69) which becomes x cot (x) = y. (.70) In summary the equations are h + q = ko ( n n ) x + y = V (.7) ( ) hd h tan = q x tan (x) = y (.7) ( ) hd h cot = q x cot (x) = y (.73) The zero crossing of the tan are 0, π,...mπ and the zeros of the cot are π, π, 3π,... π ( + m)..3. TM Modes We can repeat the whole process for TM modes. In this case, we have H y (x, z, t) = h m (x) exp (j (ωt βz)) (.74) E x (x, z, t) = j ωµ z H y (.75) E z (x, z, t) = j ωµ x H y (.76) and H m (x) = A sin hx + B cos hx x < d C exp( qx) x > d D exp(qx) x < d (.77) ECEn 56 8 January 7, 007

9 The eigen equations become ( h tan ( h cot hd ) hd ) = n n q (.78) = n n q (.79).3.3 Parameter Meanings What are the physical meanings of h, q, and β? If we look back at the ray optics treatment, then β is the z-component of the wave, h is the x-component, and q species the rate at which the eld decays with distance away from the core. β k z (.80) h k x (.8) q α (.8) Dielectric Waveguide Example How many modes exist in a dielectric waveguide that has the following parameters? index of refraction of the core n =.6, index of refraction of the cladding n =.5, wavelength λ =.0µm, waveguide core thickness d = 0µm. The equations are Using k y d = x and αd = y these equations become αd = k y d tan (k y d) (.83) αd = k y d cot (k y d) (.84) (k y d) + (αd) = (k o d) ( n n ) (.85) y = x tan x (.86) y = x cot x (.87) x + y = (k o d) ( n n ) (.88) For this example the radius of the circle is given by r = π 0 n.0 (.89) r = 7.5µm (.90) The equation x tan x is equal to zero when x = 0π, π, 3π,... mπ and is equal to when x = π, 3π, 5π,... π + mπ. The equation x cot x is equal to zero when x = π, 3π, 5π,... π + mπ and is equal to when x = π, π, 3π,... mπ. And when x = 0 x cot x =. ECEn 56 9 January 7, 007

10 The radius of the circle for this problem is r = 7.5 = 5.56π. There are 6 even modes (0, π, π, 3π, 4π, 5π ) and 6 odd modes (0.5π,.5π,.5π, 3.5π, 4.5π, 5.5π). What is the waveguide thickness for single mode operation? We need r < 0.5π (.9) π.0 d.6.5 < π (.9) d < (.93).4 Asymmtric Slab Waveguides In practice most slab waveguides are asymmetric. An asymmetric slab waveguide is given by n, x < 0 n(x) = n, t < x < 0 n 3, x < t (.94) Sometimes rather than using n, n, and n 3 these indices are labeled as cover index n c, waveguide index n w, and substrate index n s. If we assume that n < n 3 < n then the range for β is given by k o n 3 < β < k o n. The process used to calculate the mode eld prole is similar to the process describe above except that the boundary conditions will be different at the top and bottom boundary. For a TE mode the electric eld is given by E y (x, z, t) = E m (x)e j(ωt βz), (.95) the mode prole is given by C exp qx x > 0 E m (x) = C ( cos(hx) q h sin(hx)) t < x < 0 C ( cos(ht) + q h sin(ht)) exp[p(x + t)] x < t, (.96) h = k β (.97) q = β k (.98) p = β k3. (.99) The mode condition equation is given by h sin(ht) q cos(ht) = p (cos(ht) + q ) h sin(ht) (.00) For a TM mode the elds are given by E x (x, z, t) = H y (x, z, t) = H m (x)e j(ωt βz) (.0) i H y ωµ z = β ωµ h m(x)e j(ωt βz) (.0) E z (x, z, t) = j ω ɛ H y x (.03) ECEn 56 0 January 7, 007

11 the mode prole is given by C h q exp( qx) x > 0 ) H m (x) = C ( h q cos(hx) + sin(hx) t < x < 0 ( ) C h q cos(ht) + sin(ht) exp[p(x + t)] x < t, (.04) q n n q (.05) p n n p (.06) 3 The mode condition equation is given by tan(ht) = h( p + q) h p q (.07).5 Effective Index Theory A slab waveguide only connes light in one dimension. In practive it is necessary to conne light in both directions. Exact analytic treatment of rectangular dielectric waveguides is not possible for arbitrary structures. These type of waveguides can be analyzed using numerical techniques. There are also several approximate analytical approaches. One of the simplest approaches is the effective index theory. Figure.5 shows a ridge waveguide. The three regions of the ridge waveguide (I, II, I) are treated as slab waveguides resulting in three different effective indices (n eff,i, n eff,ii, and n eff,i ). Referring to Fig..5 n eff,i is calculated by solving for the mode of a slab waveguide with a thickness of d and for n eff,ii the waveguide thickness is t. The ridge waveguide effective index is then calculated by treating the effective indices as the cover, waveguide, and substrate indices with the waveguide thickness being the ridge width a. n n t d n 3 a I II I y=-a/ y=a/ Figure.5: Rectangular waveguide. Example: Consider a ridge waveguide made of GaAs (n = 3.5) waveguiding layer on an AlGaAs (n = 3.) substrate. The thicknesses are t = 0.4λ, d = 0.5λ, and a = 0.5λ. ECEn 56 January 7, 007

Optical Fiber. Chapter 1. n 1 n 2 n 2. index. index

Optical Fiber. Chapter 1. n 1 n 2 n 2. index. index Chapter 1 Optical Fiber An optical ber consists of cylindrical dielectric material surrounded by another cylindrical dielectric material with a lower index of refraction. Figure 1.1 shows that the transistion

More information

1 The formation and analysis of optical waveguides

1 The formation and analysis of optical waveguides 1 The formation and analysis of optical waveguides 1.1 Introduction to optical waveguides Optical waveguides are made from material structures that have a core region which has a higher index of refraction

More information

Cartesian Coordinates

Cartesian Coordinates Cartesian Coordinates Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Cartesian Coordinates Outline Outline Separation of Variables Away from sources,

More information

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation

Uniform Plane Waves Page 1. Uniform Plane Waves. 1 The Helmholtz Wave Equation Uniform Plane Waves Page 1 Uniform Plane Waves 1 The Helmholtz Wave Equation Let s rewrite Maxwell s equations in terms of E and H exclusively. Let s assume the medium is lossless (σ = 0). Let s also assume

More information

EECS 117. Lecture 25: Field Theory of T-Lines and Waveguides. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 25: Field Theory of T-Lines and Waveguides. Prof. Niknejad. University of California, Berkeley EECS 117 Lecture 25: Field Theory of T-Lines and Waveguides Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 117 Lecture 25 p. 1/2 Waveguides and Transmission Lines

More information

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 23: Oblique Incidence and Reflection. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 23 p. 1/2 EECS 117 Lecture 23: Oblique Incidence and Reflection Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

22 Phasor form of Maxwell s equations and damped waves in conducting media

22 Phasor form of Maxwell s equations and damped waves in conducting media 22 Phasor form of Maxwell s equations and damped waves in conducting media When the fields and the sources in Maxwell s equations are all monochromatic functions of time expressed in terms of their phasors,

More information

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves

Waves. Daniel S. Weile. ELEG 648 Waves. Department of Electrical and Computer Engineering University of Delaware. Plane Waves Reflection of Waves Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Waves Outline Outline Introduction Let s start by introducing simple solutions to Maxwell s equations

More information

PHYS 408, Optics. Problem Set 1 - Spring Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015.

PHYS 408, Optics. Problem Set 1 - Spring Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015. PHYS 408, Optics Problem Set 1 - Spring 2016 Posted: Fri, January 8, 2015 Due: Thu, January 21, 2015. 1. An electric field in vacuum has the wave equation, Let us consider the solution, 2 E 1 c 2 2 E =

More information

Introduction to optical waveguide modes

Introduction to optical waveguide modes Chap. Introduction to optical waveguide modes PHILIPPE LALANNE (IOGS nd année) Chapter Introduction to optical waveguide modes The optical waveguide is the fundamental element that interconnects the various

More information

Theory of Optical Waveguide

Theory of Optical Waveguide Theor of Optical Waveguide Class: Integrated Photonic Devices Time: Fri. 8:am ~ :am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee Reflection and Refraction at an Interface (TE n kˆi H i E i θ θ

More information

Maxwell s Equations. In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are.

Maxwell s Equations. In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are. Maxwell s Equations Introduction In the previous chapters we saw the four fundamental equations governging electrostatics and magnetostatics. They are D = ρ () E = 0 (2) B = 0 (3) H = J (4) In the integral

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Back to basics : Maxwell equations & propagation equations

Back to basics : Maxwell equations & propagation equations The step index planar waveguide Back to basics : Maxwell equations & propagation equations Maxwell equations Propagation medium : Notations : linear Real fields : isotropic Real inductions : non conducting

More information

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector

Radio Propagation Channels Exercise 2 with solutions. Polarization / Wave Vector /8 Polarization / Wave Vector Assume the following three magnetic fields of homogeneous, plane waves H (t) H A cos (ωt kz) e x H A sin (ωt kz) e y () H 2 (t) H A cos (ωt kz) e x + H A sin (ωt kz) e y (2)

More information

Electromagnetic Waves

Electromagnetic Waves May 7, 2008 1 1 J.D.Jackson, Classical Electrodynamics, 2nd Edition, Section 7 Maxwell Equations In a region of space where there are no free sources (ρ = 0, J = 0), Maxwell s equations reduce to a simple

More information

MODE THEORY FOR STEP INDEX MULTI-MODE FIBERS. Evgeny Klavir. Ryerson University Electrical And Computer Engineering

MODE THEORY FOR STEP INDEX MULTI-MODE FIBERS. Evgeny Klavir. Ryerson University Electrical And Computer Engineering MODE THEORY FOR STEP INDEX MULTI-MODE FIBERS Evgeny Klavir Ryerson University Electrical And Computer Engineering eklavir@ee.ryerson.ca ABSTRACT Cladding n = n This project consider modal theory for step

More information

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1

Lecture 3 Fiber Optical Communication Lecture 3, Slide 1 Lecture 3 Optical fibers as waveguides Maxwell s equations The wave equation Fiber modes Phase velocity, group velocity Dispersion Fiber Optical Communication Lecture 3, Slide 1 Maxwell s equations in

More information

EECS 117 Lecture 19: Faraday s Law and Maxwell s Eq.

EECS 117 Lecture 19: Faraday s Law and Maxwell s Eq. University of California, Berkeley EECS 117 Lecture 19 p. 1/2 EECS 117 Lecture 19: Faraday s Law and Maxwell s Eq. Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS

More information

1 Chapter 8 Maxwell s Equations

1 Chapter 8 Maxwell s Equations Electromagnetic Waves ECEN 3410 Prof. Wagner Final Review Questions 1 Chapter 8 Maxwell s Equations 1. Describe the integral form of charge conservation within a volume V through a surface S, and give

More information

EECS 117 Lecture 26: TE and TM Waves

EECS 117 Lecture 26: TE and TM Waves EECS 117 Lecture 26: TE and TM Waves Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 117 Lecture 26 p. 1/2 TE Waves TE means that e z = 0 but h z 0. If k c 0,

More information

Antennas and Propagation

Antennas and Propagation Antennas and Propagation Ranga Rodrigo University of Moratuwa October 20, 2008 Compiled based on Lectures of Prof. (Mrs.) Indra Dayawansa. Ranga Rodrigo (University of Moratuwa) Antennas and Propagation

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

βi β r medium 1 θ i θ r y θ t β t

βi β r medium 1 θ i θ r y θ t β t W.C.Chew ECE 350 Lecture Notes Date:November 7, 997 0. Reections and Refractions of Plane Waves. Hr Ei Hi βi β r Er medium θ i θ r μ, ε y θ t μ, ε medium x z Ht β t Et Perpendicular Case (Transverse Electric

More information

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used

Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used Electromagnetic Waves For fast-varying phenomena, the displacement current cannot be neglected, and the full set of Maxwell s equations must be used B( t) E = dt D t H = J+ t D =ρ B = 0 D=εE B=µ H () F

More information

Electromagnetic Wave Propagation Lecture 5: Propagation in birefringent media

Electromagnetic Wave Propagation Lecture 5: Propagation in birefringent media Electromagnetic Wave Propagation Lecture 5: Propagation in birefringent media Daniel Sjöberg Department of Electrical and Information Technology April 15, 2010 Outline 1 Introduction 2 Wave propagation

More information

Electromagnetic (EM) Waves

Electromagnetic (EM) Waves Electromagnetic (EM) Waves Short review on calculus vector Outline A. Various formulations of the Maxwell equation: 1. In a vacuum 2. In a vacuum without source charge 3. In a medium 4. In a dielectric

More information

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers:

Fiber Optics. Equivalently θ < θ max = cos 1 (n 0 /n 1 ). This is geometrical optics. Needs λ a. Two kinds of fibers: Waves can be guided not only by conductors, but by dielectrics. Fiber optics cable of silica has nr varying with radius. Simplest: core radius a with n = n 1, surrounded radius b with n = n 0 < n 1. Total

More information

REFLECTION AND REFRACTION AT A SINGLE INTERFACE

REFLECTION AND REFRACTION AT A SINGLE INTERFACE REFLECTION AND REFRACTION AT A SINGLE INTERFACE 5.1 THE BEHAVIOUR OF LIGHT AT A DIELECTRIC INTERFACE The previous Chapters have been concerned with the propagation of waves in empty space or in uniform,

More information

Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media

Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media Electromagnetic Wave Propagation Lecture 3: Plane waves in isotropic and bianisotropic media Daniel Sjöberg Department of Electrical and Information Technology September 2016 Outline 1 Plane waves in lossless

More information

Helmholtz Wave Equation TE, TM, and TEM Modes Rect Rectangular Waveguide TE, TM, and TEM Modes Cyl Cylindrical Waveguide.

Helmholtz Wave Equation TE, TM, and TEM Modes Rect Rectangular Waveguide TE, TM, and TEM Modes Cyl Cylindrical Waveguide. Waveguides S. R. Zinka zinka@vit.ac.in School of Electronics Engineering Vellore Institute of Technology April 26, 2013 Outline 1 Helmholtz Wave Equation 2 TE, TM, and TEM Modes Rect 3 Rectangular Waveguide

More information

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST March 2016, 18:00 19:00. Examiner: Prof. Sean V. Hum

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST March 2016, 18:00 19:00. Examiner: Prof. Sean V. Hum UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST 2 21 March 2016, 18:00

More information

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity

EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity EITN90 Radar and Remote Sensing Lecture 5: Target Reflectivity Daniel Sjöberg Department of Electrical and Information Technology Spring 2018 Outline 1 Basic reflection physics 2 Radar cross section definition

More information

Waveguide Coupler I. Class: Integrated Photonic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Ming-Chang Lee)

Waveguide Coupler I. Class: Integrated Photonic Devices Time: Fri. 8:00am ~ 11:00am. Classroom: 資電 206 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Waveguide Couler I Class: Integrated Photonic Devices Time: Fri. 8:am ~ 11:am. Classroom: 資電 6 Lecturer: Prof. 李明昌 (Ming-Chang Lee) Waveguide Couler n 1 > n n Waveguide 1 n 1 n Waveguide n 1 n How to switch

More information

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Name Electro Dynamic Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly. 1. (2) Write an

More information

Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell Lecture 5 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell 1. Waveguides Continued - In the previous lecture we made the assumption that

More information

Physics 506 Winter 2004

Physics 506 Winter 2004 Physics 506 Winter 004 G. Raithel January 6, 004 Disclaimer: The purpose of these notes is to provide you with a general list of topics that were covered in class. The notes are not a substitute for reading

More information

D. S. Weile Radiation

D. S. Weile Radiation Radiation Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Radiation Outline Outline Maxwell Redux Maxwell s Equation s are: 1 E = jωb = jωµh 2 H = J +

More information

1 Fundamentals of laser energy absorption

1 Fundamentals of laser energy absorption 1 Fundamentals of laser energy absorption 1.1 Classical electromagnetic-theory concepts 1.1.1 Electric and magnetic properties of materials Electric and magnetic fields can exert forces directly on atoms

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.626 Announceents HW#3 is due next Wednesday, Feb. 21 st No class Monday Feb.

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 17 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jacson Dept. of ECE Notes 17 1 General Plane Waves General form of plane wave: E( xz,, ) = Eψ ( xz,, ) where ψ ( xz,, ) = e j( xx+ + zz) The wavenumber

More information

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case ECE 604, Lecture 17 October 30, 2018 In this lecture, we will cover the following topics: Duality Principle Reflection and Transmission Single Interface Case Interesting Physical Phenomena: Total Internal

More information

Polarization Mode Dispersion

Polarization Mode Dispersion Unit-7: Polarization Mode Dispersion https://sites.google.com/a/faculty.muet.edu.pk/abdullatif Department of Telecommunication, MUET UET Jamshoro 1 Goos Hänchen Shift The Goos-Hänchen effect is a phenomenon

More information

Introduction to Slab Dielectric Waveguides

Introduction to Slab Dielectric Waveguides Notes on Integrated Optics Introduction to Slab Dielectric Waveguides Prof. Elias N. Glytsis Dec. 6, 26 School of Electrical & Computer Engineering National Technical University of Athens This page was

More information

3.1 The Helmoltz Equation and its Solution. In this unit, we shall seek the physical significance of the Maxwell equations, summarized

3.1 The Helmoltz Equation and its Solution. In this unit, we shall seek the physical significance of the Maxwell equations, summarized Unit 3 TheUniformPlaneWaveand Related Topics 3.1 The Helmoltz Equation and its Solution In this unit, we shall seek the physical significance of the Maxwell equations, summarized at the end of Unit 2,

More information

Tutorial 3 - Solutions Electromagnetic Waves

Tutorial 3 - Solutions Electromagnetic Waves Tutorial 3 - Solutions Electromagnetic Waves You can find formulas you require for vector calculus at the end of this tutorial. 1. Find the Divergence and Curl of the following functions - (a) k r ˆr f

More information

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626 OPTI510R: Photonics Khanh Kieu College of Optical Sciences, University of Arizona kkieu@optics.arizona.edu Meinel building R.66 1 Announceents Hoework # is due today, HW#3 is assigned due Feb. 1 st No

More information

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when

Plane Waves Part II. 1. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when Plane Waves Part II. For an electromagnetic wave incident from one medium to a second medium, total reflection takes place when (a) The angle of incidence is equal to the Brewster angle with E field perpendicular

More information

Electromagnetic waves in free space

Electromagnetic waves in free space Waveguide notes 018 Electromagnetic waves in free space We start with Maxwell s equations for an LIH medum in the case that the source terms are both zero. = =0 =0 = = Take the curl of Faraday s law, then

More information

Introduction to Polarization

Introduction to Polarization Phone: Ext 659, E-mail: hcchui@mail.ncku.edu.tw Fall/007 Introduction to Polarization Text Book: A Yariv and P Yeh, Photonics, Oxford (007) 1.6 Polarization States and Representations (Stokes Parameters

More information

Plane Waves GATE Problems (Part I)

Plane Waves GATE Problems (Part I) Plane Waves GATE Problems (Part I). A plane electromagnetic wave traveling along the + z direction, has its electric field given by E x = cos(ωt) and E y = cos(ω + 90 0 ) the wave is (a) linearly polarized

More information

4. Integrated Photonics. (or optoelectronics on a flatland)

4. Integrated Photonics. (or optoelectronics on a flatland) 4. Integrated Photonics (or optoelectronics on a flatland) 1 x Benefits of integration in Electronics: Are we experiencing a similar transformation in Photonics? Mach-Zehnder modulator made from Indium

More information

Reflection/Refraction

Reflection/Refraction Reflection/Refraction Page Reflection/Refraction Boundary Conditions Interfaces between different media imposed special boundary conditions on Maxwell s equations. It is important to understand what restrictions

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

Electromagnetic Wave Propagation Lecture 8: Propagation in birefringent media

Electromagnetic Wave Propagation Lecture 8: Propagation in birefringent media Electromagnetic Wave Propagation Lecture 8: Propagation in birefringent media Daniel Sjöberg Department of Electrical and Information Technology September 27, 2012 Outline 1 Introduction 2 Maxwell s equations

More information

Simple medium: D = ɛe Dispersive medium: D = ɛ(ω)e Anisotropic medium: Permittivity as a tensor

Simple medium: D = ɛe Dispersive medium: D = ɛ(ω)e Anisotropic medium: Permittivity as a tensor Plane Waves 1 Review dielectrics 2 Plane waves in the time domain 3 Plane waves in the frequency domain 4 Plane waves in lossy and dispersive media 5 Phase and group velocity 6 Wave polarization Levis,

More information

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves

ELE 3310 Tutorial 10. Maxwell s Equations & Plane Waves ELE 3310 Tutorial 10 Mawell s Equations & Plane Waves Mawell s Equations Differential Form Integral Form Faraday s law Ampere s law Gauss s law No isolated magnetic charge E H D B B D J + ρ 0 C C E r dl

More information

Spherical Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Spherical Coordinates

Spherical Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Spherical Coordinates Spherical Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Spherical Coordinates Outline Wave Functions 1 Wave Functions Outline Wave Functions 1

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves

EM waves: energy, resonators. Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves EM waves: energy, resonators Scalar wave equation Maxwell equations to the EM wave equation A simple linear resonator Energy in EM waves 3D waves Simple scalar wave equation 2 nd order PDE 2 z 2 ψ (z,t)

More information

Electromagnetic Wave Propagation Lecture 2: Uniform plane waves

Electromagnetic Wave Propagation Lecture 2: Uniform plane waves Electromagnetic Wave Propagation Lecture 2: Uniform plane waves Daniel Sjöberg Department of Electrical and Information Technology March 25, 2010 Outline 1 Plane waves in lossless media General time dependence

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

Basics of Wave Propagation

Basics of Wave Propagation Basics of Wave Propagation S. R. Zinka zinka@hyderabad.bits-pilani.ac.in Department of Electrical & Electronics Engineering BITS Pilani, Hyderbad Campus May 7, 2015 Outline 1 Time Harmonic Fields 2 Helmholtz

More information

ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours

ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM. 28 April Examiner: Prof. Sean V. Hum. Duration: hours UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1F ELECTROMAGNETIC FIELDS FINAL EXAM 28 April 15 Examiner:

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7

ECE Spring Prof. David R. Jackson ECE Dept. Notes 7 ECE 6341 Spring 216 Prof. David R. Jackson ECE Dept. Notes 7 1 Two-ayer Stripline Structure h 2 h 1 ε, µ r2 r2 ε, µ r1 r1 Goal: Derive a transcendental equation for the wavenumber k of the TM modes of

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves

Guided Waves. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware. ELEG 648 Guided Waves Guided Waves Daniel S. Weile Department of Electrical and Computer Engineering University of Delaware ELEG 648 Guided Waves Outline Outline The Circuit Model of Transmission Lines R + jωl I(z + z) I(z)

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Our discussion on dynamic electromagnetic field is incomplete. I H E An AC current induces a magnetic field, which is also AC and thus induces an AC electric field. H dl Edl J ds

More information

Introduction to Condensed Matter Physics

Introduction to Condensed Matter Physics Introduction to Condensed Matter Physics Diffraction I Basic Physics M.P. Vaughan Diffraction Electromagnetic waves Geometric wavefront The Principle of Linear Superposition Diffraction regimes Single

More information

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104

10 (4π 10 7 ) 2σ 2( = (1 + j)(.0104) = = j.0001 η c + η j.0104 CHAPTER 1 1.1. A uniform plane wave in air, E + x1 E+ x10 cos(1010 t βz)v/m, is normally-incident on a copper surface at z 0. What percentage of the incident power density is transmitted into the copper?

More information

OPTICAL COMMUNICATIONS

OPTICAL COMMUNICATIONS L21-1 OPTICAL COMMUNICATIONS Free-Space Propagation: Similar to radiowaves (but more absorption by clouds, haze) Same expressions: antenna gain, effective area, power received Examples: TV controllers,

More information

Cylindrical Dielectric Waveguides

Cylindrical Dielectric Waveguides 03/02/2017 Cylindrical Dielectric Waveguides Integrated Optics Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Geometry of a Single Core Layer

More information

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy

More information

remain essentially unchanged for the case of time-varying fields, the remaining two

remain essentially unchanged for the case of time-varying fields, the remaining two Unit 2 Maxwell s Equations Time-Varying Form While the Gauss law forms for the static electric and steady magnetic field equations remain essentially unchanged for the case of time-varying fields, the

More information

ELECTROMAGNETIC FIELDS AND WAVES

ELECTROMAGNETIC FIELDS AND WAVES ELECTROMAGNETIC FIELDS AND WAVES MAGDY F. ISKANDER Professor of Electrical Engineering University of Utah Englewood Cliffs, New Jersey 07632 CONTENTS PREFACE VECTOR ANALYSIS AND MAXWELL'S EQUATIONS IN

More information

Basics of Electromagnetics Maxwell s Equations (Part - I)

Basics of Electromagnetics Maxwell s Equations (Part - I) Basics of Electromagnetics Maxwell s Equations (Part - I) Soln. 1. C A. dl = C. d S [GATE 1994: 1 Mark] A. dl = A. da using Stoke s Theorem = S A. ds 2. The electric field strength at distant point, P,

More information

Uniform Plane Waves. Ranga Rodrigo. University of Moratuwa. November 7, 2008

Uniform Plane Waves. Ranga Rodrigo. University of Moratuwa. November 7, 2008 Uniform Plane Waves Ranga Rodrigo University of Moratuwa November 7, 2008 Ranga Rodrigo (University of Moratuwa) Uniform Plane Waves November 7, 2008 1 / 51 Summary of Last Week s Lecture Basic Relations

More information

EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation

EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation EECS 117 Lecture 3: Transmission Line Junctions / Time Harmonic Excitation Prof. Niknejad University of California, Berkeley University of California, Berkeley EECS 117 Lecture 3 p. 1/23 Transmission Line

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

1 Electromagnetic concepts useful for radar applications

1 Electromagnetic concepts useful for radar applications Electromagnetic concepts useful for radar applications The scattering of electromagnetic waves by precipitation particles and their propagation through precipitation media are of fundamental importance

More information

arxiv: v1 [physics.optics] 2 Sep 2013

arxiv: v1 [physics.optics] 2 Sep 2013 Notes on Evanescent Wave Bragg-Reflection Waveguides Benedikt Pressl and Gregor Weihs Institut für Experimentalphysik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria arxiv:1309.0333v1

More information

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space

Electromagnetic Waves Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space Electromagnetic Waves 1 1. Retarded potentials 2. Energy and the Poynting vector 3. Wave equations for E and B 4. Plane EM waves in free space 1 Retarded Potentials For volume charge & current = 1 4πε

More information

Chapter Three: Propagation of light waves

Chapter Three: Propagation of light waves Chapter Three Propagation of Light Waves CHAPTER OUTLINE 3.1 Maxwell s Equations 3.2 Physical Significance of Maxwell s Equations 3.3 Properties of Electromagnetic Waves 3.4 Constitutive Relations 3.5

More information

Radiation Integrals and Auxiliary Potential Functions

Radiation Integrals and Auxiliary Potential Functions Radiation Integrals and Auxiliary Potential Functions Ranga Rodrigo June 23, 2010 Lecture notes are fully based on Balanis [?]. Some diagrams and text are directly from the books. Contents 1 The Vector

More information

Lecture Notes on Wave Optics (03/05/14) 2.71/2.710 Introduction to Optics Nick Fang

Lecture Notes on Wave Optics (03/05/14) 2.71/2.710 Introduction to Optics Nick Fang Outline: A. Electromagnetism B. Frequency Domain (Fourier transform) C. EM waves in Cartesian coordinates D. Energy Flow and Poynting Vector E. Connection to geometrical optics F. Eikonal Equations: Path

More information

GUIDED MICROWAVES AND OPTICAL WAVES

GUIDED MICROWAVES AND OPTICAL WAVES Chapter 1 GUIDED MICROWAVES AND OPTICAL WAVES 1.1 Introduction In communication engineering, the carrier frequency has been steadily increasing for the obvious reason that a carrier wave with a higher

More information

= n. 1 n. Next apply Snell s law at the cylindrical boundary between the core and cladding for the marginal ray. = n 2. sin π 2.

= n. 1 n. Next apply Snell s law at the cylindrical boundary between the core and cladding for the marginal ray. = n 2. sin π 2. EXERCISE.-9 First, re-derive equation.-5 considering the possibility that the index at the entrance to the fiber bay be different than one. Snell s law at the entrance to the fiber is where all symbols

More information

Guided waves - Lecture 11

Guided waves - Lecture 11 Guided waves - Lecture 11 1 Wave equations in a rectangular wave guide Suppose EM waves are contained within the cavity of a long conducting pipe. To simplify the geometry, consider a pipe of rectangular

More information

Department of Physics Preliminary Exam January 2 5, 2013

Department of Physics Preliminary Exam January 2 5, 2013 Department of Physics Preliminary Exam January 2 5, 2013 Day 2: Electricity, Magnetism and Optics Thursday, January 3, 2013 9:00 a.m. 12:00 p.m. Instructions: 1. Write the answer to each question on a

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

20 Poynting theorem and monochromatic waves

20 Poynting theorem and monochromatic waves 0 Poynting theorem and monochromatic waves The magnitude of Poynting vector S = E H represents the amount of power transported often called energy flux byelectromagneticfieldse and H over a unit area transverse

More information

EECS 117. Lecture 22: Poynting s Theorem and Normal Incidence. Prof. Niknejad. University of California, Berkeley

EECS 117. Lecture 22: Poynting s Theorem and Normal Incidence. Prof. Niknejad. University of California, Berkeley University of California, Berkeley EECS 117 Lecture 22 p. 1/2 EECS 117 Lecture 22: Poynting s Theorem and Normal Incidence Prof. Niknejad University of California, Berkeley University of California, Berkeley

More information

Electromagnetic Theory: PHAS3201, Winter Maxwell s Equations and EM Waves

Electromagnetic Theory: PHAS3201, Winter Maxwell s Equations and EM Waves Electromagnetic Theory: PHA3201, Winter 2008 5. Maxwell s Equations and EM Waves 1 Displacement Current We already have most of the pieces that we require for a full statement of Maxwell s Equations; however,

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe ANTENNAS Vector and Scalar Potentials Maxwell's Equations E = jωb H = J + jωd D = ρ B = (M) (M) (M3) (M4) D = εe B= µh For a linear, homogeneous, isotropic medium µ and ε are contant. Since B =, there

More information

CHAPTER 9 ELECTROMAGNETIC WAVES

CHAPTER 9 ELECTROMAGNETIC WAVES CHAPTER 9 ELECTROMAGNETIC WAVES Outlines 1. Waves in one dimension 2. Electromagnetic Waves in Vacuum 3. Electromagnetic waves in Matter 4. Absorption and Dispersion 5. Guided Waves 2 Skip 9.1.1 and 9.1.2

More information

Theory of Electromagnetic Nondestructive Evaluation

Theory of Electromagnetic Nondestructive Evaluation EE 6XX Theory of Electromagnetic NDE: Theoretical Methods for Electromagnetic Nondestructive Evaluation 1915 Scholl Road CNDE Ames IA 50011 Graduate Tutorial Notes 2004 Theory of Electromagnetic Nondestructive

More information

Multilayer Reflectivity

Multilayer Reflectivity Multilayer Reflectivity John E. Davis jed@jedsoft.org January 5, 2014 1 Introduction The purpose of this document is to present an ab initio derivation of the reflectivity for a plane electromagnetic wave

More information

A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES

A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES Progress In Electromagnetics Research, PIER 22, 197 212, 1999 A RIGOROUS TWO-DIMENSIONAL FIELD ANALYSIS OF DFB STRUCTURES M. Akbari, M. Shahabadi, and K. Schünemann Arbeitsbereich Hochfrequenztechnik Technische

More information

Lecture 9. Transmission and Reflection. Reflection at a Boundary. Specific Boundary. Reflection at a Boundary

Lecture 9. Transmission and Reflection. Reflection at a Boundary. Specific Boundary. Reflection at a Boundary Lecture 9 Reflection at a Boundary Transmission and Reflection A boundary is defined as a place where something is discontinuous Half the work is sorting out what is continuous and what is discontinuous

More information